

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.39) (2018) 555-560

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Development of Task Deployment Tool for Operating IoT

Devices

Lei Hang
1
, Do-Hyeun Kim

*2

1,2Computer Engineering Department, Jeju National University, Jeju, 63243 Korea

*Corresponding author E-mail: kimdh@jejunu.ac.kr

Abstract

Background/Objectives: Business processes utilize IoT data to interact with the data in physical world, to make informed decisions,
improve their execution, and adjust to set context changes.
Methods/Statistical analysis: A novel IoT task deployment tool is proposed in this paper for efficiently executing and allocating the
business process model to real IoT devices. The designed tool can extract the operational sequence from the task editor and interact

directly with remote IoT devices to perform defined tasks.
Findings:An application in a mobile device is implemented to validate the feasibility of the proposed approach, in which CoAP protocol
is used for the communication. The results show that the proposed task deployment tool can retrieve and parse tasks efficiently.
Improvements/Applications: In future, we will conduct real experiment with more IoT devices to verify the proposed model for task
deployment.

Keywords: Internet of Things, Business Process Modeling, Task Deployment, CoAP, Mobile.

1. Introduction

The Internet of Things (IoT) is turning into an inexorably critical
subject of congress both on and off the working space [1]. IoT
guarantees to empower establishing various applications in areas,
for example, building and home automation, smart environment,
intelligent agriculture, smart transportation, and medical services
[2]. Real-world devices will have the capacity to offer their
functionality via SOAP-based web services (WS-*) or RESTful

APIs, enabling other components to interact with them
dynamically, especially in IoT [3]. A service demonstrates the
activity that can be performed by a sensor node so as to be asked
for meeting the involved task, which is related with the atomic
service type like temperature, humidity, light, etc.[4]. The WSN
applications comprise of one or more tasks, and accordingly an
application might require a complex service composed of multiple
atomic services. To be more precise, each of these tasks is the

finest-grained and non-divisible element to establish the WSN
application.
Business Process Modeling Notation (BPMN) [5] is a
standardized set of notations that in a specific sequence produces a
service for non-technical users to express their requirements,
hence it can provide a better DIY programming platform for IoT
related applications. Itcan be visualized as a collection of
connected activities or tasks to achieve an authoritative objective,

once finished. As of late, with the fast increasement in computing
power, constrained IoT devices can participant in the execution of
business logic, and in such a manner they can collect or filter the
contents of data, and make processing decisions locally, by
executing the business logic partially.
In our previous study, a BPMN-based task editor [6] with the
intuitive drag-and-drop approach was proposed, which allowed the

general public without any programming experiences to customize
the services offered by remote and constrained IoT devices. The
editor offers miscellaneous graphical representations of the task

objects enabling general users to define the logic flow of an IoT
application. This paper proposes a task deployment tool to execute
the business logic and allocate IoT tasks to remote devices. The
proposed deployment tool utilizes the CoAP Californium which
facilitates the discovery of CoAP resources and supports libraries
for generation of CoAP commands. It ingests the task profile
designed from the task editor which is in the form of XML. For
the execution of the business process model, the deployment tool

is responsible to translate each task into RESTful web services and
directly interact with remote IoT devices. The execution state or
any data is returned to the deployment tool which further decides
how to proceed with the further execution of the business process.
In order to verify the feasibility of the designed system, a mobile
application has been implemented over the proposed system. The
test results denote that the proposed system is capable of
evaluating the application logic of the current task and perform the

further execution steps of the business process.
The remainder of this paper is structured as follows. Section 2
shortly introduces the basic principle of BPMN and gives an
overview of some existing researches using business process. In
Section 3, we present the system architecture of the proposed
system as well as system operation and configuration. Section 4
details the implementation of the case study over the designed
system and reports the experimental results with various

snapshots. Section 5 demonstrates the performance of the
proposed system by computing the execution time for three
different business logic files with different steps. Finally, Section
6 discusses the conclusion and future work.

556 International Journal of Engineering & Technology

2. Related Work

Business process languages such as (WS-BPEL) or BPMN
provides an abstraction level closer to the domain being specified.
From the perspective of IoT implementations, the same definition
of business process fits the processes or applications that run on
top of an IoT implementation defining its behavior via the
interactions of sensing and actuating agents in order to provide
useful services to the end-users. The example of such an
implementation would be a Smart Space, where the process

running as the application would define the behavior of the Smart
Space sensing (temperature, humidity, illumination, proximity
etc.) and actuate (Air conditioning, heating, lightings, door locks
etc.) agents based on pre-defined events (resident’s arrival, time
schedule, emergency state etc.).
As of late, there has been a broad proportion of research in the
field of IoT behavior definition inside the business process. The
authors in [7] integrate sensor networks into business processes by

utilizing the BPEL language. As part of the CoBIs-project [8], a
sensor network proposed to monitor the storage of chemical
containers. The sensor network monitors the number of containers
that are stored together as well as the combination of containers
with different chemical materials. The concentration of this work
is to integrate a sensor network application into existing business
processes. In paper [9], a WS-BPEL model with context variables
is extended to monitor IoT information as well as abstractes the

set of operations interacted with IoT devices. The IoT-A project
proposes some BPMN extensions to explicitly include IoT devices
and their services in an IoT-aware process model, as well as some
characteristics of IoT devices, such as uncertainty and availability
[10]. The uBPMN project extends the BPMN by adding
ubiquitous elements. New elements including a sensor, reader,
collector, camera, and microphone, as well as an IoT-driven Data
Object are defined as the BPMN task to represent the data
transmitted from IoT devices [11]. A graphical user interface is

proposed in GWELS [12] to design processes of the IoT
application. The designed process can be automatically sent to IoT
devices in the form of a sequence of operation calls which are web
services provided by the IoT devices. It uses proprietary
communication protocols to interact with IoT devices. IoT
processes are provided as web services and, in this way, can also

be integrated into business processes. A makeSense framework
which extends the BPMN with attributes is proposed in [13]. A
new intra-WSN participant is also designed, which enables IoT
devices to execute some part of the process[14].

To the best of our knowledge, these systems mentioned above, are
unable to define the behavior of IoT devices, they can only use
services whose behavior is pre-defined. In our work, we utilize the
standard BPMN to define all the business process, and IoT service
is defined by a visual designer proposed in the previous study. The
proposed deployment tool translates the business processes into
RESTful web services, which can directly interact with IoT
devices.

3. Proposed IoT Task Deployment Tool

The class diagram of the proposed task deployment tool is
illustrated in Figure 1. Manager class defines the user interface to
deal with the Human-Computer Interaction (HCI). Through this
class,usercan choose BPMN file to load and confirm the business

process intuitionally. All of the elements used in the business
process is defined in the BpmnItem class. Parser class provides the
functionalities to parse and extract business process items from the
XML file. In addition, the Execution Engine is responsible for the
deployment and allocation of the tasks created by the user. It
creates a sequence for the execution of individual tasks according
to the connections among various process notations as part of the
graphical model along with the location of each graphical item in

the model. The user can then choose to deploy the model. For the
execution of the deployed process, the execution engine is
responsible to send the XML representation of each task to the
concerned remote IoT resource. The execution state or any data is
returned to the execution engine which further decides how to
proceed with the execution and scheduling of the tasks using three
subclasses (Task, Gateway and Script). Task class defines the
order of execution among tasks. The conditional logic of the
process is implemented using the Gateway class while processor-

intensive tasks and remote communication tasks which are not
suitable to be executed on the remote IoT resources are
represented by the Script class. The Script class has been provided
with a list of scripts from which the user can choose to manipulate
or process the data.

Figure 1: Class Diagram of the Task Deployment Tool

557 International Journal of Engineering & Technology

Figure 2 illustrates the details of the operation of the proposed task
deployment tool. The task deployment tool is responsible for the
deployment and execution of the BPM models created by the users
through the task editor. It presents a simple user interface which

consists of a viewer for the users to view the components of the
BPM that is being deployed. The viewer panel does not visualize
the components of the BPM as visual notations rather it lists them
in a sequential order of the textual description of these
components as specified by the graphical model. This operation is
performed by parsing the connections among various BPM
notations as part of the graphical model along with the location of
each graphical item in the model to create a sequence for the

execution of individual tasks.
Once the task execution sequence is created, the list of the tasks as
part of the BPM is shown to the user in the view panel. The user
can then choose to deploy the model. For the execution of the

deployed BPM, the execution engine is responsible to allocate
tasks to the concerned remote IoT resource. The execution state or
any data is returned to the execution engine which further decides
how to proceed with the execution of the BPM. The BPMN
Gateways provides branching and execution logic for the process
and the BPMN Scripts provide functions such as data processing
or network communications which are too costly for the remote
IoT resources and thus are executed by the execution engine.

Task Deployment Tool Startup and Operation

Connect BPM

Repository

Initialize UI

Components

Retrieve BPM

information

Parse/create BPM

objects

Sort execution

sequence of objects

Execution Engine

Send command for

remote execution

BPM View UI

Control UI

Function Calls

1. Initialize all UI forms
2. Acquire BPM for

deployment

3. Convert info to objects

4. Save

 objects

Populate Execution

List

5. Load BPM objects

6. Execute

BPM logic

7. Initialize

remote calls

Execution at remote

CoAP server

Californium

Execution data and

state

Execution Thread

8. Send command

9. Return execution state

Figure 2: Operation Configuration of the Proposed Task Deployment Tool

The task deployment tool loads the BPM XML documents and
parses the business process. Then it starts the process execution
and sends a CoAP request using GET method to the touch
resource belonged to the smart phone. The deployment manager
receives the CoAP response from the phone and verifies the
boolean value of the touch sensor. For example, the true value
means the touch sensor is pressed by the user. The deployment

manager initiates another request to the LED resource of the
phone. The phone turns on the LED according to the request and
sends back the response to the deployment manager, these
operations are represented in Figure 3.

Task Deployment
Tool

Smart Phone

Load xmla documents

Parse from xmla

GET/ lighton

2.05 Content
Success

Turn on the light

GET/ touch

2.05 Content

Get touch sensor status

If sensor is touched

Figure 3: Sequence Diagram of the Case Study

The XML sample for the case study shown in Figure 4
representing tasks and other notations as DesignerItem objects. A
DesignerItem tag in the figure completely represents the
information encapsulated by a single BPM notation. In the figure
first task represents a Task notation which encapsulates the
complete information regarding a service object. The information
includes the names of the input, output devices associated with the

SO, the complete URIs of the services for both the devices and the
operational conditions for the execution of the SO. The file also
includes connection objects to keep track of the source and sink
items in the model and hence helps in identifying the correct
sequence and execution order of the process.

Figure 4: XML Representation of Business Logic for the Case Study

558 International Journal of Engineering & Technology

4. Implementation Details

This section introduces the IDEs, hardware, and technologies used
for the case study development. The use case consists of two main
components as shown in Figure 3 so that two tables are made to
illustrate the development environment for each module
separately.
Table 1 represents the technology stacks used for developing the
task deployment tool. The implementation is performed on Intel
Core i3-3220 CPU at 3.30GHz with 12 GB memory and 64-bit

operating system. This application is developed with the Eclipse
Luna (version 2.3) in Java language. The Swing is a Java-written
toolkit that is used to create window-based applications. In order
to support the CoAP communication, Californium framework has
been used.

Table 1: Development Environment of Task Deployment Tool

Task Deployment Tool

CPU Intel(R) Core i3-3220 3.30GHz

OS Windows 7 Ultimate 64bits

Memory 12GB

Development Tool Eclipse Luna (4.2)

Communication Protocol CoAP Protocol

Language Java

Library and Framework CoAP Californium, Swing

Table 2 represents the development environment of the mobile
application in smart phone. This application is developed with the
Android Studio IDE (version 2.3) in Java and XML language.

The application has been tested in the Vivo X5 Pro in Android 5.0
with API 23. CoAP Californium framework is used to implement
the CoAP server and these mobile sensors such as LED and touch
sensor are implemented into resources as part of the server, and
each of them is assigned with a unique URI in order to be
identified by the server. This mobile application listens for the
request on the appointed port and performs the operation on the

corresponding resources accordlingly.

Table 2: Development Environment of Mobile Application in Smart

Phone

Mobile Application

Development Tool Android Studio 2.3

Communication Protocol CoAP Protocol

Language Java, XML

Library and Framework CoAP Californium

Hardware Vivo X5 Pro (Android 5.0, API 23)

Memory 2GB

Resources LED, Touch sensor

Task deployment tool provides the execution engine for the BPM
created via the task editor. Figure 5 shows the main interface for
the task deployment tool. For this specific prototype as the
physical devices are CoAP based IoT resources in a mobile phone,
the task deployment tool utilizes the Californium framework to
communicate with the remote IoT resources in order to execute
the process represented via the BPM. The interface is intentionally

kept very simple with a viewer for the user to visualize the steps
of the deployed BPM and a few controls to enable the user to load
BPM from the repository and to control the execution of the BPM.
As mentioned earlier, that a process model representing the
interaction among various IoT resources is created by the user via
the task editor and stored as an XML document. These XML
documents can be loaded in the task deployment tool to be
executed. The BPM in its XML format is loaded into the task

deployment tool. The file is first parsed to extract all the
executable entities as represented by the BPM notations. Based on
the connection between the notations, the executable entities are
sorted and sequenced so that the final execution of the process is
in sync with the original graphical BPM created by the user. The
execution steps are then displayed in the viewer part of the
interface.

Figure 5: Snapshot of Task Deployment Tool

The entities are stored in a list which is sorted in accordance with
the flow of the process model. The list is then iterated and each
entity is executed based on its attributes and behavior. For task-
related to remote IoT resources, the URI of the resource extracted

from the XML representation is sent to the corresponding CoAP
server. This transfer is done through a CoAP function call service
of the task deployment tool.

Figure 6: Task Deployment Tool Execution Results

Once the CoAP server receives the request from the task
deployment tool, the CoAP services, are executed using the

Californium framework. The response based on the complete

execution of the task is then sent back to the task deployment tool,
where it is utilized to evaluate the conditional gateways or

provided as inputs to the other BPM notations directly connected

559 International Journal of Engineering & Technology

with the specific task notation. Scripts implemented as part of the
Deployment Manager are executed by the manager itself while the
data is provided by other entities such as remote IoT resources.
Figure 6 shows the execution of a business process model via the

task deployment tool. The responses received from the touch
resource has been shown before utilized to further execute the
process. In this case, the LED will be turned on if the touch sensor
is pressed according to the defined business process in Figure 4.
Figure 7 represents the snapshot of the execution result for the Led
resource in the phone. The three color LED is turned on as the
touch sensor is pressed. Then the LED resource returns a CoAP
response which indicates the task is successfully performed.

Figure 7: Snapshot of LED Resource Execution Result in Smart Phone

5. Performance Evaluation

Figure 8: Performance Analysis Graph for Task Deployment Tool

The task deployment tool acquires the process object from the task
editor in order to execute it. It first parses that information to
create relevant executable objects and then sequence them

according to the order set in the graphical business logic created
by the user. This process has been analyzed for performance and
the results have been represented in Figure 8. Three different
business logic files with 5, 15 and 30 steps process were provided
to the task deployment tool for this analysis, and each file was
allowed to be parsed by the task deployment tool twenty times at
random system resource levels. Three measurement methods: the
minimum, average and maximum time in milliseconds taken by

the task deployment tool are used to compute the time parsing the
business logic into executable objects and adjusting the sequence
of execution accordingly. For the 5 steps testing, the minimum
time taken in the ten iterations was recorded to be 30 milliseconds,

averaging at the 45.4 milliseconds and the maximum delay was
recorded to be 62 milliseconds. For the 15 steps testing, the
minimum time taken in the ten iterations was recorded to be 45
milliseconds, averaging at the 57.2 milliseconds and the maximum

delay was recorded to be 68 milliseconds. Lastly, for the 30 steps
testing, the minimum time taken in the ten iterations was recorded
to be 63 milliseconds, averaging at the 74.4 milliseconds and the
maximum delay was recorded to be 84 milliseconds. According to
the experimental results, the execution time cost of the task
deployment tool is maintained in an optimal level which can be
even disregarded and thus, it will not impact the user’s experience.

6. Conclusion

The vision of IoT is a global network of diverse sensing and
actuating devices for the provision of useful services via data
acquisition, communication, data sharing, andactuation. Task
allocation on IoT devices is very challenging in a sense that
efficient task deployment is interlinked inherently on the network

problem and energy consumption. This study proposes the novel
idea of an IoT task deployment tool for executing the business
process model. Business process modeling has been at the core of
software requirement analysis and specification processes. A case
study based on mobile devices have been developed to
demonstrate the feasibility of the design system. A basic
information retrieval and parsing based performance analysis have
been performed and the results indicate that the designed system

has a good application prospect.

Acknowledgment

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded by
the Korea government (MSIT) (No.2017-0-00756, Development

of interoperability and management technology of IoT system
with heterogeneous ID mechanism), and this work was supported
by Institute for Information & communicationsTechnology
Promotion(IITP) grant funded by the Korea
government(MSIT)(No.2018-0-01456, AutoMaTa: Autonomous
Management framework based on artificial intelligent Technology
for adaptive and disposable IoT)), Any correspondence related to
this paper should be addressed to DoHyeun Kim.

References

[1] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things

(IoT): A vision, architectural elements, and future directions. Future

generation computer systems. 2013 Sep 1;29(7):1645-60.

[2] Hang L, Jin W, Yoon H, Hong Y, Kim D. Design and

Implementation of a Sensor-Cloud Platform for Physical Sensor

Management on CoT Environments. Electronics. 2018 Aug

7;7(8):140.

[3] Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D. Interacting

with the soa-based internet of things: Discovery, query, selection,

and on-demand provisioning of web services. IEEE transactions on

Services Computing. 2010 Feb 10(3):223-35.

[4] Li W, Delicato FC, Pires PF, Lee YC, Zomaya AY, Miceli C,

Pirmez L. Efficient allocation of resources in multiple

heterogeneous wireless sensor networks. Journal of Parallel and

Distributed Computing. 2014 Jan 1;74(1):1775-88.

[5] Domingos D, Martins F, Cândido C, Martinho R. Internet of Things

Aware WS-BPEL Business Processes Context Variables and

Expected Exceptions. J. UCS. 2014 Aug 1;20(8):1109-29.

[6] Ahmad S, Hang L, Kim DH. Design and Implementation of Cloud-

Centric Configuration Repository for DIY IoT Applications.

Sensors. 2018 Feb 6;18(2):474.

[7] Spiess P, Vogt H, Jutting H. Integrating sensor networks with

business processes. InReal-World Sensor Networks Workshop at

ACM MobiSys 2006 Jun 19.

[8] Decker C, Riedel T, Beigl M, De Souza LM, Spiess P, Muller J,

Haller S. Collaborative business items.

0

20

40

60

80

100

5 Steps 15 Steps 30 Steps

T
im

e
 m

Se
c

Number of Steps in the Task …

Min time

Avg time

Max time

560 International Journal of Engineering & Technology

[9] George AA, Ward PA. An architecture for providing context in

WS-BPEL processes. InProceedings of the 2008 conference of the

center for advanced studies on collaborative research: meeting of

minds 2008 Oct 27 (p. 22). ACM.

[10] Meyer S, Sperner K, Magerkurth C, Pasquier J. Towards modeling

real-world aware business processes. InProceedings of the Second

International Workshop on Web of Things 2011 Jun 12 (p. 8).

ACM.

[11] Yousfi A, Bauer C, Saidi R, Dey AK. uBPMN: A BPMN extension

for modeling ubiquitous business processes. Information and

Software Technology. 2016 Jun 1;74:55-68.

[12] Glombitza N, Lipphardt M, Werner C, Fischer S. Using graphical

process modeling for realizing SOA programming paradigms in

sensor networks. InWireless On-Demand Network Systems and

Services, 2009. WONS 2009. Sixth International Conference on

2009 Feb 2 (pp. 61-70). IEEE.

[13] Casati F, Daniel F, Dantchev G, Eriksson J, Finne N, Karnouskos

S, Montero PM, Mottola L, Oppermann FJ, Picco GP, Quartulli A.

Towards business processes orchestrating the physical enterprise

with wireless sensor networks. InProceedings of the 34th

International Conference on Software Engineering 2012 Jun 2 (pp.

1357-1360). IEEE Press.

[14] Nallapaneni Manoj Kumar, Pradeep Kumar Mallick,” The Internet

of Things: Insights into the building blocks, component

interactions, and architecture layers”, Elsevier Procedia Computer

Science Journal , Volume 132, Pages 109-117, 2018, ISSN:1877-

0509, UGC Sl No: 46138 and 48229, DOI:

https://doi.org/10.1016/j.procs.2018.05.170.

