

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.41) (2018) 66-70

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Wireless Communication Between Embedded Systems based on

FPGA

Daryl Narakadan1*, Sadhana Pai1, Manita Rajput1

1Fr.C.Rodrigues Institute of Technology,Vashi, Mumbai Maharshtra ,INDIA

*Corresponding author E-mail:darylgeorge007@gmail.com

Abstract

Nowadays most of the applications require wireless connectivity to seamlessly send and receive information in different networks. In

most of the scenarios this was achieved via microcontrollers and RF transceiver modules. The scope of this project is to implement a

wireless interface layer between end user device running on different wireless medium using a interconnect model. In this project we use

a model that is based on FPGA. Using FPGA rather than microcontroller has its various advantages such as low power consumption,

high computation speed and better efficiency. Also for the wireless medium we research on various medium and select the most compat-

ible one. The project will establish communication using UDP packets, which would facilitate wireless transfer of data over robust Wi-Fi

technology.

Keywords: FPGA;NodeMCU;Verilog;Wireless Communication.

1. Introduction

In today’s world technology plays an important and vital role in

the lives of human beings. Automation and machine controlled

applications are being widely used to replace manual labor. Major-

ity of the systems are electronically controlled using microcontrol-

lers. FPGAs are now replacing the conventionally used Microcon-

trollers in various fields. Systems based on FPGAs (Field Pro-

grammable Gate Arrays) provide many advantages over conven-

tional implementations [1]. Adding an FPGA to a design gives

you the flexibility to put some functionality in software and some

in hardware. Generally, anything that involves complex decision

making should be in software, because complexity is cheap in

software and expensive in FPGAs where you have a limited num-

ber of logic elements. Software is poor at many kinds of bit-level

algorithms and is usually poor at precise timing. FPGA has high-

performance bit-level processing which is more efficient than

software (a good example is high-performance cryptography) and

is a good way to sample and generate I/O with accurate timing, so

they’re used for low-level data communications and for test

equipment that needs to observe and perform low-level protocols

[2]. The scope of this project is to have wireless communication

between embedded systems using FPGAs for control and data

transmission requirements. The communication should take place

at moderate range (50-55 feet) and moderate data-rates (1-2Mbps).

2. Hardware Setup

The hardware setup or the block diagram has been described in

Figure 1. As we can see the wireless communication between PC1

and PC2 has been facilitated with the use of Wireless module

ESP-12E and FPGA. The following section gives details regarding

the different hardware components and wireless medium.

Fig. 1: Functional block diagram of hardware setup

2.1. Xilinx Digilent Nexys 3 FPGA Board

Out of the available FPGA boards (e.g. Spartan 3E, Spartan6) the

Nexys 3 Spartan 6 board is selected due to its UART port, Adept

Programming function. The Nexys 3 is a complete, ready-to-use

digital circuit development platform based on the Xilinx Spartan-6

LX16 FPGA.

The Spartan-6 is optimized for high performance logic, and offers

more than 50% higher capacity, higher performance, and more

resources as compared to the Nexys 2’s Spartan-3 500E FPGA. In

addition to the Spartan-6 FPGA, the Nexys 3 offers an improved

collection of peripherals including 32Mbytes of Micron’s latest

Phase Change non-volatile memory, a 10/100 Ethernet PHY, 16

Mbytes of Cellular RAM, a USB-UART port, a USB host port for

mouse and keyboard, and an improved high-speed expansion con-

nector [3].

Some of the features of this board are:

• Xilinx Spartan-6 LX16 FPGA in a 324 BGA package.

• It has 16 Mb cellular RAM(x16).

• Nexys 3 also includes 16 Mb parallel PCM non-volatile

memories

• It has 10/100 Ethernet PHY.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 67

Fig. 2: Xilinx Nexys 3 FPGA board

2.2. Wireless Medium Selection

For the selection of the wireless medium a survey was carried out

and their characteristic parameters were observed and noted. The

wireless medium considered for this survey was Bluetooth,

ZigBee and Wi-Fi. The following Table summarizes the Wireless

Medium Survey that was carried out.

Table 1: Wireless Medium Survey Results [4]

Category ZigBee Bluetooth Wi-Fi

Range 75+ m 10m 50+ m

Data Rate 250 kbps 1 Mbps 1-54 Mbps

Freq Range 868Mhz,916Mhz,2.4Ghz 2.4Ghz 2.4 GHz

Network Nodes 65535 8 50

Linking Time 30ms Up to 10s Up to 3s

Cost Low Low High

Power Low Medium High

The wireless medium considered was Wi-Fi medium so as to work

with moderate range (55feet) and moderate data rate (1-2 Mbps).

2.3. Wi-Fi Module Selection

For the Wi-Fi module a survey observing its various at- tributes

was carried out. We had considered PMOD Wi-Fi modules,

ESP8266 for this survey. Finally Wi-Fi ESP8266 (NodeMCU) is

selected due to its simplicity, cost-effectiveness and ability to flash

its firmware [5].

Some features of Wi-Fi Module NodeMCU:

• NodeMCU has a L106 32-bit RISC microprocessor core

running at 80 MHz

• 64 KiB of instruction RAM, 96 KiB of data RAM.

• It has integrated TR switch, LNA, power amplifier and

matching network.

• WEP or WPA/WPA2 authentication or open networks.

• Also it has 16 GPIO pins.

Fig. 3: ESP8266-12E NodeMCU v-1.0

3. Implemented Work

3.1. Range Testing

This test was carried out to get the Wi-Fi ranges in terms of signal

strength. The range measurements were calculated by observing

the signal strength and RSSI levels in the Arduino serial monitor

window.
 Table 2: Range Test Results

Distance(feet) Signal strength(dBm)

0 -61

5 -71

10 -77

15 -79

20 -79

25 -82

35 -90

40 -92

50 -93

55 -93

3.2. UDP packet transmission

UDP uses a simple connectionless communication model with a

minimum of protocol mechanism. UDP provides checksums for

data integrity, and port numbers for addressing different functions

at the source and destination of the datagram [6]. It has no hand-

shaking dialogues, and thus exposes the user’s program to any

unreliability of the underlying network.

3.2.1. UDP transmission between two NodeMCUs:

For this test we connect both NodeMCU module to different ports

and program them via Arduino IDE [7].

Steps for programming the NodeMCUs are:

Fig. 4: Sender NodeMCU flowchart

As seen in Figure 4, the first step is to include the libraries of ES-

PWiFi.h and UDP.h on the Arduino IDE. Then two constant vari-

ables are declared to hold the value of ssid and password of the

Wi-Fi network. Later the local and remote UDP port no is set.

This can be any of the available UDP port numbers.

Then the remote UDP host id is set which is the IP address of

the receiver NodeMCU module.

 The trigger message to be sent is stored in a character array which

can be any string of characters. Then Wi-Fi connection and

UDP connection is then turned on by the command UDP.begin().

Now the UDP packets can be sent using the command

UDP.beginPacket().

68 International Journal of Engineering & Technology

Fig. 5: Receiver NodeMCU flowchart

As seen in Figure 5, the receiver side flowchart has been given.

Again the first step is to include the ESPWiFi and UDP header

files. The ssid and password is stored in a constant character. The

local UDP port number is set. Then the serial communication and

Wi-Fi connection is started. The local IP address is allotted to the

NodeMCU by the Wi-Fi network and then the UDP connection is

begun. The incoming packets can then be received at the local

UDP port by parsing the packets using UDP.parsePacket(). Figure

6 shows the output window.

Fig. 6: Output window at Arduino serial monitor

3.2.3. UDP Packet Transmission from PC to NodeMCU:

For this test we connect a single NodeMCU module to Laptop and

try to send packets from PC to NodeMCU. In order to send the

packets we use the concept of Socket programming in Linux sys-

tem [8].

Steps for Socket Programming are given in Figure 7.

Fig. 7: Flowchart for socket programming (Linux)

Fig. 8: UDP packet from PC to NodeMCU

Also we can observe from Figure 8 that the message typed in the

terminal window of Linux system is available at the serial port

connected to the NodeMCU module.

3.3. FIFO memory for Read and Write Data

In this project we use the FIFO memory to write and read data into

the FPGA board. FIFO stands for First In First Out, and the cod-

ing is done in Verilog language. Two FIFO memories were used.

One for writing the data and one for reading the data. Before im-

plementing on hardware the FIFO code was tested on software and

simulated using the ISim software. The FIFO coded was of 32 bits

word data and the depth of the FIFO was 8 i.e. (32x8) .The simu-

lation results are as given below:

Fig. 9: Simulation waveforms for FIFO memory

Fig. 10: Console output for simulation

Figure 9 shows the FIFO memory locations being pushed (write) and

popped (read) with data and Figure 10 shows the particular operation

details on the console window.

3.4. Final implementation

Fig. 11: Actual Hardware Setup

Figure 11 shows the actual hardware setup. We can now combine

the above individual implementations to transmit and receive data

from client (Linux User) to server that is NodeMCU.

International Journal of Engineering & Technology 69

3.4.1 Transmission using default format of UDP Packet:

The NodeMCU is connected to FPGA Board via the GPIO pins.

Fig. 12: Client side Write command

Fig. 13: Client side Read command

Fig. 14: Client side Read command

As we can see from Figure 12 and 13, we give the write or read

command from the Linux client. This command is received as a

UDP packet at the NodeMCU which is connected to the Nexys 3

FPGA board. Depending on the command write or read enable

pins are activated on the FPGA board which allows the internal

FIFO to read or write data to the FIFO memory.

 The FIFO output is again then given to the NodeMCU module

via GPIO pins which is further transmitted to the Linux client as

UDP packets. This is shown in Figure 14. This approach though

causes the transmission to have increased overhead bits as each bit

is sent as a character value which requires one byte of space. New

format of packet structure is shown below.

3.4.2. Transmission with formatting of UDP packet:

Fig. 15: New formatted UDP packet structure

Figure 15 shows the frame structure of the UDP Packet which is a

total of 2 bytes.

 The frame structure consists of:

• UID : Unique Identification Number (4 bits)

• W/R bit: Bit is 1 for Write operation and 0 for Read

• Packet No: Unique packet id for each transaction(3)

• Length: Shows the length of the entire packet (4 bits).

• Data: 4 bit Data being transmitted/received.

Fig. 16: Client side terminal (Linux)

Fig. 17: NodeMCU monitor output

Fig. 18: Data read back at client side

Thus Figure 16 and 17 shows the terminal window of the Linux

client from where the command to write and read data is taken

from the user side. The client is first asked whether to “write” or

“read” data. Once write mode is selected by pressing 1, the client

can now input the data to be sent. In the above example data en-

tered is binary 1000. The packet structure for the same will look

like 01101001 00101000. The significance of each bit is explained

earlier.

Now the character representation of this will look like “h(“.

Figure 17 shows the server side output for NodeMCU module. As

the data entered was 1000 in binary form, the entire packet struc-

70 International Journal of Engineering & Technology

ture translates to “h(“ in character format. This is then decoded

and sent to the FPGA to be stored in FIFO memory.

Once the read command is issued as shown in Figure 18, the same

data is read from the memory and sent back to client. The data

sent is “`(” in character format which translates to 01100001

00101000. The last 4 bits can then be extracted to get the data

back, which is 1000. Thus by doing the formatting of UDP packet

structure we have also reduced the number of overhead bits and

reduced the bandwidth usage for transmission and reception of

UDP packets.

4. Conclusion

Thus we have successfully established wireless communication

between embedded systems using FPGA and NodeMCU. This

paper proposes an approach to replace the existing wired commu-

nication for FPGAs with wireless one. Such a type of communica-

tion can be achieved in an industrial workspace where the entire

network is run on a specific Wi-Fi network. As the applications

are mostly targeted at monitoring and controlling purposes we can

use UDP packets for communication. Also using UDP packets

increases the speed of transmission.

5. Future Scope

Further we can now expand this approach to communicate to other

FPGAs via NodeMCU’s connected to a particular Wireless Net-

work. Also work on SPI protocol to connect a number of slaves

FPGA in order to create a network of FPGAs. Also UART proto-

col can be used to send data from server side for a constant pool of

data to be transmitted rather than making it user defined for every

transmission.

Acknowledgement

I am thankful to my academic supervisor Prof. Sadhana Pai who

has been a great support in the process of designing this project.

Her experience and wisdom has been of great help to me. I ex-

press deep gratitude towards my external supervisor, Dr.

Raghunandan Shukla who has helped me in every possible aspect

of this project and guided me with his expertise and wisdom. I am

also deeply thankful to Prof. Manita Rajput for her incessant read-

iness to help me and review my work. Her critical feedback on

every aspect of my work helps me to improve my work at each

and every step.

References

[1] P.H.W.Leong, “Recent trends in fpga architectures and applica-
tions”,4th IEEE International Symposium on Electronic Design,

Test and Applications 2008, Hong Kong, Jan., pp. 137–141, 2008.”

[2] J. Serrano, “Introduction to FPGA design,” 2008.

[3] Nexys 3 Reference Manual, Digilent. [Online].

Available:

https://reference.digilentinc.com/reference/programmable- log-
ic/nexys-3/reference-manual

[4] A. J. V.Abinayaa, “Case study on comparison of wireless technolo-

gies in industrial applications,” International Journal of Scientific
and Research Publications., vol. 4, no. 2, pp. 137–141, 2 2014.

[5] ESP8266EX Datasheet, Espressif Systems IOT Team, 2015, rev

4.3
[6] B.A.Forouzan TCP/IP Protocol Suite, 2nd ed., S. C. Fegan,

Ed.McGraw-Hill Higher Education,2002.
[7] E.A.C.documentation.(2018,Feb.)Udp- esp8266-arduino@ONLINE.

[8] W. W. Gay, Linux Socket Programming: By Example. Indianapolis,

IN, USA: Que Corp., 2000.

