

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.36) (2018) 736-743

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

EMSRSE: Efficient Multi-Keyword Synonym Based Ranked

Search Technique Over Outsourced Encrypted Cloud Data

Veerraju Gampala1*, Sreelatha Malempati2

1Department of Computer Science and Engineering, GMR Institute of Technology, Rajam.

Research Scholar, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.
2Dept. of Computer Science and Engineering, R.V.R & J.C. College of Engineering, Chowdavaram, Guntur, Andhra Pradesh, India.

E-mail:lathamoturi@rediffmail.com

*Corresponding author E-mail:veerraju.g@gmrit.org

Abstract

Recently, searching over encrypted cloud-data outsourcing has attracted the current researcher. Using cloud computing (CC), individuals

and organizations are motivated to outsource their private and sensitive data onto the cloud service provider (CSP) due to less

maintenance cost, great flexibility, and ease of access. However, the data should be encrypted using encryption techniques such as DES

and AES before uploading to the CSP in order to provide data privacy and protection, which obsolete plaintext searching techniques over

encrypted cloud data. Thus, this article proposes an efficient multi-keyword synonym-based ranked searching technique over encrypted

cloud data (EMSRSE), which supports dynamic insertion and deletion of documents. The main objectives of EMSRSE are 1. To build an

index search tree in order to store encrypted index vectors of documents and 2. To achieve better searching efficiency, a searching

technique over the encrypted index tree is proposed. An extensive research and empirical result analysis show that the proposed

EMSRSE scheme achieves better efficiency in comparison with other existing methods.

Keywords: Cloud computing, multi-keyword search, synonym-based search, index search tree, ranked search.

1. Introduction

In the past, CC has gained more attention from industry as well as

academic people. As it becomes a new prototypical model for IT

organizations, it can unify large resource computing, applications,

storage, and on-demand network admittance to a collective pool of

reckoning resources that achieve better efficiency, great

flexibility, ease of access, and nominal maintenance cost [1]. With

the attracted features of CC [2], more and more individuals and

industry people are driven to upload their data such as financial

records, health records, photos, albums, and emails onto the CSP

instead of procuring own hardware and software to maintain the

data in the local systems. As CSP cannot be trusted in terms of

data outsourcing, the data encryption is recommended to provide

data privacy, before it is uploaded to CSP. Since the data

encryption does not have the answers for consumer queries on

cloud data storage, traditional penetrating techniques cannot be

used over encrypted searchable data in ciphertext domain. The

existing searching techniques such as Google and Yahoo search

over plaintext cannot be used directly over encrypted cloud data.

To overcome this issue, the entire encrypted data can be

downloaded to the data consumer’s local system and then decrypt.

However, it is infeasible to apply because of high bandwidth

utilization and computational overhead. Moreover, the data

consumers may be interested to download only a few documents

but not the entire document pool.

To address above issues, researchers are proposed several

approaches to enable searching over encrypted cloud data ([3], [4],

[5]), Such as fuzzy, single, similarity, and multi-keyword search.

Among them, few approaches are practical applicability. These

schemes mainly support the exact keyword search. Assume, a user

searches a keyword “computer”. He/ She will get zero results even

the documents containing keywords like “system” or “laptop”.

Though they are similar kindin the computer field. The authors in

[6] present a model for a protected multi-keyword pursuit over

cloud information encryption. Moreover, it supports dynamic

update operations such as insertion and deletion. To generate the

index and the query vector, the vector space model and Term

Frequency-Inverse Document Frequency (TFIDF) model are

integrated. To provide efficient multi-keyword ranked pursuit,

they built a special index tree structure named keyword balanced

binary tree and proposed Greedy depth-first search algorithm.

As a result, this article dealing with how to design an efficient

searchable encryption technique to support both the synonym-

based search and multi-keyword ranked search in order to solve

the above addressing issues. To address the issue distinctly, this

article presents an efficient multi-keyword synonym-based ranked

pursuit technique over encrypted cloud data. The proposed

EMSRSE scheme uses WordNet [7] to generate a synonym set

that enables a feature of the keyword dictionary. In addition, this

scheme adapts a technique [8] to encrypt index vectors of

documents and query vector in order to calculate the score of each

document through encrypted vectors.

 The major contributions of this article are as follows:

1. With the help of WordNet, a synonym set for a

synonym-based search is generated in addition to multi-

keyword search.

2. To achieve better searching efficiency in a multi-core

processor system, a balanced searchable index tree and

searching algorithm are proposed.

 The rest of this article is prepared as follows: literature review

is discussed in section 2, Problem formation is presented in

section 3, which discuss the system model, threat model, and

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:veerraju.g@gmrit.org

International Journal of Engineering & Technology 737

notations. The EMSRSE scheme design is discussed in Section 4,

Results, performance evaluation and analysis are explored in

section 5. And finally concluding remarks are elaborated in

section 6.

2. Literature survey

Various searching techniques have been proposed over encrypted

cloud data. S. Deshpande [9] suggests a technique searching over

encrypted cloud data using fuzzy keywords. They are used Edit

distance to quantify keyword similarity and developed two

techniques for building fuzzy keyword sets in order to attain

improved storage and depiction overheads. Cong Wang et al. [10]

proposes a method named ranked keyword pursuit over encrypted

cloud data using techniques such as keyword frequency and order-

preserving encryption. It supports only a single keyword at a time.

Moreover, the keyword frequency decides the document files

score. Rank is assigned to every file based on the relevance score

of the corresponding file. Finally, top-ranked files are sent to users

instead of all files. To enrich the search functionality N. Cao et al.

[11] have proposed a system, which supports conjunctive

keywords search. It is a privacy-preserving multi-keyword ranked

pursuit technique using symmetric encryption.

Various researchers are employed a technology is known as

Searchable Encryption (SE) that enables the searching over

encrypted cloud data. SE allows the data owner to outsource the

encrypted data and its related index to CSP [3,5,12]. As a result,

all legitimate users are authorized to launch a query-based

keyword search over the ciphertext domain. Various searchable

techniques have been proposed [3,12-15] forsalient features such

as security, searching accuracy, and computational overhead. The

authors in [16] propose a model for a single keyword semantic-

based pursuit over cloud data encryption affirming similarity

ranking. This method returns not only the exact keyword matched

files, but also the files comprise semantically related to the query

keyword. The creators in [4] recommend various leveled bunching

technique to help search semantics and furthermore quick

scrambled information search on huge information condition.

They propose various leveled strategy bunches the record

documents in view of the base importance edge and after that

partitions subsequent groups into sub-groups until the point that

the limitation on the most extreme size of the bunch is coming.

However, the existing techniques are not well suited for the multi-

keyword ranked search (MKRS), sincetheyemphasize on the

single or boolean-keyword search. Primarily use a privacy-

preserving scalar-product encryption (SPE) technique [8] to

achieve multi-keyword ranked pursuit over encrypted data in CC,

which achieves privacy preservation. Later, the SPE technique has

become a popular tool for SE especially to examine security and

computation time complexity. Keyword secure search techniques

[6,17] employ the SPE to offer flexible dynamic operation namely

insertion and deletion [6] not only to enhance search efficiency

but also to support the user personalization search [17]. The

authors in [18] present two techniques to support multi-keyword

ranked pursuit to attain more accurate pursuit results and the

synonym-based pursuit to support synonym queries over

encrypted cloud data. The improved semantic feature extraction

scheme E-TFIDF proposes by incorporating features extraction

technique TFIDF that expands the accuracy of pursuit results.

Veerraju et al. [19] present a complete study of keyword searching

on encrypted cloud data and discuss the comparison of various

schemes in terms of security.

To accomplish high efficiency and better precision over encrypted

cloud data as, like plain-text search, research has been done. Wang

et al. [10] suggest a secure ranked keyword pursuit technique that

finds ranked keyword search to consider the keyword score

relevancy. Boldyreva et al. [20] propose an Order-Preserving

Encryption (OPE) scheme to accomplish ranked results. However,

this scheme does not support trapdoor unlinkability. Sun et al. [21]

offer a multi-keyword search method that uses keyword score

relevancy and multidimensional tree to attain an efficiency of

query searching. Yu et al. [22] suggest a secure multi-keyword

top-k retrieval method, to retrieve top-k documents from CSP that

employs homomorphic encryption to encrypt index vector and

query vector in order to confirm high security. Offer a privacy-

preserving multi-keyword ranked system for multi-keyword

ranked pursuit over encrypted cloud data (MRSE) that uses

coordinate matching.

3. Problem formation

3.1. System model

In this article, the system model comprises three entities: 1. the

data owner, 2. Data consumer, and 3. CSP as shown in Figure 1.

The data owner (DO) has a pool of documents with sensitive

information to outsource to the CSP. DO creates a dictionary

based on keywords mined from all m documents based on Term

Frequency Inverted Document Frequency (TFIDF) [23] In

addition, this scheme generates the synonyms for each keyword

through WordNet [7] that creates a keyword-synonym dictionary

using keywords and corresponding synonyms. Using Equ.(1), the

index vector is created for each document based on the keyword-

synonym dictionary with the help ofthe term frequency (TF)

weight of the keyword. To improve searching efficiency, a

searchable balanced index tree is built for the document pool. To

protect index tree privacy, data owner encrypts the index tree

before uploading to CSP. In addition, all documents also

encrypted using any standard encryption algorithm [24-25].

Afterward, the data owner uploads the encrypted document pool

and index tree to the CSP. DO builds the trapdoor using query

keywords of the legitimated data consumer and then sends

decryption keys and trapdoor to him/her. Besides, the data owner

also responsible to update the index tree based on insertion or

deletion of documents.

Data consumer sends interested search keywords to DO and

receives trapdoor from him. He/she sends trapdoor to the CSP and

receives top 𝑘 ranked encrypted documents from it. By then,

He/she decrypts the documents using decryption keys.

The CSP stores the encrypted document pool and index tree of

DO. Upon receiving the trapdoor from the data consumer, the CSP

searches trapdoor over an encrypted index tree to obtain the top

score ranked documents, in turn, returns top k ranked encrypted

documents to the data consumer. Besides, the CSP also

responsible to update the index tree and a document pool based on

update information received from the DO.

Cloud Service Provider

(CSP)
1. Encrypted

Documents

2. Encrypted

Index Tree

3. Search Query Keywords

4. Search Control, Access Control

5. Trapdoor

6. Top Ranked

Documents

Data Owner
Data Consumer

Figure 1: System architecture

3.2. Notations

𝐷𝑃: Document pool, denoted as a pool of m documents 𝐷𝑃 =
 (𝐷1, 𝐷2, . . . , 𝐷𝑚).
𝐸𝑃: Encrypted document pool stored in the CSP, denoted as a

collection of m documents 𝐸𝑃 = (𝐶1, 𝐶2, . . . , 𝐶𝑚).

738 International Journal of Engineering & Technology

𝐷𝐼𝐷: The identity pool of encrypted documents 𝐸𝑃 denoted

as 𝐷𝐼𝐷 = (𝐷𝐼𝐷1, 𝐷𝐼𝐷2, . . . , 𝐷𝐼𝐷𝑚).

𝐹: The unencrypted form of index vectors for 𝐷𝑃, denoted as

a collection of m 𝐹 = (𝐹1, 𝐹2, . . . , 𝐹𝑚).
𝐼: The encrypted form of index vectors for F, denoted as a

collection of m 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝑚).
𝐷: Keyword-synonym dictionary, it contains n keywords and

t synonyms of each keyword, denoted as

𝐷𝑛×𝑡 = (𝑤11, 𝑤12, . . . , 𝑤1𝑡
𝑤21, 𝑤22, . . . , 𝑤2𝑡 . . .
𝑤𝑛1, 𝑤𝑛2, . . . 𝑤𝑛𝑡)

Ʈʹ: The encrypted form of balanced index tree stored in CSP,

it is built using 𝐼.

𝑊: The keywords in the query entered by a data consumer.

𝑄: The query vector for keyword collection W.

𝑇𝑊: The encrypted form of Q, named as a trapdoor.

𝑇𝐹: The sum of keyword frequency and corresponding

synonyms (in keyword-synonym dictionary) frequency in the

document.

𝐿𝑘: It is a list to store retrieved top K document files in

descending order according to the relevance score.

AK: Least score in the 𝐿𝑘

3.3. Preliminaries

The TFIDF [23] model is employed in order to retrieve ranked

search results, which are used in searchable encryption schemes.

In this article, term frequency (𝑇𝐹) is the sum of keyword

frequency and corresponding synonyms frequency within a

document. The inverse document frequency (IDF) shows the

prominence of the term in the entire document pool. The relevance

score of a keyword to a document is expressed as follows [28]:

𝑆𝑐𝑜𝑟𝑒(𝑤𝑖 , 𝐷𝐽) =
1

|𝐷𝐽|
(1 + ln 𝑓𝐽,𝑤𝑖

) ln(1 +
𝑚

𝑓𝑤𝑖

) --- (1)

Where 𝑓𝐽,𝑤𝑖
means the term frequency of a keyword 𝑤𝑖 in the

document 𝐷𝐽, 𝑓𝑤𝑖
 Denotes the number of documents having the

keyword𝑤𝑖, 𝑚denotes the number of documents and |𝐷𝐽| denotes

the number of indexed keywords.

Each document in the document pool is represented by the vector

know as index vector, whose elemental values are calculated using

Equ.(1). Moreover, the vector called the query vector that has IDF

values of search query keywords represents the query. In the

article [8], the authors suggest a secure k-nearest neighbor method

to encrypt index and query vectors. It can encrypt two vectors and

calculates the score between them. Firstly, the secret key

(𝑆, 𝑀1, 𝑀2) is created. Where, 𝑆 is a bit vector used to split the

index and query vectors into two random vectors each. The

objective of the random vector generation is to ensure keyword

anonymity in the plaintext vector. To encrypt the split vectors, two

invertible matrices (𝑀1 and 𝑀2)are utilized. The computation and

security of this encryption method can be cited to[8].

3.4.EMSRSE Design

The EMSRSE scheme compromises of four phases namely, 1.

Setup, 2. GenerateIndexTree, 3. GenerateTrapdoor, and 4. Search.

The detailed description is as follows:

Setup: DO generates the secret key SK={M1, M2, S}to encrypt the

index and query vectors, where M1 and M2 are two invertible

matrices and S is a bit vector.

GenerateIndexTree(𝐷𝑃, SK): Using BuildBalancedIndexTree(m,

𝐷𝑃) algorithm 1, DO bulids the unencrypted index tree based on

index vectors of 𝐷𝑃. By then, each index vector Fu at node u is

encrypted using SK. Initially, Fu is split into 𝐹𝑢
′ and 𝐹𝑢

′′using S bit

vector. If S[i]=0 then, 𝐹𝑢
′ and 𝐹𝑢

′′ are set as same as Fu[i]. If S[i]=1

then, 𝐹𝑢
′ and 𝐹𝑢

′′ are set to two random values whose sum

equivalent to Fu[i]. Later, 𝐹𝑢
′ and 𝐹𝑢

′′ are encrypted using M1 and

M2 as Iu={𝑀1
𝑇. 𝐹𝑢

′ , 𝑀2
𝑇 . 𝐹𝑢

′′}. Using the same process, all the index

vectors within the tree are encrypted in order to generate an

encrypted index tree.

3.5. Algorithm 1: Build Balanced Index Tree(m, 𝐃𝐏)

Input: m &𝐷𝑃

Output: root node

Begin

1. For each document 𝐷𝑖 in 𝐷𝑃 do

 Create a leaf node L for document𝐷𝑑, 𝐿. 𝐼𝐷 =
𝐺𝑒𝑛𝐼𝐷(),

𝐿. 𝑐ℎ𝑖𝑙𝑑[𝑖] = 𝑛𝑢𝑙𝑙𝑓𝑜𝑟 𝑖
= 1 𝑡𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑏,

𝐿. 𝑑𝑖𝑑 = 𝑑𝑖𝑑, 𝐹𝑑[𝑗] = 𝑆𝑐𝑜𝑟𝑒(𝑤𝑗 , 𝐷𝑑) 𝑓𝑜𝑟 𝑗

= 1 𝑡𝑜 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 𝑛;
Insert L into CurrentNodePool;

2. End for;

3. While (|CurrentNodePool|>1) do

 For each b nodes 𝑢1, 𝑢2, . ., 𝑢𝑏 in CurrentNodePool

 Generate a parent node V such that 𝑉. 𝐼𝐷 =
 𝐺𝑒𝑛𝐼𝐷(), 𝑉. 𝑐ℎ𝑖𝑙𝑑[𝑗] = 𝑢𝑗 𝑓𝑜𝑟 𝑗 =

1 𝑡𝑜 𝑏 𝑛𝑜𝑑𝑒𝑠𝑉. 𝑑𝑖𝑑 = 𝑛𝑢𝑙𝑙, 𝑎𝑛𝑑
 D[i] = max{ui.F[j] for i=1 to b} for each j=1 to n;

/* D is index vector of node V */

End for;

 Insert V to TempNodePool;

 End for;

Generate a parent node V with the remaining

nodes (<b) in CurrentNodePool like above;

Insert V to TempNodePool;

CurrentNodePool= TempNodePool;

TempNodePool=0;

4. End while;

5. Return node left in CurrentNodePool as root;

6. End;

GenerateTrapdoor(W): Based on interested keywords of the data

consumer, the query vector Q is generated using D. If keyword

available within D then, IDF value of the keyword is set to the

corresponding dimension of the Q, otherwise set to zero. Q is split

into 𝑄′and 𝑄′′ using S. The splitting process is as same as index

vector splitting but in reverse. Finally, the 𝑄′and 𝑄′′are encrypted

using M1 and M2 to generate trapdoor as TW= {𝑀1
−1 . 𝑄′,

𝑀2
−1. 𝑄′′}.

Search(TW, Ʈʹ): Using TopK_search(u,l) algorithm 2, the CSP

searches the trapdoor TW over encrypted index vector Ʈʹ in order

to generate top K ranked documents. At each node u of the Ʈʹ, the

relevance score between the encrypted index vector and trapdoor

is calculated using the inner product as follows:

Relevance(Iu, TW) = {𝑀1
𝑇. 𝐹𝑢

′ , 𝑀2
𝑇 . 𝐹𝑢

′′} × {𝑀1
−1 .

𝑄′, 𝑀2
−1. 𝑄′′}

 = {𝑀1
𝑇. 𝐹𝑢

′ . 𝑀1
−1 . 𝑄′} +

{𝑀2
𝑇 . 𝐹𝑢

′′. 𝑀2
−1. 𝑄′′}

 = {𝐹𝑢
′𝑇. M1×𝑀1

−1 . 𝑄′ } + {

𝐹𝑢
′′𝑇. M2 ×𝑀2

−1. 𝑄′′}

 = 𝐹𝑢
′𝑇. 𝑄′ + 𝐹𝑢

′′𝑇 . 𝑄′′

 = 𝐹𝑢
𝑇. 𝑄

 = RelevanceScore(Fu, Q)

The search process is illustrated in Figure 2 using query vector Q

= (0.91, 0, 0.8, 0.45) and K=3. It returns top 3 documents as D15,

D7, and D8. The red cross mark indicates that the search process

stops at L21.

Note: The relevance score between the encrypted index vector and

trapdoor is as same as between unencrypted index vector and

query vector.

International Journal of Engineering & Technology 739

L1

L21 L22 L23

D1 D3 D5D2 D4 D6 D8 D10D7 D9 D11 D13 D15D12 D14

4 0.5 1.4 2.4 3.1 2.4 5 2.6 3.2 2.7 6 4

3 0.5 0.3 0 4 0.5 0 0.3 3 0 0 0 2.2 0.9 3.1 0 2 2.4 3 0 0 0.6 3 2.7 1 2.6 1.2 0.8 6 2.1

1

Top-3

4 2.7 6 4

1.4 2 1.2 1 1 2.3 1.2 2 0 2.4 3.2 2 5 2.6 3 2.3 1 2.3 1.4 2 1 3.2 1.2 4 1.2 0 3.2 01 2

1
2 3 4

5

6 7

8

9

10

11

6

Top-1Top-2

×

Figure 2: An example of the balanced index tree with the search process

3.6. Algorithm 2: TopK_search(u, l)

Input: node u & level l

Output: top-ranked list 𝐿𝑘

Begin
1. If (𝑢 != leaf) then

 If (RelevanceScore (Fu, Q) > Ak) then

Compute the scores of children and then sort in

descending order

 For i=1 to children of u do

 TopK_search(u.child[i], l+1)

 End for;

 Else

 Return;

 End if;

2. Else

 If(|𝐿𝑘| < 𝐾) then

 Insert document 𝐹𝑑 into 𝐿𝑘 according to Score (Fu, Q);

 Else

 If (RelevanceScore (Fu, Q) > Ak) then

 Delete Ak from RankedList 𝐿𝑘;

 Insert document 𝐹𝑑 into 𝐿𝑘 according to

RelevanceScore (Fu, Q);

 Else

 Return;

 End if;

 End if;

Sort 𝐿𝑘𝑖𝑛 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟;
3. End if;

4. Return 𝐿𝑘;
End;

3.7. Balanced index tree update

The balanced index tree needs to update after the insertion or

deletion of a document. The update operation is based on the

identity of a document, but not required to access document data.

The update process is as follows:

{Ʈʹ
𝑠
, 𝐶𝑖𝑑} = GenTreeUpdateInfo (𝑆𝐾,Ʈ

𝑠
, 𝑖𝑑, 𝑈𝑝𝑑𝑎𝑡𝑒𝑇𝑦𝑝𝑒): This

procedure returns tree-update information,{Ʈʹ
𝑠
, 𝐶𝑖𝑑}, in turn, send

to the CSP. Here, Ʈʹ
𝑠
 is updated sub-tree and 𝐶𝑖𝑑 is an encrypted

document. The parameter UpdateType ϵ {insert, delete} indicates

either insertion or deletion of a document 𝐷𝑖𝑑 in the index tree.

Ʈ
𝑠
indicates a set of nodes to update. In order to ease the

communication cost, the data owner stores a copy of the

unencrypted index tree. For example, if you wish to delete the

document 𝐷12 from the index tree shown in Figure 2, then

UpdateType equals to delete and the sub-tree Ʈ
𝑠
 contains a set of

nodes {𝐿22, 𝐿1}. The DO deletes the leaf node, which contains

document identity 12 and index vector and then updates the index

vectors of the nodes L22 and L1 in order to update Ʈs. While

deletion, the index tree may be unbalanced. To avoid this, DO

replaces the deleted node with a dummy node. Moreover, its

identity is set to null and index vector elemental values are set to

zero. Finally, the data owner encrypts the index vectors in Ʈ
𝑠

using 𝑆𝐾 in order to generate an encrypted sub-index tree Ʈʹ
𝑠
 and

𝐶𝑖𝑑 set to null. If UpdateType is equal to insert, then the DO work

is to create a leaf node with the document identity 𝑖𝑑 for the new

document 𝐷𝑖𝑑. Using keyword-synonym dictionary, DO generates

index vector for new document and inserts this new leaf node

intoƮ
𝑠
. However, it also updates vectors of other nodes in the sub-

tree Ʈ
𝑠
. Preferably, DO replaces the dummy nodes with new leaf

nodes. Finally, sub-tree Ʈ
𝑠
 encrypted using 𝑆𝐾 in order to generate

Ʈʹ
𝑠
 and the document 𝐷𝑖𝑑 is encrypted in order to generate𝐶𝑖𝑑.

{Ʈʹ, 𝐶ʹ} = UpdateIndexTree (Ʈ, 𝐶, UpdateType, Ʈʹ
𝑠
, 𝐶𝑖𝑑): CSP runs

this procedure to replace sub-tree Ț
𝑠
 (encrypted sub-tree in the Ʈ)

with Ʈʹ
𝑠
 in order to generate Ʈʹ. If the update operation is

insertion, then the CSP inserts the encrypted document𝐶𝑖𝑑 into 𝐶

to generate new 𝐶ʹ. If the update operation is deletion, then CSP

deletes the 𝐶𝑖𝑑 from 𝐶 to generate new 𝐶ʹ.

4. Results and discussions

This section presents the result analysis of the proposed index tree

that constructively proposes a search algorithm over the encrypted

search tree. The experiments are conducted for existing scheme

BDMRS [6] and SMSRQE [28] in addition to the proposed

EMSRSE. To compare and analyze the performance of the

proposed scheme, schemes are implemented in Java language

using Spring Tool Suite (STS) and tested on OpenStack instance

with a flavor of 2.20 GHz Intel Core(TM) i5 processor and 8GB

RAM. In addition, the secret key (M1, M2, S), and the dictionary

are stored in a text file on the data owner system. To acquire more

accurate and efficient analysis, all the tests are conducted on three

datasets namely, National Science Foundation research awards

[31], Internet Request for Comments (RFC) [29], and own created

dataset. Moreover, the performance of the proposed method

EMSRSE in comparison with other existing methods SMSRQE

and BDMRS is estimated using efficiency.

4.1. Efficiency

Using time cost, the proposed scheme’s efficiency is measured to

generate an encrypted index tree, trapdoor, and searching over the

encrypted tree.

4.2. Encrypted index tree building

The time required to construct an encrypted index tree incurs an

index vector generation for 𝑑𝑝, unencrypted index tree

construction, and finally building an encrypted index tree. To

generate index vector for each document within 𝑑𝑝, dictionary

keywords and synonyms are searching within the corresponding

document, based on the availability of the term index vector is

created. Using the proposed index tree-building algorithm, the

unencrypted index tree is built with index vectors. Finally, the

index vector at every node is encrypted using the secret key,

which involves a vector splitting operation, two matrices

transpose, and two multiplications of size (n × n) in order to

generate an encrypted index tree. To compare dependency on

dataset size (MB), the encrypted index tree is built for three

different size datasets with a fixed number of keywords equal to

2000 as shown in Figure 3.

740 International Journal of Engineering & Technology

Figure 3: Time for index tree building for different size datasets and a
fixed number of dictionary keywords |n × t| = 2000×3.

Searching dictionary terms within a large size document consume

more time. As a result, EMSRSE-RFC consumes more time in

comparison with EMSRSE-NSF and EMSRSE-Own due to the

size of RFC dataset is more when compared to NSF and Own

datasets, it is observed in Figure 3. Moreover, EMSRSE-NSF

consumes more time in comparison with EMSRSE-Own because

the size of the NSF dataset is more when compare to Own dataset.

In addition, EMSRSE-NSF and EMSRSE-Own lines are linear

with a number of documents in the dataset because dataset size

and documents are increasing linearly, but the EMSRSE-RFC line

is nonlinear. The dataset size and time cost are compared in Figure

3.

The time cost to build the index tree for a different size document

pool with a fixed number of dictionary keywords |n × t| = 2000×3

for the proposed index tree in comparison with existing BDMRS

[6] and SMSRQE [28] is shown in Figure 4(a).It shows that time

cost to build index tree for proposed EMSRSE consumes less time

when compared to existing BDMRS scheme due to the more

number of internal nodes generates while building BDMRS index

tree when compare to EMSRSE index tree. The SMSRQE

consumes less time in comparison with proposed EMSRSE due to

EMSRSE encrypts vector at internal nodes in addition to

document vectors, whereas SMSRQE encrypts only document

vectors but it is one-time work at data owner. Moreover, the time

cost to construct index tree is linear with the number of

documents, which is observed from the Figure 4(a).

 (a) (b)

Figure 4: Time to build index tree (a) for a different size document pool
with a fixed number of dictionary keywords |n × t| = 2000×3. (b) For the

different sizes of dictionary keywords with fixed size document pool |m|=

1000.

The time cost to build index tree for different sizes of dictionary

keywords and fixed size document pool |m| = 1000 for the

proposed EMSRSE scheme in comparison with other existing

methods BDMRS and SMSRQE is shown in Figure 4(b). In

Figure 4(b), EMSRSE consumes less time in comparison with

existing BDMRS scheme due to 2001 index vectors need to

encrypt in the BDMRS scheme whereas only 1251 index vectors

need to encrypt in the EMSRSE scheme in order to construct

encrypted index tree. Moreover, the SMSRQE scheme consumes

less time in comparison with EMSRSE due to only1000 index

vectors need to encrypt in SMSRQE. In addition, no need to

construct an index tree in the SMSRQE scheme. The Figure 4(b)

shows that the time cost to build the index tree is almost

proportional to the number of keywords in the dictionary.

Figure 5: Time cost to build the index tree for a different number of
documents and nodes with a fixed number of dictionary keywords |n × t| =

2000×3.

International Journal of Engineering & Technology 741

The Time cost to build the index tree for a different number of

documents and index tree nodes with a fixed number of dictionary

keywords |n × t| = 2000×3 for the proposed EMSRSE scheme in

comparison with existing scheme BDMRS is shown Figure 5.

From the Figure 5, the proposed EMSRSE consumes less time

when compared to existing BDMRS scheme due to the less

number of internal nodes are generated to build EMSRSE index

tree when compare to BDMRS index tree. Moreover, the number

of nodes required for each set of documents to generate index tree

are compared in Table 1for both schemes. Figure 5 shows that the

time cost to construct index tree is linear with the number of

documents and number of nodes in the index tree.

Table 1: Time to Build an Index Tree for a Different Number of

Documents and Nodes with a Fixed Number of Dictionary Keywords |n ×
t| = 2000×3

S.N

o

Numbe

r of

Keywo

rds

fixed

Number

of

Docume

nts

Numb

er of

nodes

in the

BDM

RS

Tree

Time

for

BDMR

S(s)

Numbe

r of

nodes

in the

EMSR

SE

Tree

Time for

EMSRS

E(s)

1 2000 100 202 84.9 125 76.2

2 2000 200 402 152.8 251 148

3 2000 300 603 220.4 376 220.7

4 2000 400 802 293.7 501 275.1

5 2000 500 1001 387.4 625 334.2

6 2000 600 1203 457.9 750 406.3

7 2000 700 1402 536.7 877 488.4

8 2000 800 1602 607.4 1002 551.5

9 2000 900 1804 688.1 1127 654

10 2000 1000 2001 765.5 1251 700.2

11 2000 1200 2403 904.3 1501 838.1

12 2000 1400 2802 1073.8 1752 972.3

13 2000 1500 3002 1156.9 1876 1050.2

14 2000 1600 3202 1237.1 2001 1126.3

15 2000 1800 3604 1385.8 2251 1224.7

16 2000 2000 4001 1646.1 2501 1404.1

4.3.Storage efficiency

The space complexity of the proposed balanced encrypted index

tree depends on the number of nodes created for the index tree and

dictionary size. The index tree nodes, in turn, depends on the

number of documents. In an encrypted index tree, every node

stores two vectors of dictionary size n. Thus, the space complexity

of the proposed index tree is (2×n×o), where o is the number of

nodes in the index tree, i.e. O (no). However, each vector element

consumes eight bytes of storage due to a vector defined as double

in Java language. As shown in Table 2(a), when the number of

keywords is fixed (n=2000), the storage cost of the index tree is

increasing with the number of documents. The Table 2(b) shows

that the storage cost of index tree increasing with the number of

keywords when fixed number of documents (m=1000). The Table

2 shows that the proposed EMSRSE index tree consumes less

storage cost when compared to existing BDMRS index tree.

Table 2: Storage cost of Index tree

(a)

(b)

4.4. Trapdoor generation

The trapdoor generation incurs two matrices’ (M1 and M2) inverse

of size (n × n), query vector generation, query vector splitting

operation, and two multiplications of size (n × n) matrix. The time

complexity for matrix inverse is O (n3) and matrix multiplication

O (n3). Thus, the overall time complexity for trapdoor generation

is O (n3) as shown in Figure 6(a). The Figure 6(a) shows that the

graph is equivalent to y=x3. The time required to generate trapdoor

for a different number of dictionary keywords for proposed

EMSRSE in comparison with other existing methods BDMRS and

SMSRQE is shown in Figure 6(a).

The Figure 6(a) shows that the time cost for all the three schemes

almost equal in order to generate trapdoor for a different number

of dictionary keywords.

 (a)

 (b)

Figure 6: Time cost to generate trapdoor (a) for a different number of
dictionary keywords. (b) For a different number of query keywords with a

fixed size dictionary keywords |n| = 2000.

The time cost to generate trapdoor for a different number of query

keywords with a fixed size dictionary keywords |n| = 2000 for all

the three schemes are compared in Figure 6(b). The Figure 6(b)

shows that the query keywords are not a significant influence in

the trapdoor generation. Moreover, all the three schemes are

consumed almost equal time to generate trapdoor for a different

number of query keywords.

4.5. Search efficiency

During search over an encrypted index tree, if the score at node u

is larger than the minimum score in the resultant ranked list Lk, the

CSP examines the children of node u; else, it returns. As a result, a

742 International Journal of Engineering & Technology

large number of nodes are not examined during the real search

process.

The time cost to search over an encrypted index tree for a different

number of documents with a fixed number of dictionary keywords

|n| = 2000 for all the three schemes is compared in Figure 7(a).

From the Figure 7(a), the proposed EMSRSE scheme consumes

very less time when compared to existing BDMRS and SMSRQE

due to the proposed balanced index tree and search algorithm over

an encrypted index tree.

(a)

 (b)

Figure 7: Time cost to search over an encrypted index tree (a) for a
different number of documents with a fixed number of dictionary

keywords |n| = 2000. (b) For a different number of retrieved documents

with a fixed number of dictionary keywords |n| = 2000 and a fixed number
of documents |m| = 1000.

The Figure 7(a)shows that the proposed EMSRSE consumes less

time cost to search over an encrypted index tree in comparison

with existing BDMRS due tothe less number of nodes in the index

tree of EMSRSE scheme. Finally, it is observed that the proposed

EMSRSE scheme more efficient in terms of search efficiency in

comparison with other existing schemes such as BDMRS and

SMSRQE.

The time cost to search over an encrypted index tree for a different

number of retrieved documents with a fixed number of dictionary

keywords |n| = 2000 and a fixed number of documents |m| = 1000

for all the three schemes is compared in Figure 7(b). The Figure

7(b) shows that the time cost to search over an encrypted index

tree is not influenced by a number of documents retrieved for all

the three schemes. Nevertheless, the time cost of EMSRSE is very

less when compared to existing BDMRS and SMSRQE schemes.

Thus, the proposed EMSRSE is more efficient than the BDMRS

and SMSRQE schemes in terms of search efficiency.

5. Conclusion

In this article, an efficient multi-keyword synonym based ranked

search technique is proposed, which supports dynamic insertion

and deletion of documents. To acquire better search efficiency

than a linear search, the balanced index tree is proposed and

proposes a searching technique over an encrypted index tree. In

addition, the parallel search over the index tree further reduces the

search time cost. In the EMSRSE scheme, the search process has

computing and ranking relevance scores of relevant documents

rather than all documents in the index tree. Moreover, the

extensive research and experimental results show that the

proposed scheme achieves better search efficiency in comparison

with other existing SMSRQE and BDMRS schemes. In the future,

multiple DO system model will be explored. Search approaches

over encrypted cloud data can be extended to support anaphora

resolution and other natural language processing technology.

References

[1] Mell P & Grance T, The NIST definition of cloud computing, NIST

special publication, (2011).
[2] Gampala V, Inuganti S & Muppidi S, “Data security in cloud

computing with elliptic curve cryptography”, International Journal

of Soft Computing and Engineering (IJSCE), Vol.2, No.3, (2012),
pp.138-141.

[3] Song DX, Wagner D & Perrig A, “Practical techniques for searches

on encrypted data”, IEEE Symposium on Security and Privacy,
(2000), pp.44-55.

[4] Chen C, Zhu X, Shen P, Hu J, Guo S, Tari Z & Zomaya AY, “An

efficient privacy-preserving ranked keyword search method”, IEEE
Transactions on Parallel and Distributed Systems, Vol.27, No.4,

(2016), pp.951-963.

[5] Li H, Liu D, Dai Y, Luan TH & Shen XS, “Enabling efficient
multi-keyword ranked search over encrypted mobile cloud data

through blind storage”, IEEE Transactions on Emerging Topics in

Computing, Vol.3, No.1, (2015), pp.127-138.
[6] Xia Z, Wang X, Sun X & Wang Q, “A Secure and Dynamic Multi-

Keyword Ranked Search Scheme over Encrypted Cloud Data”,

IEEE Trans. Parallel Distrib. Syst., Vol.27, No.2, (2016),
pp.340-352.

[7] Miller GA, “WordNet: a lexical database for English”,

Communications of the ACM, Vol.38, No.11, (1995),
pp.39-41.

[8] Wong WK, Cheung DWL, Kao B & Mamoulis, N, “Secure knn

computation on encrypted databases”, International Conference on
ACM SIGMOD Management of data, (2009), pp.139-152.

[9] Li J, Wang Q, Wang C, Cao N, Ren K & Lou W, “Fuzzy keyword

search over encrypted data in cloud computing”, Proceedings of
IEEE Infocom, (2010), pp.1-5.

[10] Wang C, Cao N, Li J, Ren K & Lou W, “Secure ranked keyword

search over encrypted cloud data”, IEEE 30th International
Conference on Distributed Computing Systems (ICDCS), (2010),

pp.253-262.
[11] Cao N, Wang C, Li M, Ren K & Lou W, “Privacy-preserving

multi-keyword ranked search over encrypted cloud data”, IEEE

Transactions on parallel and distributed systems, Vol.25, No.1,
(2014), pp.222-233.

[12] Li R, Xu Z, Kang W, Yow KC & Xu CZ, “Efficient multi-keyword

ranked query over encrypted data in cloud computing”, Future
Generation Computer Systems, Vol.30, (2014), pp.179-190.

[13] Goh EJ, “Secure indexes”, IACR Cryptology ePrint

Archive, (2003).
[14] Chang YC & Mitzenmacher M, “Privacy preserving keyword

searches on remote encrypted data”, International Conference on

Applied Cryptography and Network Security, (2005), pp. 442-455.
[15] Curtmola R, Garay J, Kamara S & Ostrovsky R, “Searchable

symmetric encryption: improved definitions and efficient

constructions”, Journal of Computer Security, Vol.19, No.5,
(2011), pp.895-934.

[16] Xia Z, Zhu Y, Sun X & Chen L, “Secure semantic expansion based

search over encrypted cloud data supporting similarity ranking”,
Journal of Cloud Computing, Vol.3, No.1, (2014).

[17] Fu Z, Ren K, Shu J, Sun X & Huang F, “Enabling personalized

search over encrypted outsourced data with efficiency
improvement”, IEEE transactions on parallel and distributed

systems, Vol.27, No.9, (2016), pp.2546-2559.

[18] Zhangjie F, Xingming S, Nigel L & Lu Z, “Achieving Effective
Cloud Search Services: Multi-keyword Ranked Search over

Encrypted Cloud Data Supporting Synonym Query”, IEEE Trans.

Consumer Electronics, Vol.60, No.1, (2014), pp.164-172.

International Journal of Engineering & Technology 743

[19] Veerraju G & Sreelatha M, “A Study on Privacy Preserving

Searching Approaches on Encrypted Data and Open Challenging

Issues in Cloud Computing”, International Journal of Computer
Science and Information Security, Vol.14, No.12, (2016),

pp.294-307.

[20] Boldyreva A, Chenette N, Lee Y & Oneill A, “Order-preserving
symmetric encryption”, Advances in Cryptology-EUROCRYPT,

Springer, (2009), pp.224–241.

[21] Sun W, Wang B, Cao N, Li M, Lou W, Hou YT & Li H, “Privacy-
preserving multi-keyword text search in the cloud supporting

similarity-based ranking”, 8th ACM SIGSAC symposium on

Information, computer and communications security, (2013), pp.71-
82.

[22] Yu J, Lu P, Zhu Y, Xue G & Li M. Towards secure multi-keyword

top-k retrieval over encrypted cloud data. IEEE Transactions on
Dependable and Secure Computing, Vol.10, No.4, (2013),

pp.239–250.

[23] Schütze H, Manning, CD & Raghavan P. Introduction to
information retrieval. Cambridge University Press, Vol.39, (2008).

[24] National Bureau of Standards, Data Encryption Standard, U.S.

Department of Commerce, Washington, DC, USA, 1977.
[25] Dobbertin H & Rijmen V, Advanced Encryption Standard-AES: 4th

International Conference, AES 2004, Bonn, Germany, Revised

Selected and Invited Papers, Springer Science & Business Media,
(2005).

[26] Zobel J & Moffat A, “Exploring the similarity space”, ACM SIGIR

Forum, Vol.32, No.1, (1998), pp.18–34.
[27] Veerraju G & Sreelatha M, “Secure Semantic Multi-keyword

Synonym Ranked Query over Encrypted Cloud Data”,

International Journal of Engineering and Technology, Vol.8, No.1,
(2016), pp. 98-107.

[28] Request for comments, (2014).

[29] National Science Foundation Research Awards Abstracts 1990-
2003.

