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Abstract 
 
This work suggests a technique for order reduction of larger order mathematical model into lower order by combining Modified Inverse 
Distance Measure (MIDM) and time moment matching criterion. The constant coefficients of the denominator of reduced model are 
attained by proposed algorithm named MIDM and numerator coefficients of the same are obtained by using the suitable number of time 

moments and Markov parameters in the set of equations of Improved Pade Approximations (IPA). The suggested method of order 
reduction is equally useful for both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) dynamic systems. The 
simplicity of the proposed method has been validated through various linear mathematical models taken from literature. To get into the 
touch of a researcher, the qualitative measure and dynamic analysis of the proposed reduced model output has been elaborated via error 
index and time/frequency response comparisons respectively. 
 
Keywords: Modified Inverse Distance Measure; Improved Pade Approximations; Pole Clusters; Performance Indices. 

 

1. Introduction 

Higher order differential equations obtained from linear 
dynamic systems are not suitable either for analysis or in 
economical manner perspective. So to examine such higher 
order systems, one may change it into required reduced order 
mathematical model using Model Order Reduction (MOR) 
techniques. The reduced order models have many advantages 
like reduction of mathematical complexity, easy controller 
design, reduction of hardware complexity etc. Hence, MOR 

Techniques play an essential job to converting higher order 
mathematical model into reduced order model in suitable way 
and provide easy realization and designing of controllers. 
Recently, a new method for reducing Linear Time Invariant 
(LTI) systems based on modified pole clustering and factor 
division is proposed by Sikander and Prasad [1]. They have 
obtained the denominator polynomial using modified pole 
clustering and numerator of the same is obtained by factor 
division algorithm. Based on balanced truncation method 

Ghosh and Senroy [2] also proposed a technique of reduced 
order modeling. Desai and Prasad [3] also suggested a method 
for reducing LTI systems in which denominator polynomial is 
synthesized by Routh Approximation [4] for preserving the 
stability of the system and Big Bang - Big Crunch algorithm [5] 
is used to obtain the numerator polynomial. Another combined 
approach of order reduction of both Single-Input Single-Output 
(SISO) and Multi-Input Multi-Output (MIMO) systems is 

proposed by Parmar et al. [6] by utilizing the concept of Eigen 
spectrum analysis and factor division algorithm. They utilize 
the technique only for real poles and method is not compared. 
In addition, Mittal [7] proposed a method for order reduction 
utilizing Error minimization i.e. Integral of Square of Error 

(ISE). Further, some other researchers also proposed the mixed 
technique of two frequency domain approaches for reducing the 
models [8-10]. Sometimes joint methods give suitable results and 
sometimes follow the non-minimum phase tendency which results in 

system realization problem.  
In this paper two powerful frequency domain methods have been 
mixed to decrease the order of the LTI Systems. One of the methods 
proposes by using the concept of pole clustering techniques [8, 11] 
and Inverse Distance Measure (IDM) and the other is Improved Pade 
Approximation (IPA) [12]. Further, Vishwakarma [13] also proposed 
a method based on pole clustering and IDM which uses seven 
iterations to get the dominant poles. Here, method [13] is lengthy 
and computationally difficult as iteration depends upon the number 

of order of the reduced model. Sometimes data feeding and storing 
through IDM [13] may not results in most dominant pole and it may 
extends the system towards mismatching results, i.e. not follow 
original system characteristics patterns. Therefore, authors have 
proposed a method without any iteration to get a most dominant pole 
cluster center which holds the characteristics of original higher order 
system. Also, the suggested method uses a logarithmic 
approximation to extract the cluster poles towards the dominance of 

respective cluster. To elaborate the proposed method, the paper 
includes three different cases of real and imaginary poles. The 
simulation results of original and reduced models have been 
incorporated into MATLAB environment. The performance indices, 
i.e. Integral of Absolute Magnitude of Error (IAE) and Integral of 
Square of Error (ISE) comparison of approximated models obtained 
using suggested technique and existing techniques between the 
transient portion of the original higher order and reduced order 

systems are also prepared. The present work is organized into three 
sections, section 1 introduces the literature review, section 2 contains 
the proposed method and section 3 includes the three different cases 
of numerical problems. 
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2. Description of the Method 

In order to find the denominator and numerator polynomial 
coefficients of the lower order model, the MIDM and IPA 
techniques respectively have been described separately as 
follows. 

 

2.1. Proposed Method to Obtain Coefficients of 

Denominator Polynomial [MIDM] 

 
Let the original nth order system is mathematically symbolized 
as 
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Where, a and b are the constant coefficients of numerator and 

denominator polynomials respectively. Let n, p...,,pp    
21

 are 

the poles of this system and lie in such manner that

np...pp      
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After calculating the unknown coefficients of numerator and 

denominator the rth )nr(  order reduced model represented as 
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To get the denominator polynomial the reduction process as 
follows: 

Step-I: 
a) Select the cluster of poles of the original higher order 

system. 
b) Pole cluster must be detached for left and right half of s-

plane. 
c) Poles at the origin and imaginary axis should remain to 

retain for lower order system. 
d) For complex poles, there should be detached clusters for 

real and imaginary poles. 

Step-II: 

To obtain denominator of rth- order reduced model, ‘r’ number 
of pole are required and obtained from pole clusters such that 
each cluster center is the dominant pole of that specific cluster. 
To obtain ‘r’ number of poles of the approximated model, the 
computer oriented algorithm is given as follows: 
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(v) Set 1 vv  

(vi) Now find the most dominant pole cluster center from 
the equation given as 

     nrclogp vev  1                                            (4) 

 

Where,  dominant pole in each cluster 

(vii) Check, is ?rv  If no go to step (iv) 

(viii) Choose the most dominant pole cluster center of the rth- 

order lower model as ever pp   

Step-III: While synthesizing the denominator polynomial )s(Dr of 

reduced model, three different cases may occur as follows: 
Case (1)- If original system is consisting of real cluster centers only 

and eree p,...,p,p 21 are the dominant poles obtained from equation 

(4). Then denominator polynomial can be attained as 
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Case (2) – If original system is consisting of real and complex cluster 

centers both such that )r(eee p,...,p,p 221  are dominant real poles 

cluster centers and one complex pole cluster center  with 


1e
  and 
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1e
 are real and imaginary parts of reduced system obtained from 

equation (4), then 
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Case (3) – If original system consisting of only complex poles and 
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So, denominator polynomial )s(Dr  of reduced order system is 

written as 
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2.2 Synthesizing the Numerator Polynomial Using [IPA]: 

 
Numerator polynomial of the reduced model is obtained by choosing 
the suitable number of time moments and Markov parameters and 

constant coefficients of )s(Dr  

In terms of time moments and Markov parameters, original nth order 
system may be represented in series expansion form as: 
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Where iT the ith is time moment and iM is the ith Markov parameter. 

Now choosing  suitable number of time moments and 

suitable number of Markov parameters such that 
 

r               (11) 
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The numerator coefficients )c,c,c( )r( 110  , ...   of lower order 

system can be determined from the set of equations as follows 
[12]. 
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So solutions of equations in (12) give the suitable numerator 

coefficients i.e. )c,c,c( )r( 110  , ...   of reduced order system and 

)s(N )r( 1 can be written as 
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3. Numerical Cases 

To better understand the suggested method three different types 
of numerical cases have been selected from the literatures [5, 11 

and 14]. After obtaining the reduced model, it has been 
compared with existing reduction methods [1, 5-7&13-18] via 
performance indices i.e. ISE and IAE between the transient 
portion of step responses of reduced and original systems. 

Let )t(r is the step response of obtained reduced system 

using proposed method and )t( is the step response of given 

system, performance indices ISE and IAE can be written as 
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Numerical Case-1: Let an 8th order model consisting of real 
poles only taken from G. Parmar [5]. 
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Determination of denominator polynomial for the approximated 
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reduced system is required. 

The real poles of the original system are: ),,,,,,,( 87654321   
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Determination of numerator polynomial for the approximated model 
For the realization of numerator polynomial of lower order system 
few time moments and Markov parameters are required, from 
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Therefore, by chosen suitable  and   numerator polynomial of 

2nd order reduced system can be written as follows 
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So, 2nd order reduced model transfer function can be obtained as 
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Similarly, 3rd order reduced model transfer function )s(G3 is 

obtained by selecting the pole clusters 

8)- 7,- (-6, and 5)- 4,- (-3, 2),- 1,( as 
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Fig1: Comparisons of step responses of original and approximated lower 

order models for numerical case 1 

 

 
Fig2: Comparisons of frequency responses of original and lower order 

models for example 1. 
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For numerical case-1 step response and frequency response 
comparison between reduced and original models have been 
shown in Fig. 1 and Fig. 2 correspondingly. Also performance 
keys comparison i.e. ISE and IAE between the transient 

responses of original model taken from [5] and proposed models 
obtained in equations (16) and (17) with existing methods [1, 5-7, 
13-15 and 18] have been given in the Table 1. 

Table 1 : Performance keys comparisons of proposed and existing techniques for numerical case-1 
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Numerical Case-2: Let an 8th order model consisting of real 
and complex poles both taken from A.K. Sinha [11]. 
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The real and complex poles of this model are

15.6)- 8.5,- 0.75,- 460 ,.( and j3.6)2.2- 86350  ,.j.(

respectively. 

To determine the 4th order approximated model, three pole 
clusters are selected as
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Consequently from section 2.2, the numerator polynomial can be 
obtained as 
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Therefore, 4th order reduced model can be written as 
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For numerical case-2 step response comparison between reduced 
and original models has been shown in Fig. 3. Also performance 
indices i.e. ISE and IAE comparison between the transient 
responses of original model taken from [11] and proposed models 
obtained in equations (18) with existing methods [5, 16] have been 
given in the Table 2.

 

 
Fig3: Comparisons of step responses of original and approximated 

4
th
order model for numerical case 2 
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Numerical Case-3: Let a 4th order model consisting of complex 
poles only taken from Prasad [14]. 
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For numerical case-3 step response comparison between 
reduced and original models has been shown in Fig. 4. Also 
performance indices comparison i.e. ISE and IAE between the 

transient responses of original model taken from [14] and 
proposed model obtained in equations (18) with existing 
methods [1, 13, 17 and 18] have been given in the Table 3. 

 
Fig4: Comparisons of step responses of original and approximated 2

nd
order 

model for numerical case 3 

 

Table 2 : Performance comparison of propos for and existing methods for numerical case-2 
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Table 3 : Performance comparison of propos for and existing methods for numerical case-3 
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Table 4 : Comparisons of dynamic response components of Original and proposed models 

 

 

Step Response 

Information 

Example-1 Example-2 Example-3 

Original 8
th

 

Order Model 

[5] 

Reduced 2
nd 

 

Order Model 

Reduced 3
rd

 

Order Model 

Original 8
th

 

Order Model 

[11] 

Reduced 2
nd

 

Order Model 

Original 4th 

Order Model  

[14] 

Reduced 2
nd

 

Order Model 

Rise Time 05690.  06220.  06960.  8953.  03074.  69151.  53071.  

Settling Time 82014.  49694.  71564.  57497.  93378.  55242.  2852.  

Settling Min 97120.  94470.  00381.  120.  100220.  00849.  0899.  

Settling Max 20352.  31972.  21772.  304122.  319522.  044310.  072310.  

Overshoot 3496120.  9707131.  7691121.  0  01740.  44280.  71210.  

Undershoot 0  0  0  0  0  0  0  

Peak 20352.  31972.  21772.  304122.  319522.  044310.  072310.  

Peak Time 44900.  47380.  51950.  256914.  287413.  98473.  45473.  

 



380 International Journal of Engineering & Technology 

 

4. Performance Evaluation Practices 

An order reduction method has been proposed using MIDM and 
IPA where most dominant frequency has been calculated by 
proposed MIDM technique and selection of time moments and 
Markov parameters decide the number of reduced order models 
to select best one for designing, analysis etc.. Error indexes i.e. 
ISE and IAE have also been measured between the transient 
portions of higher order original model and reduced 
approximated models. In addition to this few analysis of the 

proposed method are given as follows: 

 The approximated models obtained by proposed 

technique have very closed transient and steady-state 
value to the original model. 

 The Reduced models obtained through proposed 

technique always free from any steady state error. 

 Dominant frequencies and numerator polynomials 

obtained using proposed method eradicate the limitations 
of [14], where reduced model is obtained via stability 
equation technique.  

 Zero input response components of the approximated 

models are nearly same as original models and diminish 
as time approaches infinity. 

 Dynamic response components of the approximated 

models are also very close to that of original models as 
given in Table 4, means proposed reduction technique 
preserves the original characteristics of the systems. 

 Reduction technique provides decent approximations of 

original higher order systems for a better reduced order 
model instead of approximation taken by [10, 14, and 
19-21]. 

 The proposed method of order reduction is applicable for 

all types of linear dynamic systems having complex 
poles, real-complex or real poles only, which overcome 
the drawback of [10, 22]. 

 

5. Conclusion 

 
The composite technique of MOR has been suggested by 
combining MIDM and IPA Technique. MIDM is being used to 
generate most dominant poles for reduced order model whereas 
appropriate time moments and Markov parameters are 
generated by IPA technique to obtain the zeros of the reduced 

systems. The suggested technique has been explained with three 
different kinds of problems having real poles only, real-
complex both and complex poles only. The reduction algorithm 
is straight forward, uneven and takes little calculation time to 
reduce the model. From the Fig. 1, Fig. 3 and Fig. 4, it can be 
observe that step responses of approximated models are quite 
good as well as follow the pattern of original system responses. 
The frequency response of the approximated model for 

numerical case -1 is also shown in Fig. 2 and almost similar to 
that of original system. The proposed approach is equally 
applicable in both SISO and MIMO systems. The error index 
comparisons i.e. ISE and IAE are given in Tables 1-3 
respectively via MATLAB platform. Using obtained reduced 
models; compact controllers can be designed and compared 
with original model designed controllers. 
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