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Abstract. 
 

 One of the mathematical cornerstones of modern data ana-lytics is machine learning whereby we automatically learn subtle patterns 

which may be hidden in training data, we associate those patterns with outcomes and we apply these patterns to new and unseen data 

and make predictions about as yet unseen outcomes. This form of data analytics al-lows us to bring value to the huge volumes of 

data that is collected from people, from the environment, from commerce, from online activities, from scienti c experiments, from 

many other sources. The mathematical basis for this form of machine learning has led to tools like Support Vector Machines which 

have shown moderate e ectiveness and good e ciency in their implementation. Recently, however, these have been usurped by the 

emergence of deep learning based on convolutional neural networks. In this presentation we will examine the basis for why such 

deep net-works are remarkably successful and accurate, their similarity to ways in which the human brain is organised, and the 

challenges of implementing such deep networks on conventional computer architectures. 
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1 Introduction 

1.1. A Brief History of Computing 

The short history of the development of computing is a mostly 

linear progression of the same basic principle of what makes a 

computer. Starting with the early thoughts on stored program 

computers by members of the team developing the ENIAC 

computer at the end of WW II and then leading on to the work of 

Alan Turing, this basic principle is about a device that stores a 

sequence of instructions to be executed in sequence, one after the 

other. We have seen major technological developments like the 

transistor in 1947, the integrated circuit in 1959, di erent forms of 

magnetic memory for storing instructions and data, and on the 

software side we have seen mainframes evolve into personal 

computers and now even wearable technology. The common 

characteristic across all these developments is the stored program 

model for computers proposed by John von Neumann in 1952. 

Here, a central processing unit retrieves an instruction from 

memory, decodes it, executes it and then moves on to fetch and 

then execute the next instruction unless directed to fetch the next 

instruction from somewhere else, as shown in Figure 1. This von 

Neumann architecture has not only carried computing since the 

advent of digital computation 60 or 70 years ago, but it is the 

basis for almost all kinds of computing that we perform today. 

 
Fig. 1: The traditional von Neumann architecture for computers 

2 Arti cial Intelligence 

2.1Arti cial Intelligence Emerges 

Even since those early days, the question has been asked of 

whether computers could perform an arti cial form of intelligence 

or execute tasks at the human level of performance. To do this 

we need to mimic the human brain, which although making up 

on 2% of our body weight, is made up of more than 80 billion 

neurons connected by trillions of connections or synapses. The 

brain is responsible for our executive functions like breathing, 

digestion, heart pumping, as well as even more complex tasks 

like planning, reasoning, and abstract thought. It achieves this 

using an architecture of a huge number (+80B) of simple, 

connected processors. 

 

This architecture is good for solving complex problems like 

vision, and learn-ing. The unit components of this architecture 

are neurons or simple perceptrons. Each neuron is on average 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET


International Journal of Engineering & Technology 445 

 
connected to about 10,000 other neurons and neurons 

communicate by sending signals across these synapses. They 

operate by receiv-ing a number of input signals from the multiple 

input connections or channels that they each have, aggregating 

the input signals in some way, called an acti-vation function, and 

then based on the values of the input signals, they generate an 

output signal which is passed on to another neuron to which it is 

connected. While each neuron is very simple, it is the huge 

number of them, and their con-nections, that allow the overall 

system to address complex problem-solving, the kind that we call 

arti cial intelligence. 

So how do we implement arti cial intelligence tasks, emulating 

the complex-ity of the human brain, on the von Neumann 

architecture which is so prevalent today ? Well clearly the von 

Neumann architecture with its sequential process-ing of 

instructions and in-built lack of parallelism, is clearly not a good 

t for implementing neural computing. In the late 1980s we saw 

the rst attempts at implementing a neural architecture directly in 

hardware through the devel-opment of the Connection Machine 

by the Thinking Machines Corp. While a faithful replication of 

neural information processing, the problem with the Con-nection 

Machine was that it only had some thousands of nodes with 

connections which was not enough to simulate the kind of 

intelligence at the level we seek for human problem-solving, so it 

was used for simple, massive parallelism appli-cations like 

searching. 

2.2 The Arti cial Intelligence Winter 

Around the time of the Connection Machine we were entering 

into the \AI Winter" with in ated expectations around AI leading 

to disappointment in the actual realization and a very deep 

\trough of disillusionment" as found in the classic Gartner curve. 

Research into neural networks | computational imple-mentations 

of the brains structure | continued but at a slow rate of progress 

and forming a bit of an AI backwater. Meanwhile hand-crafted, 

rules-driven arti cial intelligence research continued through the 

1970s, 80s, 90s, and even 00s, with progress in AI applications in 

areas like speech, machine translation, computer visions and 

expert systems, for a while anyway. 

The area of neural networks, while not hugely popular or 

attracting much research interest or funding, did continue to 

develop during this period and developed new con gurations of 

neural networks like multi-layer perceptrons, convolutional 

neural networks [5], spiking neural networks [6], and more. 

The simple con guration of a neuron is shown in Figure 2 where 

on the left side we show a simple neuron with 2 input 

connections, though there can be many more. The neuron accepts 

its two input signals, performs some operation on the signal 

values to generate an output signal which is sends. Neural 

networks are generally con gured to form feed forward networks, 

operating on a set of inputs and generating one or more outputs. 

A simple feed-forward network is shown on the right in Figure 2 

with 2 inputs, 

Neural network architectures are much more complex that that 

shown in Figure 2 because they are so numerous. They usually 

have a number of hidden layers, an input layer, and an output 

layer. Adjacent layers are usually fully connected where every 

neuron in one layer is connected to every neuron in an-other 

layer. Layers can also have loops back to earlier layers, called 

recurrent neural networks, increasing both their complexity and 

the complexity of their problem-solving capabilities [13]. 

 
Fig. 2: Architecture components in neural networks: simple neuron (left) 

and feed forward network (right) 

2.3The Growth of Machine Learning 

Meanwhile, as neural network architectures were developing, in 

other parts of the arti cial intelligence area, machine learning 

developed as an AI tool and its development hinged on a 

background of mathematics and statistics rather than any idea of 

emulating human neural processing. Machine learning evolved 

slowly over these decades. It was nourished by the increasing 

availability of huge volumes of data from sources like internet 

searching, social media, online transactions, and others. One 

application area which pushed this development was computer 

vision and in this eld we were able to use machine learning to 

train classi ers to identify objects and concepts appearing in 

images. To do this we used techniques like decision tree learning, 

random forests, genetic programming and most especially, 

support vector machines. The basic approach here was to use a 

large number of positive and negative examples, to extract low-

level image features like shape, colour and texture, and let the 

computer gure out (or learn) how to classify new and unseen 

examples as to the presence or absence of these objects and 

concepts. 

Up to the early and mid-point of the current decade, this worked 

OK and there was slow and incremental progress year-on-year 

but the techniques were not mature or accurate enough to be used 

in commercial or real applications; we had more work to do. At 

the same time, we also saw machine learning being used 

elsewhere in recommender systems for example, and this 

increased the popularity and visibility of machine learning as an 

AI technique. This standard or \classic" machine learning has 

several advantages including the fact that a decision or 

recommendation can be explained by examining the features or 

characteristics of each case, or recommendation. We can also 

rate the relative importance of each of the features or axes which 

gives us unique insights into the problem we are trying to solve. 

However, a downside here is that we have to do lots of feature 

engineering to de ne the axes of the problem space and there are 

no theoretical underpinnings to this and so it is a form of a black 

art. 

3 Convolutional Neural Networks 

3.1. What is a Convolutional Neural Network ? 

Convolutional Neural Networks (CNNs) are a particularly 

complex architecture which have been around for more than 20 

years but rst really got noticed in [9]. Also known as a deep 

convolutional networks, they were developed to address image 

processing applications because their design allows an entire 

image to be fed into the network, so in theory there are a huge 

number of inputs to the network. The typical application for 

which CNNs were developed were to injest an entire image and 

to classify it as containing objects or concepts like \cat" or \dog" 

or \airplane" or \outdoor" or anything else that can be recognised 

visually. 

However, rather than have an input node for each pixel in an 

image, which would lose whatever locality and proximity gives 

rise to us recognising cats, and dogs and airplanes and whatever 

else, CNNs create an input layer consisting of a window, a kind 

of sub-image, which slides across and scans the full image. This 

can be seen in Figure 3 where the input image is 32 32 pixels and 

a sliding window of 5 5 3 corresponding to 5 5 pixels and 3 

colours, and this window slides across the image, one pixel at a 

time, generating local context information to help recognise 

objects and concepts. This input is fed through convolutional 

layers where each node is not connected to every other one but to 

its local neighbourhood, and this structure is repeated a number 

of times. This is descried in more detail in [9]. 
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Fig. 3: Convolutional Neural Network showing sliding window in input 
layer 

 

The idea of having such convolutions in a multi-layer network 

really gained notoriety in 2012, when Krizhevsky and his 

colleagues submitted a run to the ImageNet large scale visual 

recognition challenge based on an implementation of a 

convolutional neural network, and the performance of the 

submission was a huge improvement on the then state-of-the-art 

[8]. The technique was based on an architecture consisting of 

multiple layers of neurons, implemented using graphics 

processing units (GPUs) which allowed a huge increase in the 

number of nodes, and connections in the neural network. A 

schematic for such a networ is shown in Figure 4. 

 
Fig. 4: Architecture of a Convolutional Neural Network 

 

Convolutional Neural Networks are end-to-end solutions in 

which both the feature extraction covering features like colours, 

shapes and textures, and the classi er training are performed at 

once. These \deep features" turn out to be signi cantly more e 

cient than the classical ones which heretofore had been manually 

engineered, even when used with classical machine learning for 

classi er training. 

 

Once a model for learning a concept is built, it can be packaged 

and easily run in a hosted environment and this has led to a huge 

uptake of this \deep learning" for computer vision problems. 

Google, Facebook and other major soft-ware companies now use 

deep learning as part of their commodity o erings for image 

tagging, video captioning, and other computer vision problems. 

To illustrate, many of the participants in TRECVid for concept 

detection, video captioning and other vision processing (as 

opposed to video search), now use CNN approaches [1]. 

3.2. Applications for CNNs 

The use of deep learning via CNNs is now almost everywhere 

and being used for things like speech processing [5], circuit 

design [14], language processing [7], machine translation [2, 11] 

and others. These are nicely summarised by Le Cun et al. in [11]. 

Other applications in other areas include automative speci cally 

self-driving cars, in banking it includes evaluating credit 

applications and evalu-ation of mortgage applications, layout of 

integrated circuits, predicting currency prices, predicting faults 

during a manufacturing process, analysis of EEG, ECG and 

fMRI signals, route and movement planning in robotics, vehicle 

and route scheduling in transport, and many more. Deng [4] 

shows this even broader range of applications for CNNs and deep 

learning which are showing some success, but we don't know 

whether this is only because of parallelism and whether they ac-

tually need a neural architecture which uses layers, or other even 

more complex structures like those described in [3]. 

3.3. Implementing Neural Networks 

Implementing convolutional neural networks and similar deep 

learning archi-tectures is de nitely not suitable for a von 

Neumann architecture so for now, many implementations use 

graphical processing units (GPUs) which o er mas-sive 

parallelism at a very cheap rate designed, as they are, for 

supporting graphics processing for applications like gaming. 

 

For more longer-term implementations, we need to design new 

hardware chips to implement this new architecture, or rather this 

old architecture which has re-cently become popular. Intel are 

developing deep learning chips code-named Lake Crest and 

Knights Crest, while Samsung are targeting chips for handset 

devices which allow deep learning on devices. Other companies 

like Movidius, now part of Intel, are specialising in computer 

vision using deep learning on silicon. Recognising the emergent 

importance of deep learning and the computa-tional expense this 

would require for applications like speech and vision, Google 

designed and built a new chip from scratch called the Tensor 

Processing Unit which implements deep learning on a neural 

architecture which is 30 times faster than on a von Neumann 

architecture. 

3.4. Future for Neural Networks 

Neural networks are a computer architecture which is proving to 

be very good at some kinds of human cognitive processing . . . 

things like computer vision, speech, or other applications where 

we need to generalise from very large amounts of data. The 

quality of performance for some of these tasks is as good as, or 

better, than human processing. As such, they are attracting a lot 

of interest not just from the research community but also from 

business and commerce. As we saw above, faster 

implementations of neural networks are a particular focus at 

present, as is the move to support deel learning on mobile 

platforms with minimal energy consumption for extended battery 

life. 

However besides implementation there are other areas where 

Neural Networks are a focus of much interest. One of these is the 

ability for a network, or indeed any machine learning 

implementation, to explain its decisions. Machine learning is 

used for two kinds of application . . . those where we might need 

to explain a decision made by an algorithm and those where no 

explanation might ever be needed, or indeed even be possible. 

Examples of the former might be credit ratings, mortgage or loan 

applications or grading student projects while examples of the 

latter might be routing in car navigation, or object recognition in 

computer vision. When deep learning is used, as it is 

increasingly, for machine learning applications like credit ratings 

or grading student projects, it is unable to provide an explanation 

as to why a particular loan application was refused or granted or 

why a medical X-ray had a certain medical diagnosis. Sometimes 

we don't care about the \why" associated with a decision, 

sometimes we do, but deep learning and neural networks by their 

very nature, are not designed to be able to explain why, just to 

decide on the output as rapidly and as accurately as possible and 

when explanaining does matter, neural networks can't help. 

Another topic of importance in the future of neural networks is 

their ability to address continuous streams of input data, just like 

the human brain does. In present con gurations, a set of inputs are 

passed into the input layer of a neural network, these work their 
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way through the network until they generate an out-put. When 

that is completed, a new set of inputs are sent to the input layer, 

and so on. In real work uses of neurel networks, i.e. the brain, the 

input layer is fed with a continuous stream of data through our 

senses { sight, hearing, etc. One Neural network architecture 

which addresses this are pulsed neural networks, rst introduced in 

[10]. This was then re ned into spiking neural networks in, for 

example, [6] and there is a good review of pulse-coupled neural 

networks in 

[12]. The pulse-coupled neural network is a 

\single layer, two-dimensional, later-ally connected network of 

integrate-and- re neurons, with a 1:1 correspondence between the 

image pixels and network neurons" [12]. This means it is 

complex, more complex than a CNN, and it is dynamic in that it 

adapts to its input, and it is able to take input data on a 

continuous basis. 

4 Conclusions 

Since the early days of computing we are used to having people 

writing algo-rithms, encoding these as programs which we store 

and run on von Neumann type architectures. Now, with the 

emergence of data-driven, AI-based technolo-gies we have data 

which we use to build and train networks which emulate neural 

networks, and we develop models to solve problems like classi 

cation and recognition, which we store and run. This represents 

the greatest single shift in computing, notwithstanding the major 

technological contributions of things like the transistor, 

integrated circuit or magnetic memory storage. Understanding 

this shift, maximizing its impact and using it for the most 

appropriate kinds of application are things we hope we can do 

correctly. 
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