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Abstract 
 
An efficient zigzag theory is presented for static and free vibration response of rectangular panels whose layers are made up of a number 

of functionally graded materials. In order to create a suitable FGM panel laminate, an analytical formulation is developed using an effi-
cient zigzag theory. Different FGM layers have been stacked one over another and perfect interlaminar bonding is assumed between 
them. As far as manufacturing of such FGM panel is concerned, the technique of 3D printing can be utilized to create it through a single 
continuous operation. The resulting analytical model is used to identify critical locations and parameters that are responsible for material 
failure as well as material property variation across panel thickness to enhance productivity and quality of the designed panel. The tech-
nique will significantly reduce the time and computational cost involved with analysis of FGM materials and will provide a basis for 
finite element implementation. 
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1. Introduction 

The men, machines and materials are the three basic inputs in any 
industry. Not simply the material, it is the smart material that con-
tributes to productivity, sustainability and quality of the product in 
the emerging era of Industry 4.0. Various segments such as the 
aerospace industry, automobile industry, health care sectors, sports 
industry, construction sectors, etc have started using more and 
more such smart materials. Due to its layered construction or a 

continuously changing material property from one lateral surface 
to the other lateral surface, it brings a desired strength and stiff-
ness along with ensuring the basic design parameter of high spe-
cific strength and low specific weight. Elasticity as well as inverse 
elasticity approaches are used for static, free vibration, forced 
vibration, buckling and transient analysis of such structural lami-
nates manufactured in the form of beams, plates and shells when 
these laminates are subjected to mechanical loading, thermal load-

ing, thermomechanical loading, electromechanical loading, thermo 
electromechanical loading, etc. 
Smart structures in the form of laminates and continuously graded 
material properties are more and more used in aeronautical and 
aerospace industry, automobile industry, civil, marine and other 
weight sensitive applications due to favourable specific strength, 
specific stiffness and suitability in highly differing temperature 
environment. However, the risk of structural failure due to delam-
ination in the layered laminates remains a concern and this occurs 

due to development of interlaminar transverse shear stress. The 
functionally graded material (FGM) laminate having a continuous 
material property variation instead of sharp change at interfaces is 
a better alternative than the distinct layered laminate construction. 

Koizumi [1] first conceived the concept of continuously varying 
the material properties in a structure and obtained shells and bowls 
by using silicon carbide and graphite as the two constituent mate-

rials. Since then various beam, plate and shell laminates have been 
designed and analysed for structural application using FGMs. 
Birman and Byrd [2] have reviewed different models used to cal-
culate effective material properties at any point in the laminate 
from the material properties of the two constituents. Jha et al. [3] 
have presented a review concerning the use of FGMs in different 
applications such as spacecraft, biomedical, mechanical, sensor 
and thermo-generator applications. Swaminathan et al. [4] and 

Thai and Kim [5] have reviewed various three dimensional and 
two dimensional stress and vibration analyses involving FGM 
plates and shells. Kashtalyan and Menshykova [6] noted reduction 
in the delamination tendency in sandwich panels when the homo-
geneous core was replaced by an exponentially varying FG core. 
Li et al. [7] presented free vibration analysis in FGM sandwich 
plates by expanding the displacement field through Chebyshev 
polynomials. Fantuzzi et al. [8] used two dimensional computa-

tional models for natural frequencies. A layered approach was 
adopted in their investigation. Wu and Li [9] adopted a Reissner-
type mixed variational theorem based finite layer method by di-
viding the plate into arbitrary number of layers and used trigono-
metric functions and Lagrange polynomials to express field varia-
bles in each sublayer. First order shear deformation theory has 
been used by Nguyen et al. [10] for static analysis of FGM plates, 
by Yang et al. [11] for vibration and damping analysis of viscoe-
lastic and FGM sandwich plates. A discrete stacking approach has 

been employed by Bernardo et al. [12] in their first order shear 
deformation theory to study static response and free vibration of 
FGM plates. The third order theory which gives more accurate 
results than the first order shear deformation theory has been pre-
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sented by Wu and Li [13] by considering interfacial continuity 
conditions of transverse shear stresses and inplane displacements. 
Zenkour [14, 15] has presented a number of theories such as si-
nusoidal, third order, first order and classical theories to analyse 
symmetric and nonsymmetric FGM sandwich plates. A higher 
order shear deformation theory was used by Mantari and Soares 
[16] for bending analysis of FGM sandwich plates. Other general-
ly used theories for FGM laminates are four variable refined plate 

theory [17, 18, 19] (Thai et al., 2016), five variable generalized 
shear deformation theory [20, 21], inverse trigonometric shear 
deformation theory [22], hyperbolic shear deformation theory [23]. 
A mixed model that uses first order shear deformation theory for 
face sheets and a three dimensional elasticity solution for weak 
core is presented by Liu et al. [24] for free vibration analysis of 
FGM sandwich plates. Carrera et al. [25] have analysed multi-
layered plates and shells embedding FGM layers inside them. 

Neves et al. [28, 26, 27] have used meshless technique in higher 
order shear deformation theory for static and free vibration analy-
sis of FGM sandwich plates. Bending and stress analysis in ax-
isymmetric FGM circular sandwich plates have been performed by 
Alipour and Shariyat [29] using zigzag theory. They have extend-
ed this zigzag theory approach for transient and forced dynamic 
responses in annular FGM sandwich plates [30]. 

2. Formulation 

A functionally graded material laminate is manufactured by 
smoothly varying the composition of its constituents from one 
material to the other material along its transverse direction or axial 
direction. The geometry of the FGM panel under consideration is 
shown in Fig.1. The Cartesian coordinate system xyz attached to it 

has the xy-plane coinciding with laminate mid-plane. Since the 
material property at any point in the thickness direction can vary 
in arbitrary manner, a hypothetical number of layers is devised for 
the entire laminate and a suitable expression to achieve that arbi-
trary or desired material distribution is employed in each hypo-
thetical layer. Thus a layered approach is considered to the dis-
placement field approximation. At the same time the continuity 
conditions on displacements and stresses are needed to be imposed 
in order to get the realistic variation in these entities as observed 

from the three dimensional elasticity solutions. In each such hypo-
thetical layer, denoted as kth layer, its bottom and top surfaces are 
at zk−1 and zk. Thus the laminate with L hypothetical layers has its 
bottom surface at z0 and top surface at zL. The FGM panel has 
length a along x-axis, infinite width along y-axis and thickness h 
along z-axis with z0 = −h/2 and zL= h/2. 
 

 
Figure 1: Geometry of FGM panel 

 

Let 
bkE  and 

tkE  be the Young’s moduli of the bottom and top 

materials of the kth layer of the panel. Similarly, let the bulk mod-

uli, shear moduli, Poisson’s ratios and densities be 
bkK  and 

tkK  
bkG  and 

tkG ,  and 
tk , 

bk  and 
tk  respectively. 

With 
k-1Z  and kZ  as the thickness coordinate of the kth layer 

and power p for volume fraction exponent, the effective values of 
Young’s modulus Ek, Poisson’s ratio νk and density ρk at any point 
z, such that (zk−1 ≤ z ≤ zk), in that layer can be expressed by using 
Voigt’s rule of mixtures model (ROM) [31]. 
 

b t bk k k k cE  = E  + (E - E )V  

   
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b t bk k k k c ρ  = ρ  + (ρ  - ρ )V  

 
where Vc is the volume fraction of the top constituent material and 
it changes from zero to one from bottom to top of each layer. Pre-
sent study considers three panel configurations which are shown 
in Fig.2. Panel A is a symmetric panel for which Vc is expressed as 
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For panels B and C, the volume fraction at any point in any hypo-
thetical layer is obtained by using the first line of Eq. (2). It is 
possible to obtain a pure isotropic layer of top surface material by 
setting p = 0 and a pure isotropic layer of bottom material by set-

ting p =. 

 

 
Figure 2: Configurations of FGM panels A, B and C 

 
In order to calculate effective properties in a layer along thickness 
direction, the Mori-Tanaka model obtains bulk modulus and shear 
modulus through the constituent properties which are then used 
for calculation of Ek and νk [32]. 
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Assuming negligible transverse normal stress, the constitutive 
equations for kth layer is 
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where the reduced stiffnesses Qij are related to engineering con-
stants by 
 

 k k k k
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The displacement field is assumed to be 
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With 
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Since the FGM panel is infinitely long in the y-direction, the de-
rivative of any quantity with respect to y is zero. Thus the non-
zero strains become εx= ux,x, γxy= uy,x, γyz= uy,z, γzx= ux,z+ w,x. These 
strains can be expressed in terms of displacements given in 
Eqs.(8) and (9) and then the stress-strain relation in Eq.(6) can be 
used to obtain transverse shear stress as 

 

ˆ   
k 2

kτ = Q ψ +2zξ +3z η       (11) 

 
Each FGM layer in the FGM laminate can be distinct and of dif-

ferent material constituents resulting in material property disconti-
nuity at the interfaces. This will result in discontinuity of inplane 
displacements and transverse shear stresses. However, the conti-
nuity condition for these entities can be imposed to yield their 
smooth variation and also it will lead to elimination of their layer 
dependency. The transversely loaded FGM panel has zero shear 
taction on its top and bottom surfaces. Utilization of these condi-
tions leads to 

 
u(x,z,t) = u0(x,t)−zw0d +Rk(z)ψ0(x,t)                                          (12)

 

 
where Rk (z) contains the contribution of global as well as local 
coefficients. The equations of motion as well as boundary condi-
tions are derived using Hamilton’s principle. The equations of 
motion expressed in terms of stress resultants are 
 

x x11 0 13 0,x 15 0 x,xI u - I w +I ψ - N =0       (13) 
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x x

1 2
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(15) 

 

x x15 0 35 0,x 55 0 x,x xI u - I w +I ψ - P +Q =0       (16) 

 

y y26 0 66 0 xy,x yI u +I ψ = P +Q =0        (17) 

 
I11, I13, I15, I22, I26, I33, I35, I55, I66 are non-zero coefficient of inertia 
matrix I having expressions. 
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and the notation <…> stands for integration across the thickness 

and is given by  
-
k

k-1

L z

z
k=1

... = ... dz.The stress and moment 

resultants Nx, Nxy, Mx, Px, Pxy, Qx, Qy are given by 

k

x x xy xy x x x 11 kN = σ ,N = τ ,M = zσ ,P = R σ  

k k k

xy 11 xy x 11,z zx 22,z yzP = P τ ,Q = R τ ,Q = R τ  

 
The boundary conditions at edges at x = 0, a are any one value of 
each of following product: 
 

x y x y0 x 0 xy 0 x,x 0,x x 0 x 0 xyu N ,u N ,w M ,w M ,ψ P ,ψ P      (20) 

 

The stress resultants are now expressed in terms of displacement 
variables and substituted in Eqs. (13)–(17) to yield equations of 
motion involving displacement variables: 
 

LU +LU = P          (21) 
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T T
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and L and L being differential operators in x and y. In order to 

obtain analytical solution for simply supported FGM panel that 

has following prescribed values at its boundaries at x = 0, a 
 

x x0 y 0 y 0 yu =0,N =0,w =0,M =0,ψ =0,P =0     (23) 

 
Fourier series is used to expand the variables as 
 

   
x x x x0 0 0 0

m
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mπx
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a


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   
y y y y0 0 0 0 0 0

m
m=1

mπx
u ,ψ ,w = u ,ψ ,w sin

a



     (25) 

 
Actually the Fourier expansion is truncated after a number of 
terms at which the results show convergence. In sinusoidally load-
ed case, only one term is taken and in uniform loading the number 
of terms is decided based on a convergence study. These expan-
sions are now substituted in Eq. (21) and the equation involving 

mass matrix M and stiffness matrix K is obtained as 
 

m m mMU +KU = P       (26) 
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Cylindrical bending response under statically applied load is ob-
tained by dropping the term involving M in Eq. (26) and inverting 
the resulting expression. The displacement entities are then substi-
tuted in strain displacement relations and stress strain relations to 
obtain the strains and stresses. In the present study, the inplane 
stresses are obtained from constitutive relations while the trans-
verse shear stresses are obtained by integrating the three dimen-
sional equilibrium equations. The free vibration response is ob-

tained by setting the loading term to zero in the right side of Eq. 
(26). The eigen values of the resulting expression denote the 
square of the natural frequencies and the associated eigenvector 
denote the corresponding mode shapes. 

3. Results and Discussion 

As shown in Fig. 2 three FGM panels are taken up for static and 
free vibration analysis. Cylindrical bending response is investi-
gated under sinusoidal as well as uniform loads. First five natural 
frequencies have been analyzed for free vibration response. Three 
constituent materials, viz, aluminium, zirconia and alumina are 
used of which aluminium is micro-mechanically mixed with zir-
conia or alumina in a continuously varying manner to form a FGM 
layer using rule of mixtures model as well as Mori-Tanaka model. 

The material properties of these isotropic constituents are given in 
Table 1. 
 

Table 1: Material properties 

Material E (GPa) ν ρ (kg/m
3
) 

Aluminium 70.0 0.3 2702 

Zirconia 151.0 0.3 3000 

Alumina 380.0 0.3 3800 

3.1. Cylindrical Bending Under Sinusoidal Load 

Exact three dimensional elasticity solution for multilayered FGM 
plates or panels are not available in the literature, but such solution 
is available for a single layer FGM plate [33]. The present formu-
lation is validated for such a square FGM plate under sinusoidal 
load on the top surface. The validation is shown in Table 2 for 
three aspect ratios of S = a/h = 4,10,50 by noting the magnitudes 
at typical locations along with their percent errors within paren-

theses. The table shows that the present formulation is very much 
accurate even for a thick panel with aspect ratio S = 4. 

Response to sinusoidal load of  0p sin x / a  applied on top 

surface of the panel is obtained for displacements u, w and stresses 

x zx,  in the following non-dimensionalized form with E0 = 1 

GPa. 
 

       3 2

0 0 x zx x zx 0u,w =100 u,w/S E /p hS , σ ,τ = σ ,Sτ /P S
          

(27) 

 
Non-dimensionalized results obtained for three layered symmetric 
FGM panel A are shown in Table 3 for four sets of thickness rati-
os. Its bottom FGM layer changes from aluminium to zirconia, 
middle layer remains fully of zirconia and top FGM layer changes 

from zirconia to aluminium. The volume fraction of the bottom 
and top FGM layers changes in the same fashion as we move 
away from the mid-plane of the panel in both directions. Thus it is 
a completely symmetric panel. The thickness ratios h1:h2:h3 are 
2:1:2, 1:1:1, and 1:2:1, 1:2:1, 1:8:1. Three values of the power p of 
volume fraction exponent is taken at 1, 4 and 10 and for each val-
ue of p three values of aspect ratio S at 5, 10 and 20 are consid-
ered. The reported location is included within parenthesis along-

side the respective entity. Both displacement components u¯ and 
w¯ are seen to decrease as the FGM panel becomes thinner at a 
given power index p. At the same time, the displacements get 
increased with increase of power index at a given aspect ratio. 

This shows that a thin panel is less stiff than a thick panel. With 
increase of the power index the outside constituent materials (al-
uminium) of the two FGM layers dominate their presence, thereby 
making the entire panel less stiff with consequent high displace-
ments. However, as we increase the thickness of the stiffer mid 
layer by changing the thickness ratios from 2:1:2 to 1:8:1 through 
1:1:1 and 1:2:1, we see the decrease in the displacements that 
indicate the increase of the panel stiffness. Both the rule of mix-

tures model (ROM) and the Mori-Tanaka model (MTM) show the 
same observations. Kapuria et al.[32] have established that the  
Mori-Tanaka model capable of predicting close interactions be-
tween the constituent materials yields much accurate results than 
the simple yet widely used rule of mixtures model. The Young’s 
modulus predicted by MTM is significantly lower than the ROM 
and hence the displacements obtained using MTM is more than 
that using ROM. Table 4 shows response entities for non-

symmetric panel B for same set of thickness ratios. Bottom layer 
of this panel B is entirely of aluminium, its middle layer changes 
from aluminium to alumina and the top layer is fully alumina. Its 
top is thus stiffer than its bottom. The ceramic constituent of this 
panel is stiffer than that of panel A and owing to the presence 
towards the top surface the resulting displacements are smaller 
than that of panel A. As expected the transverse shear stress has 
increased in the case of narrow middle layer panel and the reverse 

is observed steadily with increase of middle layer thickness. For 
any given aspect ratio increase in value of the power law index 
makes that layer rich with the presence of the second constituent 
material. This implies the panel becomes more stiff and hence 
induces less transverse shear stress at the center of the panel. 

Through-thickness distribution of 
xu,w,σ  and 

zxτ obtained in 

panels A and B under this sinusoidal loading using Mori-Tanaka 
model are shown in Figs.3–5 with layer thickness ratios 2:1:2, 

1:2:1 and 1:8:1 respectively. The displacement distribution in 
Fig.3 with 2:1:2 thickness ratio and in Fig.4 with 1:2:1 thickness 
ratio indicate that the local stiffness at every point in the non-
symmetric panel B has increased. But it can be seen from dis-
placement distribution in Fig.5 that significantly increasing the 
middle layer thickness has made the non-symmetric panel B less 
stiff at every point in spite of the presence of a stiffer ceramic 
constituent in it. Thus it is not only the presence of a stiff material 

that makes a panel stiff, rather the combination of layer thickness 
and material type along with the distribution of its constituents 
decides whether it will be locally less stiff or more stiff. A non-
linear pattern of inplane normal stress is observed in the symmet-
ric panel A in its two outer FGM layers and this has turned highly 
non-linear with decrease in thickness of these FGM layers. A 
smoother variation of this inplane normal stress is observed in 
non-symmetric panel B with decrease of thickness in its two outer 
layers. Whereas the distribution symmetry of the constituent mate-

rials has not significantly altered the magnitude and location of the 
transverse shear stress in panel A, the non-symmetric distribution 
of constituent materials has lowered the magnitude as well as 
shifted its location towards the middle of the FGM layer with 
increase in its thickness in panel B. 
 

 
Figure 3: Through-thickness distributions of response entities in FGM 

panels A and B under sinusoidal loading with Mori-Tanaka model 
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Table 2: Validation with 3D exact solution for square FGM plate under sinusoidal load on top 

   Entity S=4 S=10 S=50 

 3D [33] Present 3D [33] Present 3D [33] Present 

u(-0.5h)  
-0.004069 -0.0041800 -0.02472 -0.024802 -0.6141 -0.61398 

  (2.73%)  (0.33%)  (-0.02%) 

w(0)  
-0.01370 -0.014205 -0.1707 -0.17179 -20.33 -20.322 

  (3.69%)  (0.64%)  (-0.04%) 

xσ (-0.5h)  
3.631 3.7301 22.06 22.133 548.0 547.90 

  (2.73%)  (0.33%)  (-0.02%) 

xzτ (0)  
-0.9500 -0.94496 -2.396 -2.3936 -12.00 -11.997 

  (-0.53%)  (-0.10%)  (-0.03%) 

z(0)  
-0.5130 -0.51451 -0.5142 -0.51415 -0.5141 -0.51409 

  (0.29%)  (-0.01%)  (0.00%) 

 

Table 3: Displacements and transverse shear stress in FGM panel A under sinusoidal load on top 

p S 

ROM Mori-Tanaka 

 0 5u . h   0w   0xz   0 5u . h   0w   0xz  

2-1-2 thickness ratio 

1 5 5 1.8765 1.2738 0.51666 1.9909 1.3488 0.51780 

 10 1.8554 1.2010 0.51812 1.9693 1.2741 0.51926 

 20 1.8501 1.1828 0.51848 1.9639 1.2554 0.51962 

4 5 2.3640 1.5950 0.51612 2.4035 1.6224 0.51221 

 10 2.3412 1.5130 0.51759 2.3804 1.5385 0.51367 

 20 2.3355 1.4924 0.51795 2.3746 1.5175 0.51403 

10 5 2.4783 1.6749 0.50478 2.4900 1.6838 0.50237 

 10 2.4546 1.5870 0.50624 2.4660 1.5946 0.50383 

 20 2.4487 1.5650 0.50660 2.4600 1.5723 0.50419 

1-1-1 thickness ratio      

1 5 1.7884 1.2148 0.51850 1.8924 1.2824 0.52180 

 10 1.7678 1.1445 0.51995 1.8715 1.2108 0.52324 

 20 1.7627 1.1269 0.52032 1.8662 1.1929 0.52361 

4 5 2.2390 1.5081 0.52892 2.2837 1.5377 0.52702 

 10 2.2172 1.4322 0.53039 2.2617 1.4608 0.52849 

 20 2.2117 1.4132 0.53075 2.2562 1.4416 0.52886 

10 5 2.3691 1.5946 0.52340 2.3856 1.6059 0.52178 

 10 2.3470 1.5158 0.52488 2.3635 1.5264 0.52326 

 20 2.3415 1.4960 0.52525 2.3579 1.5065 0.52363 

1-2-1 thickness ratio      

1 5 1.6578 1.1292 0.51659 1.7409 1.1828 0.52151 

 10 1.6377 1.0610 0.51803 1.7204 1.1139 0.52295 

 20 1.6326 1.0440 0.51839 1.7153 1.0966 0.52331 

4 5 2.0181 1.3618 0.53590 2.0601 1.3890 0.53651 

 10 1.9966 1.2903 0.53733 2.0386 1.3172 0.53795 

 20 1.9912 1.2725 0.53768 2.0332 1.2992 0.53831 

10 5 2.1407 1.4414 0.53769 2.1591 1.4534 0.53750 

 10 2.1191 1.3687 0.53914 2.1375 1.3805 0.53895 

 20 2.1137 1.3505 0.53951 2.1321 1.3623 0.53932 

1-8-1 thickness ratio      

1 5 1.3818 0.95092 0.49794 1.4144 0.97185 0.50141 

 10 1.3631 0.88561 0.49942 1.3953 0.90617 0.50287 

 20 1.3584 0.86927 0.49979 1.3906 0.88974 0.50323 

4 5 1.5161 1.0373 0.51200 1.5335 1.0485 0.51362 

 10 1.4961 0.97048 0.51339 1.5134 0.98156 0.51500 

 20 1.4911 0.95377 0.51374 1.5084 0.96480 0.51535 

10 5 1.5661 1.0695 0.51664 1.5747 1.0750 0.51739 

 10 1.5458 1.0022 0.51801 1.5543 1.0076 0.51876 

 20 1.5407 0.98538 0.51835 1.5492 0.99077 0.51910 
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Table 4: Displacements and transverse shear stress in FGM panel B under sinusoidal load on top 

p S 

ROM Mori-Tanaka 

 0 5u . h   0w   0 2xz . h   0 5u . h   0w   0 2xz . h  

2-1-2 thickness ratio 

1 5 1.6155 0.81626 0.53328 1.6824 0.84277 0.52180 

 10 1.6073 0.77589 0.53328 1.6736 0.79847 0.52179 

 20 1.6053 0.76579 0.53328 1.6714 0.78739 0.52178 

4 5 1.7278 0.86123 0.51390 1.7517 0.87130 0.50722 

 10 1.7186 0.81388 0.51387 1.7420 0.82140 0.50720 

 20 1.7163 0.80203 0.51386 1.7396 0.80890 0.50720 

10 5 1.7587 0.87431 0.50554 1.7680 0.87850 0.50249 

 10 1.7489 0.82369 0.50552 1.7579 0.82650 0.50249 

 20 1.7464 0.81102 0.50551 1.7553 0.81348 0.50249 

1-1-1 thickness ratio 

1 5 1.5672 0.79795 0.53191 1.6762 0.84220 0.51502 

 10 1.5586 0.75728 0.53197 1.6665 0.79473 0.51512 

 20 1.5564 0.74709 0.53198 1.6641 0.78285 0.51515 

4 5 1.7563 0.87559 0.50166 1.7864 0.89029 0.49128 

 10 1.7456 0.82220 0.50179 1.7744 0.83153 0.49155 

 20 1.7430 0.80883 0.50182 1.7714 0.81681 0.49161 

10 5 1.7972 0.89542 0.48817 1.8057 0.90105 0.48395 

 10 1.7849 0.83501 0.48846 1.7926 0.83759 0.48436 

 20 1.7818 0.81988 0.48853 1.7894 0.82169 0.48447 

1-2-1 thickness ratio 

1 5 1.4817 0.76575 0.52923 1.6419 0.83348 0.51091 

 10 1.4723 0.72458 0.52935 1.6307 0.78202 0.51121 

 20 1.4699 0.71427 0.52938 1.6279 0.76913 0.51128 

4 5 1.7695 0.88893 0.49303 1.8002 0.91002 0.48222 

 10 1.7566 0.82697 0.49348 1.7846 0.83798 0.48297 

 20 1.7533 0.81146 0.49360 0.1781 0.81994 0.48316 

10 5 1.8140 0.91812 0.47803 1.8179 0.92677 0.47537 

 10 1.7976 0.84249 0.47892 1.7998 0.84528 0.47637 

 20 1.7935 0.82354 0.47914 1.7953 0.82487 0.47662 

1-8-1 thickness ratio 

1 5 1.2900 0.69489 0.51026 1.5480 0.81536 0.49565 

 10 1.2793 0.65298 0.51030 1.5346 0.75822 0.49585 

 20 1.2766 0.64249 0.51031 1.5313 0.74392 0.49590 

4 5 1.7758 0.92259 0.47848 1.8164 0.97314 0.46293 

 10 1.7590 0.84586 0.47888 1.7950 0.87824 0.46334 

 20 1.7548 0.82665 0.47898 1.7897 0.85447 0.46344 

10 5 1.8296 0.98776 0.45915 1.8442 1.0225 0.45122 

 10 1.8060 0.88412 0.45965 1.8185 0.91063 0.45155 

 20 1.8001 0.85816 0.45978 1.8121 0.88261 0.45163 

 

 
Figure 4: Through-thickness distributions of response entities in FGM 

panels A and B under sinusoidal loading with Mori-Tanaka model 

 

 
Figure 5: Through-thickness distributions of response entities in FGM 

panels A and B under sinusoidal loading with Mori-Tanaka model 

 

Table 5 compares the magnitudes of the response entities at typi-
cal locations using both rule of mixtures model and Mori-Tanaka 

model obtained for the six layer FGM panel C whereas the 
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through-thickness distributions are shown in Fig.6 obtained using 
MoriTanaka model. Table 5 establishes the panel C becoming less 
stiff with increase in the power law index p. Increasing the value 
of p also increases non-linearity in the inplane normal stress pro-
file and increases smoothness in the transverse shear stress distri-
bution profile. The effect of power law index p on the variation of 
the displacements and stresses is shown in Figs. 7 and 8 using rule 
of mixtures and Mori-Tanaka model respectively in the three thick 

FGM panels with aspect ratio S = 5. The response entities attain 
saturation at p = 20. 
 

 
Figure 6: Through-thickness distributions of response entities in FGM 

panel C under sinusoidal loading with Mori-Tanaka model 

 

 
Figure 7: Effect of power law index in FGM panels A, B and C under 

sinusoidal loading with ROM 

 
Figure 8: Effect of power law index in FGM panels A, B and C under 

sinusoidal loading with MTM 

3.2. Cylindrical Bending Under Uniform Load 

A uniform pressure load 
2

z 0p = -p is applied on the top surface 

of the FGM panel. In order to determine the number of terms m in 
the Fourier series expansion a convergence check is conducted 
and found that (m = 301) provide convergence to all displace-
ments and stresses. Taking (m = 301) the results for displacements 

and stresses are obtained and shown in Table 6 for panel A, in 
Table 7 for panel B and in Table 8 for panel C. Both ROM and 
Mori-Tanaka models are used in obtaining effective material 
properties at any point across the panel thickness. As done for 
sinusoidal loading case four layer thickness ratios are considered 
for panels A and B. The increasing or decreasing tendency as ob-
served in sinusoidal loading case is here observed for all FGM 
panels. The magnitude of displacements are more since the aver-

age value of uniform load is more than that of sinusoidal load. The 
corresponding resulting stresses under uniform loading are also 
higher than that induced under sinusoidal loading. The symmetric 
and non-symmetric material property distribution has significant 
influence on the displacement and stress profiles which are shown 
in Figs.9–11 for all FGM panels A and B with layer thickness 
ratios 2:1:2, 1:2:1 and 1:8:1 at S = 10 and p = 4. The through-
thickness distributions are given in Fig.12 for moderately thick (S 

= 10) FGM panel C with two values of power law index at p = 1 
and 4. It is observed that higher magnitudes are associated at typi-
cal locations with higher values of power law index. 

 

Table 5: Displacements and transverse shear stress in FGM panel C under sinusoidal load on top 

p S 

ROM Mori-Tanaka 

 0 5u . h   0w   0 2xz . h   0 5u . h   0w   0 2xz . h  

1 5 1.6526 1.1136 0.50795 1.7654 1.1993 0.49566 

 10 1.6365 1.0572 0.50915 1.7459 1.1303 0.49689 

 20 1.6325 1.0431 0.50945 1.7410 1.1131 0.49720 

4 5 1.9354 1.3152 0.50951 1.9881 1.3607 0.50457 

 10 1.9126 1.2384 0.51077 1.9622 1.2730 0.50593 

 20 1.9069 1.2192 0.51109 1.9558 1.2510 0.50627 

10 5 2.0318 1.3891 0.51025 2.0553 1.4114 0.50850 

 10 2.0056 1.3007 0.51164 2.0271 1.3163 0.50998 

 20 1.9990 1.2786 0.51199 2.0201 1.2925 0.51035 

 

Table 6: Displacements and stresses in FGM panel A under uniform load on top 

p S 

ROM Mori-Tanaka 

 0 5u . h   0w   0 5x . h   0xz   0 5u . h   0w   0 5x . h   0xz  

2-1-2 thickness ratio   

1 5 2.4313 1.6123 5.5787 0.75612 2.5792 1.7074 5.9193 0.75767 

 10 2.3989 1.5224 5.5276 0.78683 2.5461 1.6151 5.8672 0.78852 

 20 2.3907 1.4999 5.5148 0.80204 2.5377 1.5920 5.8541 0.80380 
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4 5 3.0617 2.0193 7.0309 0.75392 3.1128 2.0539 7.1483 0.74789 

 10 3.0266 1.9180 6.9756 0.78540 3.0773 1.9504 7.0924 0.77930 

 20 3.0178 1.8927 6.9618 0.80099 3.0683 1.9244 7.0784 0.79486 

10 5 3.2097 2.1203 7.3711 0.73634 3.2248 2.1316 7.4055 0.73283 

 10 3.1733 2.0118 7.3137 0.76770 3.1880 2.0215 7.3475 0.76404 

 20 3.1641 1.9847 7.2994 0.78323 3.1787 1.9939 7.3330 0.77949 

1-1-1 thickness ratio 

1 5 2.3174 1.5376 5.3165 0.75919 2.4518 1.6233 5.6263 0.76407 

 10 2.2857 1.4508 5.2666 0.78979 2.4196 1.5349 5.5756 0.79483 

 20 2.2777 1.4291 5.2542 0.80495 2.4115 1.5128 5.5629 0.81008 

4 5 2.9000 1.9093 6.6590 0.77391 2.9576 1.9469 6.7920 0.77066 

 10 2.8663 1.8156 6.6060 0.80544 2.9239 1.8520 6.7389 0.80234 

 20 2.8578 1.7922 6.5928 0.82105 2.9154 1.8282 6.7256 0.81803 

10 5 3.0680 2.0189 7.0466 0.76437 3.0894 2.0332 7.0958 0.76178 

 10 3.0341 1.9216 6.9931 0.79639 3.0554 1.9351 7.0422 0.79383 

 20 3.0255 1.8973 6.9797 0.81225 3.0468 1.9106 7.0288 0.80970 

1-2-1 thickness ratio 

1 5 2.1485 1.4291 4.9275 0.75680 2.2559 1.4971 5.1749 0.76445 

 10 2.1175 1.3450 4.8788 0.78705 2.2244 1.4120 5.1253 0.79475 

 20 2.1097 1.3240 4.8666 0.80204 2.2165 1.3907 5.1129 0.80976 

4 5 2.6144 1.7239 6.0005 0.78653 2.6687 1.7585 6.1258 0.78720 

 10 2.5814 1.6358 5.9486 0.81711 2.6356 1.6699 6.0738 0.81794 

 20 2.5730 1.6137 5.9356 0.83226 2.6273 1.6477 6.0607 0.83317 

10 5 2.7728 1.8248 6.3659 0.78848 2.7965 1.8401 6.4208 0.78799 

 10 2.7396 1.7352 6.3137 0.81955 2.7634 1.7501 6.3686 0.81916 

 20 2.7312 1.7127 6.3007 0.83494 2.7550 1.7276 6.3555 0.83460 

1-8-1 thickness ratio 

1 5 1.7914 1.2031 4.1057 0.72762 1.8336 1.2296 4.2025 0.73322 

 10 1.7627 1.1225 4.0605 0.75782 1.8043 1.1486 4.1564 0.76333 

 20 1.7554 1.1023 4.0491 0.77279 1.7970 1.1283 4.1449 0.77826 

4 5 1.9653 1.3126 4.5049 0.75036 1.9879 1.3268 4.5570 0.75299 

 10 1.9346 1.2301 4.4566 0.78019 1.9570 1.2442 4.5084 0.78277 

 20 1.9268 1.2095 4.4445 0.79497 1.9492 1.2235 4.4962 0.79752 

10 5 2.0301 1.3534 4.6540 0.75790 2.0411 1.3603 4.6794 0.75912 

 10 1.9989 1.2704 4.6048 0.78759 2.0098 1.2772 4.6300 0.78879 

 20 1.9910 1.2496 4.5925 0.80229 2.0019 1.2564 4.6177 0.80348 

 

Table 7: Displacements and stresses in FGM panel B under uniform load on top 

p S 

ROM Mori-Tanaka 

 0 5u . h   0w   0 5x . h   0xz   0 5u . h   0w   0 5x . h   0xz  

2-1-2 thickness ratio 

1 5 2.0897 1.0335 12.984 0.61097 2.1763 1.0669 13.014 0.60329 

 10 2.0773 0.98363 12.843 0.63867 2.1630 1.0122 12.859 0.63112 

 20 2.0741 0.97117 12.807 0.65243 2.1596 0.99855 12.820 0.64496 

4 5 2.2352 1.0902 13.035 0.59853 2.2662 1.1028 13.009 0.60599 

 10 2.2211 1.0317 12.869 0.62661 2.2514 1.0412 12.835 0.63456 

 20 2.2176 1.0171 12.827 0.64058 2.2476 1.0258 12.791 0.64877 

10 5 2.2753 1.1066 13.007 0.60768 2.2875 1.1119 12.988 0.61152 

 10 2.2603 1.0442 12.830 0.63643 2.2719 1.0477 12.806 0.64043 

 20 2.2564 1.0285 12.785 0.65073 2.2680 1.0316 12.761 0.65482 

1-1-1 thickness ratio 

1 5 2.0275 1.0102 12.826 0.63775 2.1687 1.0660 12.904 0.62243 

 10 2.0143 0.96002 12.683 0.66666 2.1538 1.0075 12.739 0.65097 

 20 2.0110 0.94746 12.648 0.68103 2.1501 0.99279 12.698 0.66517 

4 5 2.2724 1.1081 12.951 0.61298 2.3117 1.1265 12.899 0.62164 

 10 2.2562 1.0422 12.766 0.64157 2.2935 1.0540 12.696 0.65051 

 20 2.2520 1.0257 12.719 0.65580 2.2888 1.0358 12.645 0.66488 

10 5 2.3257 1.1330 12.888 0.62408 2.3371 1.1399 12.858 0.62783 

 10 2.3070 1.0584 12.679 0.65315 2.3171 1.0616 12.640 0.65685 
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 20 2.3022 1.0397 12.627 0.66762 2.3120 1.0420 12.586 0.67131 

1-2-1 thickness ratio 

1 5 1.9173 0.96935 12.557 0.66358 2.1248 1.0548 12.791 0.63763 

 10 1.9029 0.91854 12.413 0.69347 2.1077 0.99127 12.615 0.66665 

 20 1.8992 0.90583 12.378 0.70833 2.1034 0.97538 12.571 0.68109 

4 5 2.2902 1.1246 12.917 0.62146 2.3306 1.1509 12.903 0.62758 

 10 2.2705 1.0482 12.707 0.65019 2.3070 1.0620 12.664 0.65620 

 20 2.2655 1.0290 12.654 0.66450 2.3009 1.0398 12.604 0.67046 

10 5 2.3487 1.1611 12.881 0.63031 2.3543 1.1718 12.915 0.63139 

 10 2.3237 1.0677 12.631 0.65899 2.3268 1.0712 12.651 0.65978 

 20 2.3174 1.0443 12.569 0.67328 2.3198 1.0460 12.585 0.67394 

1-8-1 thickness ratio 

1 5 1.6700 0.87945 12.036 0.68782 2.0042 1.0316 13.065 0.64866 

 10 1.6537 0.82772 11.891 0.71834 1.9838 0.96103 12.879 0.67862 

 20 1.6495 0.81477 11.855 0.73352 1.9786 0.94338 12.833 0.69353 

4 5 2.2996 1.1667 13.646 0.62086 2.3534 1.2300 14.471 0.61715 

 10 2.2740 1.0720 13.407 0.65051 2.3209 1.1128 14.198 0.64697 

 20 2.2675 1.0483 13.347 0.66528 2.3126 1.0835 14.130 0.66183 

10 5 2.3712 1.2481 14.481 0.61709 2.3907 1.2918 15.502 0.61225 

 10 2.3352 1.1202 14.189 0.64666 2.3516 1.1537 15.207 0.64221 

 20 2.3261 1.0882 14.116 0.66140 2.3416 1.1191 15.133 0.65714 

 

Table 8: Displacements and stresses in FGM panel C under uniform load on top 

p S 

ROM Mori-Tanaka 

 0 5u . h   0w   0 34x . h   0xz   0 5u . h   0w   0 34x . h   0xz  

1 5 2.1404 1.4098 -6.3537 0.74592 2.2873 1.5179 -6.4279 0.72877 

 10 2.1157 1.3403 -6.3646 0.77474 2.2573 1.4329 -6.4410 0.75635 

 20 2.1095 1.3229 -6.3673 0.78897 2.2497 1.4116 -6.4443 0.76999 

4 5 2.5079 1.6646 -5.6811 0.75133 2.5770 1.7218 -5.3402 0.74292 

 10 2.4729 1.5698 -5.6897 0.77841 2.5373 1.6136 -5.3496 0.77036 

 20 2.4641 1.5461 -5.6918 0.79182 2.5273 1.5865 -5.3519 0.78396 

10 5 2.6337 1.7578 -4.5413 0.75103 2.6646 1.7858 -4.4132 0.74719 

 10 2.5934 1.6487 -4.5487 0.77891 2.6214 1.6684 -4.4210 0.77568 

 20 2.5832 1.6214 -4.5506 0.79274 2.6104 1.6390 -4.4230 0.78983 

 

 
Figure 9: Through-thickness distributions under uniform loading using 

Mori-Tanaka model in FGM panels A and B with 2:1:2 thickness ratio 

 

 
Figure 10: Through-thickness distributions under uniform loading using 

Mori-Tanaka model in FGM panels A and B with 1:2:1 thickness ratio 

 
Figure 11: Through-thickness distributions under uniform loading using 

Mori-Tanaka model in FGM panels A and B with 1:8:1 thickness ratio 

 

 
Figure 12: Through-thickness distributions in FGM panel C using Mori-

Tanaka model under uniform loading 
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3.3. Free Vibration Analysis 

The sandwich rectangular FGM panels A and B have three layers 
with thickness ratios for bottom skin to middle core to top skin as 
2-1-2, 1-1-1, 1-2-1 and 1-8-1. The fundamental frequencies for 

this sandwich rectangular panels having above mentioned four 
thickness ratios with aspect ratio S = 5, 10 and 20 and power law 
index p = 1 and 4 are shown in Table 9. The natural frequency is 
found to decrease with increase of p. The sandwich rectangular 
FGM panel C has six layers. The fundamental frequencies for this 
sandwich rectangular panel for aspect ratio S = 5, 10 and 20, and 
power law index 1 and 4 are also shown in the same table. The 
natural frequency is found to decrease with increase of p. 

4. Conclusion  

A new analytical approach is developed and implemented for 
static and free vibration analysis of functionally graded material 
structures where the material laminate has continuous variation of 
material properties across thickness to get desired performance by 

predicting the displacements and stresses as local response and the 
natural frequencies as global response. The responses have been 
obtained for symmetric and nonsymmetric FGM laminates by 
adopting a layered approach. This analysis will facilitate the de-
signers to choose suitable property variation, manufacture the 
laminate by additive manufacturing with a continuously varying 
composition of the constituents. Such materials and structures 
show a promise to the materials side of the fourth industrial revo-
lution. The proposed analytical approach is simple, efficient as 

well as accurate and has a scope to be implemented in finite ele-
ments to handle more general geometry and boundary conditions. 
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Table 9: Nondimensionalized natural frequencies for FGM panels A, B and C 

p S 
ROM Mori-Tanaka 

2 – 1 – 2 1 – 1 – 1 1 – 2 – 1 1 – 8 – 1 2 – 1 – 2 1 – 1 – 1 1 – 2 – 1 1 – 8 – 1 

Panel A 

1 5 24.808 25.132 25.727 27.396 24.107 24.459 25.135 27.098 

 10 25.781 26.127 26.780 28.647 25.031 25.401 26.137 28.320 

 20 26.048 26.400 27.070 28.995 25.284 25.659 26.412 28.659 

4 5 23.109 23.329 24.009 26.477 22.914 23.103 23.771 26.334 

 10 23.946 24.157 24.886 27.621 23.747 23.919 24.631 27.464 

 20 24.174 24.383 25.125 27.937 23.974 24.141 24.865 27.776 

Panel B 

1 5 31.383 31.747 32.418 34.059 30.878 30.890 31.059 31.429 

 10 32.577 32.976 33.715 35.521 32.110 32.185 32.446 32.957 

 20 32.905 33.314 34.072 35.926 32.450 32.543 32.832 33.385 

4 5 30.854 30.811 30.856 30.820 30.673 30.556 30.504 30.041 

 10 32.134 32.194 32.388 32.564 31.985 32.012 32.174 31.963 

 20 32.488 32.580 32.819 33.061 32.349 32.419 32.649 32.519 

Panel C          

ROM   Mori-Tanaka 

p S = 5 S = 10 S = 20   p S = 5 S = 10 S = 20 

1 28.193 29.219 29.498   1 27.174 28.259 28.557 

4 26.436 27.509 27.804   4 25.997 27.133 27.448 

 


