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Abstract 
 

The challenges facing power systems have shown a growing tendency in the studies on distributed generation in the modernized world. 

One of the most important objectives of distributed generation systems is an improvement of the quality of power systems. Many indices 

have been proposed in the electrical power system literature. However, the previous criteria did not give a clear voltage advantage of the 

distributed generator’s location. In this paper, a new index is proposed to gauge the placement of distributed generators (DGs) in a power 

system. The new index depends on the maximum voltage gain (MVG) in the system to overcome the position of the DG. The Gauss-

Seidel load flow method is used to test the voltages of IEEE 30-bus standard after and before adding of DGs. The results show that MVG 

is more feasible than other indices such as cumulative voltage deviation (CVD) and voltage stability index (VSI) for calculating suitable 

locations for DGs. 
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1. Introduction 

With the penetration of distributed generators (DGs) into the elec-

trical power system, the classical calculations on voltage and pow-

er are facing several challenges not only in providing a high-

quality scheme, but also evaluation of the power system quality 

[1]. Generally, the researchers' goal is to develop guidelines for 

designers to choose a suitable site for the DG in the power system 

[2]. Many strategies have been introduced for determining the 

optimal location for DGs [2]. 

Most studies consider the transient response of transmission corri-

dors for operators to estimate the quality of the system, such as 

stability, sag, and voltage swell [3-5]. Yosefi et al. optimized the 

control parameters by using the minimum voltage-sag index as a 

function of the static synchronous compensator [6]. Chakravorty 

et al. determined the critical points that are affected by voltage 

according to the voltage stability index for a radial distribution 

system [7], [8]. Ankit and Ashwani used the voltage deviation 

index as one of four objective functions to set the location and size 

of the DGs [9]. Other studies focus on state considerations to cal-

culate a suitable site for the DG [10]. The gradient method, linear 

programming, and Kalman filter algorithm are three traditional 

methods utilized to predict the location of DGs [10-12]. In addi-

tion, the power flow is used as a tool to analyze the voltage stabil-

ity in most studies owing to its ease of use [13-16]. However, the 

introduction of a DG makes these indices invalid as they cannot 

gauge the effect of a DG on the voltage profiles [1]. 

In this study, a novel index, called the maximum voltage gain 

(MVG) index, was developed and used to estimate the overall 

assessment of steady-state voltage in the case of different DGs 

being placed in multiple areas. This index depends on the 

calculation of the differences between the node voltages before 

and after DG placement. Thus, in this study, the new index was 

introduced and formulated for gauging the voltage of the system. 

Then, four types of DGs were considered to mitigate the problem 

of the DGs’ location. Subsequently, an analysis of the IEEE stand-

ard was carried out by using the Gauss-Seidel method for load 

flow to find the voltage buses. Finally, a distribution network us-

ing the IEEE 30-bus test system was simulated in MATLAB to 

verify the effectiveness of the new index. The simulation results 

indicate that the proposed index is more feasible for calculating 

suitable locations for DGs than traditional indexes such as cumu-

lative voltage deviation (CVD) and voltage stability index (VSI). 

2. Theoretical background 

2.1. Voltage indices 

Two of the many indices that are presented using Thevenin’s 

equivalent theorem are CVD and VSI. CVD is the sum of the 

deviations of voltage node value (which are calculated from load 

flow) from the desired value; normally the desired value is 1.0 p.u 

[17]. The CVD index is determined as follows: 

 

                                                                        (1) 

 

Where n is the total number of nodes and  is the node voltage. 

Elsewhere, VSI represents the typical index of stability for the 

voltage, which gives a view of the system stability for the suggest-

ed location of DGs. VSI can be calculated as [18], [19]. 

 

                                (2) 

Where VSI(n2) is the voltage stability index for n2 (n2 = 2, 3, ....), 

kk is the branch number, r(kk) is the resistance of branch kk, x(kk) 
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is reactance of branch jj, V(n1) is the voltage of node n1, V(n2) is 

the voltage of node n2, P(n2) is the real power load fed through 

node n2, and Q(n2) is the reactive power load fed through node n2. 

2.2. DG classification 

DG planning is a very important issue in maximizing the benefits 

of DGs. Further, solving the problems related to the placement and 

sizing of DG units requires finding a suitable fitness function that 

optimizes the corresponding constraints. The ability of DGs to 

reduce power loss and voltage deviation is determined by three 

factors, viz., the type, location, and size of the DG. DG technology 

provides active and reactive power supply directly to the load 

center. It can be classified into four types as follows [20], [21]: 

1) DG I: capable of injecting reactive power only 

2) DG II: capable of injecting active power only 

3) DG III: capable of injecting active and reactive power. 

4) DG IV: capable of injecting active power but observing re-

active power. 

3. The proposed method 

3.1. Simplified power system 

The net power of the system, which is shown in Fig 1, must be 

equal to zero. The generated power is assumed positive, to be 

consistent with the equation YV=I. 

 

 
Fig. 1: Power Balance for Bus i. 

 

The equation for every bus is 
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Separation into real and imaginary components yields two equa-

tions for bus i, 
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The Newton-Raphson method can be solved using Taylor's expan-

sion; the first derivative in abbreviated form is 
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The partial derivatives are derived from 
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3.1. Formulation of the proposed MVG index 

The quantity of the voltages can be determined from the second 

and fourth Jacobean matrices  for 2J , 
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For 4J , 
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Because the voltage decreases with distance, a generator placed 

farther from the main source typically provides better voltage 

support to the system. On the other hand, the sum of voltages in-

dices does not give a good indication of the location because of 

the small changes in the index values. Therefore, the deviation 

between the voltages before and after the DGs is very important in 

the selection of size or location as shown below. 

 

(13) 

 

The second branch of equation (13) represents the voltage gain 

value if the voltage magnitude is out of the tolerance limit of the 

power system. In this paper, the tolerance voltage is assumed as 

±10% of the base voltage. So; the proposed index is given as 

 

                                            (14) 

 

Where Vmax and Vmin are the maximum and minimum voltage 

permissible limits, respectively. Vaf and Vbf are the voltages after 

and before the DGs, respectively 

The minimum and maximum values of the proposed MVG index 

are 0 and 1, respectively. 

The flowchart of the proposed method is shown in Fig 2. 

 

https://www.researchgate.net/post/what_is_voltage_tolerance_limit_in_power_system
https://www.researchgate.net/post/what_is_voltage_tolerance_limit_in_power_system


5614 International Journal of Engineering & Technology 

 

 
Fig. 2: MVG Flowchart. 

4. Simulation results and discussion 

The IEEE 30-bus system was selected to test the proposed method. 

Two DG scenarios (one and two DGs) were chosen to calculate 

the index on all possible generator locations. Further, the proposed 

method was applied to multiple classes and sizes of DGs to exam-

ine the effect of DG type on the indices.  

The advantage of the clarity of change during the addition of DGs 

to the system was the main point of comparison among the three 

different indices using the simulation results. All the possible lo-

cations of DGs in the 30-bus IEEE system were considered and 

MVG, CVD, and VSI under multiple cases of DG sizes and types 

were calculated. 

Figs 3–5 show the index values for the addition of a single genera-

tor with 10% of the IEEE base power of Type I DGs. 

 

 
Fig. 3: CVD for Single DG and 0.1 P. U. 

 
Fig. 4: MVG for Single DG and 0.1 P. U. 

 

 
Fig. 5: VSI for Single DG and 0.1 P. U. 

 

Table 1 lists the values of the indices; it can be noticed that bus 10 

has the maximum value among all indices, but MVG is the clear-

est index among them. The differences between the highest and 

the lowest values of MVG can be seen in 10th and first buses.  

50% of base power for a Type I DG was also applied to calculate 

the performance of the system; the results are given in Table 2. 
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Table 1: Indices Values for Single DG and P=10 P. U 

Bus No. MVG CVD VSI Bus No. MVG CVD VSI 

1 0.0000 0.0047 358.2140 16 0.0145 0.0145 357.5764 

2 0.0000 0.0047 358.2411 17 0.0100 0.0138 357.1245 

3 0.0117 0.0139 358.3341 18 0.0182 0.0074 359.0380 

4 0.0171 0.0055- 353.7826 19 0.0152 0.0070 358.6319 
5 0.0000 0.0047 358.1256 20 0.0191 0.0079 359.7120 

6 0.0100 0.0080 368.6701 21 0.0193 0.0180 357.0811 

7 0.0065 0.0037 357.6354 22 0.0100 0.0083 356.7388 
8 0.0000 0.0047 358.1926 23 0.0191 0.0181 357.5965 

9 0.0207 0.0176 357.4722 24 0.0137 0.0116 358.5184 
10 0.0338 0.0251 370.6721 25 0.0103 0.0121 358.4564 

11 0.0000 0.0047 358.2969 26 0.0075 0.0022 357.8888 

12 0.0276 0.0196 358.9748 27 0.0171 0.0218 360.3346 
13 0.0000 0.0047 358.2680 28 0.0100 0.0066 362.0094 

14 0.0100 0.0115 354.6692 29 0.0033 0.0021 357.8382 

15 0.0100 0.0141 355.6580 30 0.0053 0.0100 357.7650 

 
Table 2: Index Values for Single DG and P= 0.5 P. U 

Bus No. MVG CVD VSI Bus No. MVG CVD VSI 

1 0 0.0047 358.2140 16 0.0100 0.0145 357.1189 
2 0.0000 0.0047 358.3493 17 0.0182 0.0138 356.5184 

3 0.0117 0.0139 358.0135 18 0.0152 0.0074 358.5214 
4 0.0171 0.0055- 354.1518 19 0.0191 0.0071 358.3312 

5 0.0000 0.0047 357.7718 20 0.0193 0.0080 359.0807 

6 0.0100 0.0080 369.0467 21 0.0100 0.0181 356.9096 
7 0.0065 0.0036 357.2265 22 0.0191 0.0084 356.4050 

8 0.0000 0.0047 358.1068 23 0.0137 0.0181 357.0569 

9 0.0207 0.0176 357.1546 24 0.0103 0.0117 357.3891 
10 0.0338 0.0251 369.6708 25 0.0075 0.0123 358.0753 

11 0.0001 0.0047 358.6284 26 0.0171 0.0025 356.9133 

12 0.0276 0.0196 358.5878 27 0.0100 0.0218 359.2383 
13 0.0001 0.0047 358.4838 28 0.0100 0.0145 357.1189 

14 0.0100 0.0116 354.1526 29 0.0182 0.0138 356.5184 

15 0.0100 0.0142 354.6857 30 0.0152 0.0074 358.5214 

 
Table 3: Index Values for Two Dgs, and P=0.1 P. U Type I 

Bus No. MVG CVD VSI  Bus No. MVG CVD VSI 

1 0 0.0047 358.2140 16 0.01449 0.0145 357.6908 

2 0.00001 0.0047 358.2140 17 0.01001 0.0138 357.2759 

3 0.0117 0.0139 358.4143 18 0.01819 0.0074 359.1671 

4 0.0172 0.0055- 353.6903 19 0.01522 0.0070 358.7071 

5 0.0000 0.0047 358.2140 20 0.01911 0.0079 359.8697 

6 0.0101 0.0080 368.5760 21 0.01928 0.0180 357.1240 
7 0.0065 0.0037 357.7376 22 0.01011 0.0083 356.8222 

8 0.00002 0.0047 358.2140 23 0.01909 0.0181 357.7313 

9 0.02071 0.0176 357.5516 24 0.01371 0.0116 358.8004 
10 0.03373 0.0251 370.9224 25 0.01037 0.0121 358.6597 

11 0.00000 0.0047 358.2140 26 0.00752 0.0022 358.1316 

12 0.0276 0.0196 359.0715 27 0.01691 0.0218 360.6086 
13 0.00001 0.0047 358.2140 28 0.0100 0.0066 361.8873 

14 0.0100 0.0115 354.7980 29 0.00331 0.0021 358.0765 

15 0.0999 0.0141 355.9006 30 0.00542 0.0100 358.4025 

 

To validate the method, two generators with 10% power of the 

base value for the IEEE 30-bus system were examined. 

Table 3 lists the change in index values for all methods in DGs of 

Type I  

All the possible locations of DGs were suggested for the first gen-

erator, and random locations were suggested for the second gener-

ator, as given in Tables 4 and 5, for two types of DGs.  

 
Table 4: DG2 Location for Type I 

Bus No. The location 

1–10 24 27 4 27 19 3 9 16 28 28 

11–20 5 29 28 15 24 5 13 27 23 28 

21–30 20 2 25 28 20 22 22 12 20 5 

 
Table 5: DG2 Location for Type II 

Bus No. location 

1–10 21 1 9 2 3 24 21 10 28 1 

11–20 13 12 23 24 6 15 13 19 21 22 

21–30 9 20 19 5 4 15 28 10 17 7 

Table 6 lists the improvement in the proposed method for two 

DGs of Type I 

From Tables 1, 2, 4, and 6 and Figs 3–5, the differences between 

the minimum and maximum values of each index can be noted. 

The percentage difference of each case can give the intelligibility 

of the index, and it can be calculated as 

 

                                                (15) 

 

Table 7 lists all the values of the intelligibility for the indices of 

Type I DG. This table clearly proves the ability of the proposed 

method to gauge the system and give suitable guidelines to the 

workers for power system operation, especially in the case of mul-

ti-objective functions.  

On the other hand, for two DGs of Type II the values of the intel-

ligibility of VSI, CVD, and MVG are 0.0455, 1.2191, and 1, re-

spectively.  
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Table 6: Index Values for Two Dgs, Type II, and P=0.1 P. U 

Bus No. MVG CVD VSI Bus No. MVG CVD VSI 

1 0.0000 0.0047 358.2140 16 0.0146 0.0145 357.5764 

2 0.0001 0.0047 358.2411 17 0.0102 0.0138 357.1245 

3 0.0127 0.0139 358.3341 18 0.0184 0.0074 359.0380 

4 0.0173 0.0055- 353.7826 19 0.0155 0.0070 358.6319 

5 0.0000 0.0047 358.1256 20 0.0197 0.0079 359.7120 

6 0.0101 0.0080 368.6701 21 0.0192 0.0180 357.0811 

7 0.0067 0.0037 357.6354 22 0.0098 0.0083 356.7388 

8 0.0001 0.0047 358.1926 23 0.0193 0.0181 357.5965 

9 0.0217 0.0176 357.4722 24 0.0138 0.0116 358.5184 

10 0.0339 0.0251 370.6721 25 0.0101 0.0121 358.4564 

11 0.0000 0.0047 358.2969 26 0.0072 0.0022 357.8888 

12 0.0277 0.0196 358.9748 27 0.0175 0.0218 360.3346 

13 0.0000 0.0047 358.2680 28 0.0109 0.0066 362.0094 

14 0.0100 0.0115 354.6692 29 0.0040 0.0021 357.8382 

15 0.0101 0.0141 355.6580 30 0.0052 0.0100 357.7650 

 
Table 7: Intelligibility of the Indices 

1DG-10% power 1DG-50%power 2DG-10%power 

VSI CVD MVG VSI CVD MVG VSI CVD MVG 

0.0456 1.2209 1 0.0420 1.2206 1 0.0465 1.2210 1 

 

5. Conclusion 

This work involved an in-depth analysis and monitoring of the 

system voltages in multiple cases of adding various numbers of 

DGs, and proposal of a new index called MVG. This study was 

conducted based on a review of major convenient voltage indices 

available, which represent the selection of an appropriate voltage 

index for DG locations in the IEEE 30-bus system. A multi-

objective function that combines a reduction of real power loss, 

voltage profile, security margin, and capacity, is a very common 

method in power system gauge and operation. The results prove 

that the MVG index is suitable for describing a DG’s location in a 

power system because of the range of minimum to maximum val-

ues. 
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