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Abstract 
 

The dual solutions in the boundary layer flow and heat transfer in the presence of thermal radiation is quantitatively studied. The govern-

ing partial differential equations are derived into a system of ordinary differential equations using a similarity transformation, and after-

ward numerical solution obtained by a shooting technique. Dual solutions execute within a certain range of opposing and assisting flow 

which related to these numerical solutions. The similarity equations have two branches, upper or lower branch solutions, within a certain 

range of the mixed convection parameters. Further numerical results exist in our observations which enable to discuss the features of the 

respective solutions. 
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1. Introduction 

Free, forced and mix convection flow are found in a few practical 

application that hug receivers center solar revealed in imitation of 

modern-day regarding wind, digital gadget cooled by fans, nuclear 

reactor calm all over emergency termination and friendliness con-

verter stationed during low velocity environment. This process 

occur when the effects of buoyancy forces in forced convection or 

the effects of forced flow in free convection become significant  

was reported by [1]. The interaction on forced or free convection 

is mainly suggested within situations where the forced flow veloc-

ity is low and/or the temperature variations are large. During dec-

ade showing much convection flow analysis that is mixed at one 

viscous and incompressible fluid at one surface vertical was pre-

sented. Numerical solution and analysis for temperature and ve-

locity field for consistent surface heat fluxes has been obtained by 

[2]. The flow driven whether by one prescribed surface tempera-

ture or by consistent surface heat flux or by Newtonian heating 

from corrugated surface are considered by modeling the convec-

tive flow learned previously by [3] or by convective surface 

boundary condition [4]. 

In a number of important problems in fluid mechanic and heat 

transfer there are equations of fundamental physical law known as 

partial differential equations and the purpose of theoretical work is 

to find the exact solution of this equation. Solutions on certain 

equations of partial differential equations happen in areas applied 

can be discovered fairly without problems in spite of the failure in 

that larger often methods classical to produce decisions. Accord-

ing to [5] found that the solutions are generally determined as 

similarity solutions proved by the important of certain options for 

those problems by using transformations of the variables, which 

provide limit to existing system that is on partial differential equa-

tions in accordance to one system related with ordinary differen-

tial equations. The mixed convection boundary layer flow near 

point lower stagnation at a circular cylinder horizontal with a sec-

ond order slip velocity model and consistent surface heat flux has 

been considered in a recently paper by [6]. Transformation of 

ordinary differential (similarity) equations had been resolved in 

terms of the number to governing parameter other for different 

values. Numerical research equipped with derivation of an analy-

sis of time-dependent to execute solution branches stability. In 

expanded the paper by [7] for permeable plate case, i.e. when 

there is suction or injection (blowing) through the wall. In addition, 

the dual solution with convection has gained much attention by 

researchers due to wide range of solutions in computations such as 

[8-9]. Since then, the interest of this research has been coined to 

study dual solution as approach for heat transfer in opposing and 

assisting flows by [10]. In [11] is a well-known person that dis-

covered  there are dual solutions exist in both flows which are 

assisting and opposing flows while doing his research in mixed-

convection flow over a horizontal surface and others. Meanwhile, 

in [12] examined numerically dual solution in laminar mixed con-

vection for the both flows (assisting and opposing) past a permea-

ble shrinking surface. They found that the opposing flow reduced 

the amount of skin friction and concluded that upper branch solu-

tion is stable. Four different thermal boundary conditions and heat 

flow patterns in mixed convection analyzed by [13] using heat 

lines concept for wide ranges of parameters. Numerical simulation 

of unsteady mixed convection in a driven cavity using an external-

ly excited sliding lid has been studied by [14]. According to [15], 

correlations for heat and mass transfer in the cooperating case 

taking into account the effect of natural convection in porous me-

dia. The dual solutions for the upper and lower branch of the po-

rous medium significantly affect the rate of heat transfer and mass 

transfer in the cavity.  

The objective of this paper is to analyze the dual solutions in the 

boundary layer flow and heat transfer in the presence of thermal 

radiation is considered. The suction of a fluid through the bound-

ing surface, as, for example, in mass transfer cooling, can substan-

tially change the flow field and, as a consequence, have an effect 

on the heat transfer rate from the plate. In general, suction tends to 
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increase the skin friction then heat transfer coefficients, whereas 

injection acts into the opposite manner obtained by [16]. Injection 

or withdrawal over liquid via a porous bounding heated or cooled 

wall is about normal interest within practical problems involving 

film cooling, control of boundary layers etc. This action is perform 

to enhance heating (or cooling) of the system then can assist to 

delay of transition process from laminar flow by [17]. The govern-

ing partial differential equations are reduced into a set of ordinary 

differential equations, then the ODEs are numerically solved with 

bvp4c solver.  

2. Mathematical Formulation 

Consider a steady stagnation point flow of an ambient temperature  

T  past a stretching surface which coincides with the plane y = 0, 

and the flow being in the region y > 0. It is assumed that the vari-

able surface heat flux to be ( )wq x bx= and that there is a free 

stream velocity ( )U x ax=  flowing over the plate. Buoyant force 

can move like the identical path as like the flow (aiding flow), 

then can employment of the contrary route in imitation of the op-

posing flow. Under these assumptions, together with regular 

boundary layer and Bernoulli's approximation 
1

,
dU dp
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= −  
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subject to the boundary conditions 
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where g is the gravitational acceleration,   the thermal expan-

sion coefficient, pc is the specific heat of the fluid at constant 

pressure,  and  are the kinematic viscosity and thermal diffu-

sivity of the fluid respectively. In order to find a similarity solu-

tion in (1) – (3), subject to boundary conditions in (4) by writing 
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where   is the stream function defined as 

/ and /u y v x =   = −  , so as to identically satisfy in (1) 

and k  is the thermal conductivity. From transformation in (5) 

obtain 

 

 ( )'u axf = and   ( ) ( )
1

2- a f  =                                        (6) 

                                                  

where primes denote differentiation with respect to  . Substitut-

ing in (6) into (2) and (3), the following ordinary differential equa-

tions become: 
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where primes denote differentiation with respect to  ,  
5/2/ Rex xGr =  is the buoyancy or mixed convection parameter 

and Pr / =  is the Prandtl number. Further, 4 2/x wGr g q x k =  

and Re /x Ux =  are represent the local Grashof number and the 

local Reynolds number. Noticed that   is a constant with 0   

and 0   for assisting flow and opposing flows respectively, 

while 0 =  considered as a case of the buoyancy force is inade-

quate where the convection flow purely forced. The boundary 

conditions in (4) now become 

 

0(0)f f= , (0) 0f  = , (0) 1 =  

( ) 1f   → , ( ) 0  →                          (9)

                  

where 1/2

0 (0) / ( )wf f V a= = − 0f  is a constant with 0 0f   cor-

respond to mass suction. In (7)-(9) reduce to those found by [18] 

with the condition of an unpredictable wall surface temperature 

for 1n =  in the research. 

The dimension of physical quantities in this work can be ex-

pressed as the skin friction coefficient fC and the local Nusselt 

number xNu , which are defined by 
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where the skin friction w  and the heat transfer from the plate wq  

are given by 
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with   and k  being the dynamic viscosity and thermal conduc-

tivity respectively. Using the non-dimensional variables in (5), one 

get 

 

( )1/2 1/21
Re (0), / Re 0

2
f x x xC f Nu  = =                                 (12) 

 

where /xNu Ux =  is the local Reynolds number. For this paper, 

being limiting value to unit Prandtl number, denote as Pr = 1. In-

terest main physical quantity is the values of ( )0f 
 
become skin 

friction measurement, and the non-dimensional wall temperature 

( )0 .
 
The main purpose of this paper is to find how values of 

( )0f 
 
and ( )0

 
and differs in parameter of ( )0f 

 
and ( )0 .

 

3. Results and Discussion  

The ordinary differential equations in (7) and (8), alongside 

boundary conditions in (9) were solved numerically by shooting 

technique method in Maple software together with bvp4c function 

implemented in MATLAB. For the shooting method technique, 

the results obtained by setting different initial guesses for the val-

ues of ( )0f  and ( )0  where all profiles satisfy the boundary 

conditions but with different shapes is studied. Skin friction coef-

ficient ( )0f   variation and local Nusselt number ( )0  tabled in 

Fig. 1 and 2 respectively, both for Pr =1. Different from decision 

by [19], which states existence of two solutions only for opposing 

flow case ( )0 , 
 
this buoyancy of figures proof of existence of 
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two solutions for both buoyancy assisting ( )0  and opposing  

( )0   flows. Existences of both solutions determine by the 

critical value of ,
 
denote as ,c =  which found by [19] states 

that there is no solution which exists for both flows. 

Validity regarding two solutions illustrated in Fig. 3 and 4 are 

sustained by velocity and temperature profile presented in Fig. 1 

and 2 respectively. Considered into this results depend on expecta-

tion there was two different profiles for parameter , stability 

equivalence where both satisfactory asymptotically far field 

boundary condition. Fig. 3 and 4 show the variations of the skin 

friction coefficient ( )0f  and the wall temperature ( )0 with 

buoyancy parameter   for value of 
0 0f = (impermeable wall) 

and 0.5 (suction) for Pr = 1. The lower and upper branch solution 

are identified in the next information given on how the solution 

execute in Fig. 3 which shows that there is a greater value of 

( )0f   as a solution of upper branch  for a given   compare to 

lower branch solution. 

According to the result, there exists a solution in assisting flow for 

a dual solution when the values of positive   are considered that 

much greater values of   proven by Fig. 3 and 4. Results shows 

that that there is critical value c increases as suction 
0 0f   

value raised and it proves the suction 
0f  

increase the solution of 

existence in (7)-(9). The solution of lower branch become un-

bounded as indicated in Fig. 4 for the wall temperature ( )0  as 

values of   approaches to negatives values and also values lamb-

da   to positive values. Figure 1 shows that at the upper branch 

solution execute a solution for the velocity profile where the ve-

locity have positive gradient at the wall along with the opposite 

flow that turn out to be a region for lower branch solution. Solu-

tion of the velocity at the wall can be obtained by finding its posi-

tive for the value of 0.8, =  in Figure 6 on both branches, in 

agreement with the curves of ( )0f  proven in Figure 4. 

Meanwhile, for the lower branch with value of 0.8, = in Fig. 5 

the solution has a region of reversed flow (has ( ) 0f    for 

finite range of  ) located away from the wall ( )0 . =
 
The ve-

locity gradient at the wall is effective to find the solution regard-

ing both branches, in agreement with the curves of ( )0f  as prov-

en in Fig. 3 for 0.8. =  However, the solution on the lower 

branch for 0.8 =  has an area of reversed flow where ( ) 0f    

for finite range of   situated away from the wall ( )0 . =  Fig. 2 

( )0.4 = −  proves that solutions for lower branch are the amount 

of the wall heat profiles denote as ( )  are greater in contrast 

according to the results obtained for upper branch solutions that 

constant together with values in Fig. 4. The heat profiles for the 

solutions regarding both branches have ( ) 0   for all values of 

0 ,    shown in Fig. 4 whereas in Fig. 2 shows that the solu-

tion of lower branch have province below the ambient temperature, 

i.e. ( ) 0    for variation of   and 0 →  from below as 

. →  

 

 
Fig. 1: Velocity profile when Pr = 1 when 0.4 = −  

 

 
Fig. 2: Temperature profile when Pr = 1 when 0.4 = −  
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Fig. 3: The values of the skin friction coefficient ( )0f   with variation of 

  for
0 0.5 and 0f =  for Pr = 1 

 

( )0f 

 

           Upper Branch 
           Lower Branch 

0 0f =  

0 0.5f =  

  



20 International Journal of Engineering & Technology 

 

 

Fig. 4: The values of the wall temperature ( )0  with variations of   

for
0 0.1f =  with Pr = 1 
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Fig. 5: Velocity profile when Pr = 1 when 0.8 =  
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Fig. 6: Temperature profile when Pr = 1 when 0.8 =  

4. Conclusion  

Numerical preferences on momentum and energy equations are 

observed and it is determined that the involving parameters dis-

tinctly affected the flow area and temperature distribution. In this 

research, the effect of involving parameter which are mass suction 

parameter 
0 0and 0.5,f = Prandtl number Pr and the buoyancy 

parameter   on the flow field of fluid and the characteristic of 

heat convection c is discussed. 
As the increment values concerning   increases the range of ve-

locity values the suction delays the boundary layer separation and 

as a result increases the range of similarity solution. There exist 

dual solutions in assisting flow regime while in the opposing flow 

the solution terminated with critical value of  .c =  
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