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Abstract 
 

With the rapid increment on the complexity of the workflow, and the resultant demand on the scalability of the environment, executing 

workflows on traditional environment such as grids and clusters has become challenging task. Generally, schedulers aims to find a trade-

off between execution, user requirement, and execution cost. Combine this with the uncertainty in the execution environment results in 

underlining the importance of designing scalable scheduling algorithm that adopt to the changes in the execution process. Toward this 

end, we propose the Level-Based Clustering (LBC) algorithm. By considering each level tasks as a single object (cluster), this algorithm 

aims to establish a relationship between the execution requirement for each cluster, and the number of resources that must be used to 

execute the entire workflow. We have compared our algorithm with three well-known algorithms from the literature, and the result show 

that the LBC algorithm achieves 50%, 25%, 50% on average improvement in term of cost, makespan and the number of resources used, 

respectively. 
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1. Introduction 

Recently, scientific workflows become increasingly common for 

compute-intensive and data-intensive scientific applications. Such 

workflows is normally represented as Direct Acyclic Graph 

(DAG), where nodes represents tasks with computational require-

ments, and edges represent the data dependency between the tasks 

(Figure 1). Workflows is typically executed on distributed envi-

ronments, where each task is assigned to processing core. Due to 

the scale of the workflows and the intensity of its processing re-

quirement, and the intensity of its computational requirement, 

cloud computing (Infrastructure as a Service (IaaS)) has emerge as 

an efficient environment to execute scientific workflows. 

 

 
Fig. 1: Scientific Workflows Example 

 

The IaaS provide the user with the ability to access a shared on-

demand compute infrastructure, using pay-per-use pricing model. 

This is often done by leasing virtualized resources, referred to as 

virtual machines (VMs), with a pre-determine computer hardware, 

memory, storage, and information measure capability.  

Typically, the objective of scientific scheduling workflows is to 

either reduce the executing cost [16, 17, 24], or to reduce the exe-

cution time [3, 5, 14, 15]. Proposals that address reducing the 

execution cost normally handle the execution time as time-

deadline constraint [20, 21, 25]. In term of reducing the execution 

time, proposals that aim to address this objective normally handle 

reducing the execution time as a secondary objective [4, 22, 23]. 

In addition, some proposals have address the bi-objective problem 

of minimizing the execution time and cost [18, 19, 6].  

The problem of scheduling scientific workflows in clouds is NP-

Complete in nature [13]. To efficient address this problem, we 

need to determine the right number of resources to rent. Over-

renting is expected to increase the executing cost, since we will 

pay for unused time slots. Under-renting is expected to increase 

the total execution time (makespan). In addition, due to the data 

dependency constraints, we need to take into consideration the 

structure of the workflows during the scheduling process to effi-

ciently utilize the resources (VMs). This is established, since with 

the presence of the precedence constraints, the scheduling must 

respect the data dependency between the tasks to avoid having 

unused time slots.  

Toward this end, we propose the Level-Based Clustering (LBC) 

algorithm. This algorithm divides the workflow's tasks into clus-

ters, where tasks belong to the same level is allocated to same 

cluster. This division aim to simplify the resources allocation 

process, since we treat clusters as isolated objects with computa-

tional requirements. We compare the performance of the LBC 

algorithm against three other well-known algorithms from the 

literature. The results show that the LBC algorithms achieves 

50%,25%,50% improvement compare to the other algorithms, in 

term of cost, makespan and the number of resources used, respec-

tively. 
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The rest of the paper is organized as follows. Section 2 presents 

and discuss the related works. In Section 3, we formally define the 

scheduling problem. In Section 4, we present our algorithmic solu-

tion. The results is discussed in section 5, and the paper is con-

cluded in section 6. 

2. Related Works 

In this section, we present and discuss the most related proposals 

to the problem of scheduling scientific workflows in clouds. Many 

proposals have investigated the problem of scheduling scientific 

workflows in cloud.  

Many proposals have investigated the problem of minimizing the 

execution time (makespan) [3, 5]. In [3] presented the heterogene-

ous earliest end time (HEFT) algorithm. This algorithm schedules 

the tasks using a greedy approach. In each iteration, the process 

works by assigning the task under consideration to the VM that 

results in the earliest actual execution time. The efficacy of this 

approach depends on the available number of resources. However, 

this approach does not take into consideration the execution cost 

during the construction of the schedule, and this may result in 

increasing the execution cost. In [5] presented an improvement 

version of the shuffled frog leaping algorithm (ASFLA). The re-

sults demonstrate significant reduction in the makespan, however 

the authors did not take into consideration the execution cost for 

resource.   

In [4], the authors studied the problem of minimizing the execu-

tion cost under the presence of the time-deadline constraint. To 

address this problem, the authors proposed the IC-PCP algorithm. 

Starting from this exit task, this algorithm distribute the time-

deadline over the entire branches of the workflow. Then, it 

schedule the tasks starting from the entre level on the cheapest 

VM that results in satisfying the tasks deadline. In [8] proposed 

adaptive algorithm using Mixed Integer Programming (MIP) 

method that also aims to reduce the cost under the presence of 

deadline constraint. However, the algorithm does not allow using 

VMs that already assigned.  

Several proposals have investigated the problem of minimizing the 

makespan under the presence of the budget constraint [16-28]. In 

[16], the authors proposed heuristic-based solution that aim to 

reduce the overall execution delay. In each iteration, the main idea 

of this approach is to improve the current schedule by considering 

the left budget. In [27] proposed priority based genetic algorithm 

termed as BCHGA, which address the problem of scheduling the 

tasks of the workflow under the presence of the budget constraint. 

In this algorithm, based on the locality of the tasks, each task is 

assigned either bottom level priority (b-level), or top level priority 

(t-level). Then, in each round, the algorithm by trying to find bet-

ter schedule in term of makespan, while minimizing the execution 

cost. In [26, 28], the authors adopt similar strategy to minimize the 

execution cost under the presence of the budget and execution 

time constraints. 

Many proposals have addressed the problem of minimizing both 

the execution time and cost [1-2, 6, 9]. Our work falls into this 

category. In [1] proposed cluster-based algorithm that aim to de-

termine the priority of each objective using a slack parameter. The 

value of this parameter ranges from 0 to 1, where assigning 0 to 

this parameter results in prioritizing the execution time, and as-

signing 1 to this parameter results in prioritizing the execution cost. 

This algorithm starts by dividing the workflow tasks into partition 

in a sequential fashion starting from the entre level tasks. Then, 

the number of resources assigned to each partition is determined 

based on the value of the slack parameter. For each partition this 

number ranges from 1 resource to the number of resources that 

ensure each task is executed on its earliest starting time. Similarly, 

the RDAS algorithm [2] uses a fair allocation strategy, which aim 

to construct schedule with the objective of minimizing the execu-

tion time and cost. In [6] proposed algorithmic approach to ad-

dress the same problem. In this approach, the user has to assign a 

weight value for each objective. 

3. Problem Definition  

The input can be represented as Directed Acyclic Graph (DAG) 

,  where is a finite set of tasks, 

and  denotes the number of tasks in the workflow application. 

Each edge connects two tasks representing their precedence con-

straint or data dependency. A dependency ensures that a child 

node cannot be run before all its parent tasks finish successfully 

execution and transfer the required input data. The last task to 

transfer its data a given task is termed the Most Influential Parent 

(MIP). 

Additionally, we are given a set of resource 

. Each set of resources contains restrict-

ed range of uniquely identifies resources in terms of memory and 

storage space. Capacity is the main distinguisher between the re-

sources set for instance. Without losing of generality, we assume 

that  is  times faster and more expensive compared to 

 resources. The execution time for the entire workflow is de-

noted as makespan or schedule length. For each task, the actual 

start time (AST) and actual finish time (AFT) is not expected to be 

similar to the Earliest Start Time (EST) and Earliest Finish Time 

(EFT). These values depend on the available number of resources. 

4. Algorithmic Solution 

Due to the data dependency constraints, a task cannot start its 

execution without receiving all of the required data from its parent. 

This suggest that the scheduler must ensure that the tasks located 

at the same level must finishes their execution relatively at the 

same time in order to reduce the data waiting periods for the tasks 

located at the next level. In addition, the computational require-

ments for each level's tasks is typically different. Some level has a 

single task, and other levels have hundreds of tasks. This suggests 

that the structure of the workflow must be also taken into consid-

eration during the construction of the execution schedule. To ad-

dress these issues, in this section, we present the Level-Based 

Clustering algorithm.  

This algorithm starts by assigning tasks located at the same level 

to a single cluster. This aim to simplify the scheduling process, 

since tasks located at different level have different computational 

requirements. Then, starting from the entry level cluster, the re-

source allocation step starts by identifying each cluster share of 

the available resources. This is established based on the number of 

tasks assigned to this cluster, and their computational require-

ments. In this step, the objective is identifying the number of VMs 

that must be assigned to each cluster such that all tasks belong to 

the same cluster relatively finish their execution at the same time. 

Then, in the tasks scheduling step, we identify the actual starting 

time for each task. 

 4.1. Clustering Step 

In this step (Algorithm 1), we partition the workflow into set of 

clusters such that tasks belong the same level located at the same 

partitions. This algorithm starts by calculating the number of re-

quired clusters based on the height of the workflow (line 5). Then, 

the algorithm iterates to assign each task to its level cluster (line 8-

17). By performing level based clustering, we aim in to handle 

each cluster as an isolated object in term of computation require-

ments. 

 



286 International Journal of Engineering & Technology 

 
Algorithm 1: Clustering Step 

 

1 : procedure PARTITIONING ( )  

2 : ►Input: , Levels   

3 :  ►Output: C = c1,cp2, …. cm.  

4 :        p1 ←  vi  V in L1 

5 :         i ← 1    

6 :         while we have unassigned node do 

7 :                j ← 2    

8 :                for each l in L do 

9 :                    if |v|  V in Li equal to 1 then  

10 :                   ► the entry tasks located at level 1  

11 :                     Cj-1 ←  vi  V in Li   

12 :                else   

13 :                      Cj ← vi  V in Li   

14 :                      j ← j+1    

15 :                end if 

16 :                i ← i+1    

17 :             end for  

18 :      end while 

19 :      return C  

20 : end procedure 

4.2. Resource Allocation Step  

The objective of the resource allocation step is to determine the 

maximum number of VMs that will be allocated to each cluster. In 

this step, we ensure that the selected VMs run relatively for the 

same amount of time, and this establish an upper bound on the 

execution time for each clusters. Such bounding reduces the ex-

pected delay, since we will have deadline on the cluster execution 

time, and this reduces the impact of the data dependency con-

straints. The main idea of this step is to determine the size of the 

execution time-slot for each clusters. For each cluster, this time-

slot represents the maximum amount of time a VM can use to 

execute this cluster tasks. 

Algorithm 2 describe the process of the resource allocation step. 

For each cluster (for loop line 3), to calculate the time-slot for 

cluster ( ), we start by calculating the total running time for this 

cluster's tasks ( ) (line 4). Then, we calculate the average running 

time  for this cluster tasks ( ), where  is the number 

of tasks assigned to cluster  (line 5). Now to determine the size 

of the time-slot, we calculate the average running time for the 

available VMs on this cluster tasks. The time-slot ( ) for cluster 

 can be calculated as follows (line 6): 

 

          (1) 

  

For each cluster, the time-slot represents the upper-bound for the 

VMs running time. Thus, we establish latest execution time for the 

tasks belong this cluster. This helps in term of maximization the 

utilization of the VMs, since there is no dependency between the 

same cluster tasks, and thus they can be executed simultaneously. 

In addition, this helps in reducing the number of used VMs, be-

cause we assign tasks to the VMs in sequential order, and a task 

will not be assign to a new VM until the current VM reaches its 

limit. Once the time-slot for the current considered cluster is de-

termined, we start the tasks allocation process for this cluster tasks 

(line 9). 

 

Algorithm 2: Resource Allocation 

 

1 :  procedure R_allocation  ( )  

2 :  ► Output: S = s1, s2, …, sm. 

3 :   for each ci in C do  

4 :       calculate    

5 :       

6 :  

7 :       calculate    S      

8 :       for each task    C do 

9 :           Si  task_schuduling (tsA,ci) 

10 :      End for 

11 :   end for 

12 :           return S 

13 : end procedure 

4.3. Tasks Scheduling Step 

In this step (Algorithm 3), the actual finishing time for each task 

in the current considered cluster is determined. Starting from the 

entry level cluster, we order the tasks based on their EST (line 5). 

Then, we start the process of assigning the tasks to the selected 

VMs (lines 6-15). A task will be assigned to the current consid-

ered VM if this does not result in exceeding this VM time-slot. 

Otherwise, a new VM will be used. Once a task is assigned to VM, 

this task AST and AFT are determined based on this task order of 

execution. This process stops once all considered tasks is assigned 

to VM. Next, we calculate the actual finishing time for this cluster, 

and that represent the latest actual finishing time for the tasks that 

belong to this cluster (C). Different scheduling strategy can be 

used in this step. For instance, we can use the best fit strategy 

from the pin-packing literature [29]. However, in our work, the 

location of the tasks on the VMs does not play an important role in 

determining the quality of the final schedule, since the algorithm 

behavior is controlled by the size of the time-slot. 

 

 Algorithm 3: Tasks Scheduling 

 

1 : procedure TASK_scheduling ( )  

2 : ►Output: scheduled tasks.  

3:    for each T  do 

4 :       for  C do 

5 :           T  Asc.Sort (EST)   

6 :           for  T  do 

7 :                     if   >=j  then 

8 :                            Create a new  

9 :                             J = 0                                                       

10 :                   end if 

11 :                   ←  

12 :                    

13 :                

14 :                   j  j +  

15 :        End for 

16 :    End for         

18 : End for         

5. Results and Discussion 

To evaluate the performance of the presented algorithm, we have 

conduct an extensive set of experiments. As am input, we have 

used five types of well-known real scientific workflows: Epige-

nomics, LIGO, SIPHT, Montage and CyberShake (Figure 1).  

These files are obtained from the Pegasus workflow repository 

(https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGen

erator). We used three type of resource sets R = R1, R2 and R3.  

We assume that VMs from resource set R3 is three times faster 
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than R1 resources. The hourly rates used in our experiments are 

$10, $20 and $30 for R1, R2 and R3 respectively. 

To benchmark the performance of our algorithm, we compare its 

performance against the PBWS [1] RDAS [2] and HEFT [3] algo-

rithms. The objective of the HEFT algorithm is to determine the 

fastest schedule to execute the tasks of the workflow. In each it-

eration, the algorithm allocates the task under consideration to the 

VM such that execution time of this task is minimized. In the 

RDAS, the algorithm starts by partitioning the workflow tasks 

based on the execution time for the critical path tasks. Then, it 

uses fair share strategy to determine the number of tasks allocated 

to each partition. The PBWS algorithm uses slack parameter (B) 

to determine the priority of each objective function. The value of 

this parameter range from 0 or 1. When this value is equal to zero, 

the algorithm focus on reducing the execution time. Assigning one 

to this parameter results in shifting this algorithm behavior toward 

reducing the cost. 

For the fairness of the comparison, we start by running PBWS for 

B = 0 and 1. Then use the obtained number of VMs by PBWS as 

an input to the HEFT, RDAS, and LBC algorithms. 

 
Next, we present and discuss the results for each input scenario. 

 

LIGO: Figure 2 shows the results for the LIGO workflow exper-

iments. From the figure we can see that the LBC algorithm outper-

form the other algorithms in term of cost. In addition, we can see 

that the LBC algorithm obtains relatively the same execution time, 

regardless of B value. The LIGO workflow has well organized 

structure. In the LBC algorithm this results in establishing clusters 

with relatively the same running time. Such structure is expected 

to results in using relatively the same number of VMs to execute 

each clusters. This reduces the number of idle time-slots, and thus 

reduces the cost of the obtained schedule by the LBC algorithm. 

The HEFT algorithm uses greedy strategy that focus on reducing 

the makespan. This is expected to increase the cost of the schedule 

obtained by this algorithm, since resource utilization was not takin 

into consideration during the construction of the schedule. In the 

PBWS and the RDAS algorithms having partitions that cross sev-

eral levels creates a dependency relationship between the structure 

of theses partitions and the performance of the obtained schedules. 

This is established since having partitions with unorganized struc-

ture results in increasing the expected cost and makespan. 

 

 

 

 
Fig. 2: LIGO workflows 

 

CyberShake: Figure 3 present the results for the CyberShake 

workflow experiments. From the figure we can see the LBC algo-

rithm outperforms the other algorithm in term of makespan. In 

term of cost, we can see that when B = 1, the LBC algorithm out-

perform the other algorithm. Reducing the value of B to zero, 

results in LBC and PBWS obtains relatively the same cost. The 

CyberShake workflow has wide-structure, with significantly large 

number of tasks in each level. In the LBC algorithm, the mecha-

nism of constructing the clusters based on the level of the tasks 

has a great advantage in this situation. This occurs because the 

LBC algorithm aims to reduce the average execution time for level 

tasks, and increasing the number of tasks in each level highlight 

the benefits of such strategy. This is the main reason behind the 

seen performance in term of makespan. Regarding the execution 

cost, having workflow levels with relatively high number of tasks 

results in increasing the execution overhead. This is established 

since structure increases the probability of having unused time-

slots, due to the presence of data dependency and the large number 

of tasks in each level. 

 

 

 

 
Fig. 3: CyberShake workflows 
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Epigenomics: The results for this workflow set experiments in 

shown in Figure 4. From the figure we can see that the LBC algo-

rithm constantly outperforms the other algorithms in term of cost. 

In addition, we can see that the makespan of the schedule obtained 

by the LBC algorithm is relatively similar to the PBWS. The 

Epigenomes workflows have balances structure with high demand 

computational tasks. In these settings, the mechanism of clustering 

the workflow tasks based on their level reduces the expected per-

formance of the LBC algorithm. This occurs because in order to 

schedule the tasks for a given, the tasks of the pervious cluster 

need to finish their execution. Combine this with the presence of 

the computationally demanding tasks introduce execution delay.  

 

 

 

 
Fig. 4: Epigenomics workflows 

 

SIPHT: The results for the Sipht workflows experiments is shown 

in Figure 5. The results show that the LBC algorithm significantly 

outperforms the other algorithms in terms of cost and makespan. 

This behavior is also due to the structure of the workflow. Sipht 

workflow has unbalanced structure where most of the levels have 

different number of tasks. This results in having clusters with 

different computational requirements. Such structure underlines 

the benefits of the LBC algorithm that treat the clusters as isolated 

objects. 

 

 

 

 
Fig. 5: Sipht workflows 

 

Montage: From the results (Figure 6), we can see that in terms of 

makespan, the LBC algorithm achieves the best behavior. Howev-

er, as we also can see, the LBC algorithm achieves the highest cost. 

In Montage workflow, most of the levels has small number of 

tasks. Combine this to the mechanism of isolating the level, results 

in increasing the expected delay in execution, and thus increasing 

the cost. 
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Fig. 6: Montage workflows 

6. Conclusion 

In this paper, we address the problem of scheduling scientific 

workflow on cloud such that the utilization of resources is maxim-

ized. to address this problem, we presented anew algorithm known 

as a level-based clustering algorithm. the proposed algorithm uses 

divide-and-conquer approach that treat each level task as an iso-

lated object. we compared the performance of our algorithm 

against three well-known algorithms from the literature.  the re-

sults show that in most situations, our approach significantly out-

performs the other algorithms in term of cost, makespan and the 

number of resources used. 
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