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Abstract 
 

Many automated programming assessment methods requires program to be represented into certain calculated features. In order to assess 

the difficulty of a program in answering a computational programming question, two main factors need to be considered in extracting the 

features; program incompleteness and solution correctness. Common features were based on solution's template matching to assess a 

program correctness. However, incomplete program that usually occurs among novice learners may rise difficulty for the technique in 

parsing the program's structure. This research proposes program's scoring features based on instruction template's sequence and ratio to 

represent the programs into a solution ranking list in solving a programming question. The features were evaluated against manual ru-

bric's assessment of 67 incomplete Java programs. The result shows that the proposed features were highly correlated with the manual 

rubric's assessment (rho = 0.9142086, S = 4299.5, p-value < 2.2e-16). Thus, the proposed features can be used to automatically rank 

computer programs based on expected instruction-based of solution templates. The ranking result can be used to identify most struggled 

user especially in assisting students in a programming lab exercise session. 
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1. Introduction 

Extracting incomplete source code features are among important 

factor need to be considered in the context of assisting learning 

difficulties for computational programming exercises. It will be a 

tough role for a teacher to assist on each student's difficulties dur-

ing programming exercises. However, in most cases, students' 

difficulties are commonly shared among others. Thus, it is possi-

ble to group them together using clustering technique. Learning 

difficulties can be measured using ordinal features of source codes 

that denote to certain ranking range. 

Many computer program features were addressed especially in 

realizing the automated assessment process. The assessment is not 

only in the scope of solution correctness for marking purposes, but 

also to assess program's quality in term of maintainability, com-

plexity, cost and plagiarism similarity. However, as features were 

meant on specific aim and objective, there were no universal fea-

tures that can meet all application requirement. Thus, different 

practitioners may adopt different strategies to represent the mean-

ing of respective data [1]. 

In respect to assessing specific computational program's correct-

ness, two general strategies were commonly used covering test 

cases analysis and solution template matching [2]. Unfortunately, 

test cases analysis cannot be executed on an incomplete computer 

program that may contain errors. On the other hand, many 

solutions template matching were implemented to find mismatch-

es between computer program's structure with the solution model. 

However, this kind of approach may be abused by students 

through trial and error strategy to get closer to the solution without 

really understand the reason why the changes need to be per-

formed accordingly to match the template [3]. The matching pro-

cess that was based on the discrete structure of the solution tem-

plate using syntax tree has also limited the approach to be only 

applicable on a specific programming language syntax. It also 

requires more efforts for an expert user to provide the solution 

templates. 

2. Source Code Features 

In general, source code features are usually extracted using three 

kind of methods; parser-based, token-based  and text-based meth-

od [4-5]. Parser-based method recognizes the structure of codes 

based on specific grammar using abstract syntax tree (AST) or 

dependency graph. In [6] use K-Means to group similar C source 

codes based on ordinal features such as number of loops, number 

of selection, number of modules/functions/classes, number of 

variables, number of jump statement instructions, and number of 

expression. In [7] extract Java source code features based on num-

ber of variables, number of objects instantiation, and number of 

return value in order to classify its class pattern (e.g. utility, DOA, 

builder, bean, adapter, etc.). These features are extracted from the 

codes based on their matched parse tree of specific programming 

language grammar. However, designing own syntax tree to extract 

occurrence of specific features of incomplete source code patterns 

requires a lot of works and vary among languages. The easiest 

way to extract incomplete source code features is by using syntax 

errors report generated by existing compiler tool [8]. However, 

some of syntax errors can be arguable when they are used in rep-

resenting difficulties in programming. For example, consider 

missing semicolon or unbalance braces which may generate cas-

cading errors, these occurrences are more related to mistakes ra-

ther than misunderstanding or difficulties. On the other hand, to-
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ken-based and text-based method represent source code features 

based on token frequency or sequence. The only different between 

these methods is on their token identification technique. Token-

based method identify tokens based on syntactical tokens generat-

ed by specific programming language parser. In [9] use this meth-

od to extract source code features based on n-gram token sequenc-

es such as header, keywords, identifier, operators, and numerals. 

Although, this approach is language-dependent, there are many 

independent tools available that can easily tokenize the source 

codes. Meanwhile, text-based method identifies tokens based on 

characters or words. In [10] use n-gram to represent the source 

code as set of string sequences. In [11] extract source code fea-

tures based on frequency of characters and words in a line, fre-

quency of whitespace (in the beginning, interior and ending) of 

non-whitespace lines and frequency of underscore. Although 

source code feature using token-based or text-based is based on 

cardinal numbers that cannot be used to rank source code [12], 

however, both method has its own strength as it can represent 

feature for incomplete codes.Ranking source codes can be done 

through three approaches; dynamic testing, software metrics and 

solutions template [13]. Dynamic testing involves with execution 

of source code with certain test cases. Good source codes can be 

represented by having high number of successful test cases of his 

source code. In [14] review strategies to automatically assess cor-

rectness of test cases by tracing the program output. Among them 

are simple output character matching using exact-match or fil-

tered-match such as eliminate whitespaces and case insensitive 

[15-16]. Regular expression [17] and token pattern [18] are also 

among filtered-match of the program output. Unfortunately, most 

of learning difficulties in programming occurs in syntax errors 

which resulting dynamic testing failed to be executed. Meanwhile, 

software metrics are usually evaluated manually based on expert 

views by assessing source code's metrics at four different levels; 

system (e.g. maintainability), module (e.g. interoperability), class 

(e.g. reusability) and method (e.g. understandability) [19]. How-

ever, some of the attributes can be automatically extracted such as 

size of codes (smaller is better), comment percentage (higher is 

better), cyclomatic complexity (low is better), and number of 

methods (more is better) [20]. The metrics represent good or bad 

category of source codes based on higher or lower marks obtained. 

However, these kinds of features may not applicable for incom-

plete codes (i.e. codes with syntax and semantic errors). As an 

example, size of codes of an incomplete source codes do not really 

represent good or bad solution as it may consist of trial and error 

statements. On the other hand, solution template is used as syntax 

structure to find any mismatches or missing element from stu-

dent's codes structure while answering a computational program-

ming question [21-24]. This approach can possibly assign the 

ordinal features to the source codes by assessing the matching 

percentage of solution template. However, providing full solution 

codes as template for each question may increase workload of a 

teacher especially when new problem set are needed for different 

student groups. Furthermore, as features are extracted using par-

ser-based using language-dependent syntax tree, this approach is 

not flexible for other languages and static for specific set of prede-

fined problems.  

On the other hand, extracting source code features using text-

based method are more generic and flexible for incomplete codes. 

Many of researches are using N-gram method in extracting source 

code features for closeness measurement such as plagiarism [25], 

authorship [26], and malware [27-28]. N is usually set to four [29] 

to be meaningful in representing features of source code. Most of 

these source codes features are based on set of cardinal numbers 

that represent source code identification or fingerprint. To be used 

in ranking application, features need to be in ordinal representa-

tion. This paper proposes new ranking-based source codes feature 

extraction for incomplete codes based on solution template using 

text-based method. 

3. Ranking-based Program Features 

Computer program features have been widely proposed by other 

researchers especially in software engineering and plagiarism 

detection domain, but most of them are meant for a complete or 

working program and lack of ordinal representation [30]. Ordinal 

feature is important to enable ranking of computer programs from 

least to worst program difficulty. To access the correctness of a 

computer program, these features need to be related with related 

knowledge model such as by using solution templates. In this 

research, two ordinal features are proposed to process the incom-

plete program; instruction-gram ratio (IGR) and instruction count 

ratio(ICR). These text-based features eliminate the rigidness in 

preparing complete program as solution templates on each specific 

computational programming question. They are more flexible and 

independent from rigidness of syntax rules as the template can just 

be provided using sequence of symbols or instructions. 

3.1. Instruction-gram ratio (IGR) 

Instruction-gram Ratio (IGR) feature is derived from n-skip-gram 

model. It counts the ratio of consecutive instructions or symbols 

sequence in a program as compared to the template's instructions 

or symbols sequence with certain skippable instruction(s). This 

feature is meant to represent student's level of difficulty to formu-

late solution logics or flows in solving specific computational 

programming question. Multiple templates can be provided to 

accept various solution. In these case, the highest IGR among the 

templates matching will be taken as the program's features. The 

template(s) consists of expected instructions sequence prepared by 

an expert user on each computational programming question. 

These instruction sequence will be processed as a list of words. 

The algorithm to calculate IGR is given as the following. 

 

Algorithm 1: Instruction-Gram Ratio with skip sequence 

1: IGR = 0 

2: N = number of instructions (IS) in template 

3: loc = 0 

4: nskip = 0 

5: TOTALSKIP= number of allow skip sequence 

6: for i=0 to N do 

7:  found_loc = find location of ISi in  program start at 

loc 

8:  if found_loc > 0 and found_loc > loc 

9:   IGR++  

10:  loc = found_loc + sizeof(ISi) 

11:  else if nskip < TOTALSKIP 

12:   nskip++ 

13:  else 

14:   exit for 

15:  end if 

16: end for 

17: return IGR / N 

 

As an example, consider the following computational program-

ming question. 

 

"Write a program that can receive THREE integer input and de-

termine whether the input is greater than or less than or same 

number with 100." 

 

A solution template for the above question can be prepared using 

sequence of Java instructions as {"nextInt", "nextInt", "nextInt", 

"if", "else if", "else if", "if", "else if", "else if", "if", "else if", "else 

if"}. Then, let consider an example of student answer as the fol-

lowing. 

 

Scanner k = new Scanner(System.in); 

int num = k.nextInt(); 

if(num>100) 
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   System.out.println(num+" is greater than 100"); 

else if (num ==100)  

   System.out.println(num+" is a same number"); 

else 

   System.out.println(num+" is less than 100"); 

 

Based on the given solution template, total instruction (N) is 12. 

The IGR calculation starts by initializing loc to 0 and searches the 

first instruction in the sequence, IS1 ("nextInt"). This instruction is 

found at location 40 of non-empty space characters and the loca-

tion is stored to found_loc. As found_loc is greater than 0 and the 

loc's value, IGR is then incremented to 1 and loc is updated to the 

new search location of found_loc (40) + size of IS1(7). Then, it 

continues to search next consecutive instruction such as IS2 ("nex-

tInt") started from the new search location of loc. The searching 

process is continued until all the instructions are searched. How-

ever, if one or number of skip-able instruction is not found, the 

searching process is terminated. In this research, four IGR features 

are proposed based on zero to three of skip-able instructions.  

Alternatively, there are other correct solution template that may be 

also included such as {"nextInt", "if", "else if", "else if", "nextInt", 

"if", "else if", "else if", "nextInt", "if", "else if", "else if"}. Imple-

menting loop for input and selection instruction is also another 

correct sequence that can be considered as one of the templates. In 

the case of multiple templates are provided, IGR feature for a 

program is selected based on the highest IGR value among the list 

of templates 

3.2. Instruction count ratio (ICR) 

Instruction Count Ratio (ICR) is an average ratio of all unique 

instructions count in a program that matches with all unique in-

structions count specified in a template. The template is a same 

template that used in extracting previous IGR feature. This feature 

is meant to represent student's level of difficulty in identifying 

specific computer statements (e.g. numbers of input, numbers of 

selection, or looping statement) that are required in solving a spe-

cific computational programming question. The algorithm to cal-

culate ICR is given in Algorithm 2. 

 

Algorithm 2: Instruction Count Ratio Average 

1: N = number of unique instructions (I') in the template 

2: ICR = 0 

3: for i=1 to N do 

4:  Nt = number of I'i in template 

5:  Np = number of I'i in program 

6:  if Np / Nt <= 1  

7:   ICR = ICR + (Np / Nt) 

8:  else 

9:   ICR = ICR + 1 

10:  end if 

11: end for 

12: ICR = ICR / N 

13: if ICR>1 

14:  ICR=1 

15: return ICR 

 

Considering previous example of instruction sequence template, 

they are three unique instructions covering "nextInt", "if" and 

"else if". Each of them is counted as three. By having instruction 

map table, ICR is calculated on each instruction as in Table 1. 

 
Table 1: Instruction Count Ratio 

Unique Instruction in 
Template 

Template  
Count 

Program  
Count 

Ratio 

nextInt 3 1 1/3 

if 3 1 1/3 

else if 3 1 1/3 

ICR (average) (1/3 + 1/3 + 1/3) / 3 = 1.33 

 

All the ratio values on each unique instruction specified in a tem-

plate will be total up together and its average will represent the 

ICR feature for a program. If the value is above 1, then its ICR 

will be set to 1. In case there are more than one set of templates, 

ICR feature will be calculated based on the template that carry 

highest IGR value.  

4. Results and Analysis 

A query was performed on AOPC's MySQL database to extract all 

the latest Java program attempts on "Hangman Question" which 

dated on 12 December 2013 12:00pm as a dataset for simulating 

assisted feedback's experiments. The database can be downloaded 

at https://figshare.com/s/d68c4af2abef31811cb4. The attempts 

were made by 67 participants of first year students from one of 

public university. The same dataset is also used by researcher to 

manually give marks based on rubrics for each program's attempt. 

The information on the question detail, answer template, rubric's 

specification, programs' attempt, rubric's marks, ranking order and 

features result can be located in 

https://dx.doi.org/10.6084/m9.figshare.3159967. 

A ranking list of computer programs in answering a question were 

generated based on weighted sum method using the dataset. Five 

proposed features; IGR with no-skip sequence (IGR0), IGR with 

one-skip sequence (IGR1), IGR with two-skip sequences (IGR2), 

IGR with three-skip sequences (IGR3) and an average of ICRs 

(ICR) were extracted based on answer templates that consist of 11 

instructions with 7 of unique instructions. There are four templates 

specified for the question and the features' value were taken based 

on the highest score among of these templates. Based on these 

extracted features, ranking of computer programs were generated 

using simple weighted sum method. To compare these feature-

based ranking result, a manual ranking list was also generated 

through researcher's assessment on the computer programs using a 

rubric. The rubric contains five criteria that represent the expected 

structure of correct answer. Table 2 shows the complete ranking 

result of the computer programs. 

 
Table 2: Ranking result of computer programs 

ID IGR0 IGR1 IGR2 IGR3 ICR Total Features(%) 
Rubric's Mark 

(%) 
Rubric's 

Rank 
Features' 

Rank 

75 1 1 1 1 1 100 100 62 60 

113 1 1 1 1 1 100 100 62 60 

103 1 1 1 1 1 100 100 62 60 

82 1 1 1 1 1 100 84 59 60 

117 1 1 1 1 1 100 100 62 60 

95 1 1 1 1 1 100 68 47 60 

51 1 1 1 1 1 100 100 62 60 

96 1 1 1 1 1 100 92 61 60 

89 0.90909 0.90909 0.90909 0.90909 0.85714 89.87 52 32 59 

141 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 60 43 55 

85 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 80 57 55 

54 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 84 59 55 

69 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 100 62 55 

143 0.81818 0.81818 0.81818 0.81818 0.71429 79.7402 80 57 54 
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134 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 56 40 47 

138 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 68 47 47 

68 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47 

131 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47 

73 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47 

112 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 68 47 47 

100 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47 

91 0.09091 0.90909 0.90909 0.90909 0.85714 73.5064 76 56 46 

86 0.63636 0.72727 0.72727 0.72727 0.71429 70.6492 52 32 45 

126 0.63636 0.72727 0.72727 0.72727 0.57143 67.792 68 47 44 

99 0.54545 0.54545 0.63636 0.63636 0.71429 61.5582 68 47 43 

124 0 0.72727 0.72727 0.72727 0.71429 57.922 40 12 42 

88 0.45455 0.54545 0.54545 0.54545 0.57143 53.2466 64 46 41 

93 0.09091 0.54545 0.63636 0.72727 0.57143 51.4284 56 40 39 

109 0.09091 0.54545 0.63636 0.72727 0.57143 51.4284 56 40 39 

110 0.09091 0.54545 0.63636 0.63636 0.57143 49.6102 52 32 37 

128 0.09091 0.54545 0.63636 0.63636 0.57143 49.6102 44 18 37 

90 0.18182 0.36364 0.36364 0.36364 0.57143 36.8834 60 43 36 

108 0.18182 0.27273 0.27273 0.27273 0.71429 34.286 60 43 34 

130 0.18182 0.27273 0.27273 0.27273 0.71429 34.286 52 32 34 

129 0.18182 0.27273 0.27273 0.27273 0.57143 31.4288 52 32 33 

125 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 52 32 25 

59 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 44 18 25 

78 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25 

70 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25 

87 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25 

83 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 32 5 25 

80 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25 

98 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 52 32 25 

145 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 52 32 12 

122 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12 

107 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12 

139 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12 

136 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12 

79 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12 

60 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12 

114 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 44 18 12 

101 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12 

142 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12 

62 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12 

84 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12 

77 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12 

56 0.09091 0.09091 0.27273 0.27273 0.42857 23.117 36 10 10 

71 0 0 0.36364 0.36364 0.42857 23.117 40 12 10 

116 0.09091 0.09091 0.18182 0.18182 0.28571 16.6234 28 3 8 

115 0.09091 0.09091 0.18182 0.18182 0.28571 16.6234 36 10 8 

146 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3 

92 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 28 3 3 

67 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3 

94 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3 

144 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3 

97 0 0.09091 0.09091 0.09091 0.28571 11.1688 4 1 2 

118 0 0 0 0.09091 0.14286 4.6754 8 2 1 

 

This feature-based ranking result is effective if it generates rank of 

computer programs that is similar to the manual or normal ranking 

approach. A Spearman's rank correlation was used to assess the 

correlation between the computer program's rank using the pro-

posed automated ordinal features and manual rubrics assessment. 

The correlation results were generated using R software version 

3.2.2. The result in Table 3 shows that there was a very strong 

positive correlation between ranking result of the automated pro-

posed features and manual marks especially when all the features 

were combined (rho = 0.9142086, S = 4299.5, p-value < 2.2e-16). 

 
Table 3: Spearman's rank correlation using IGR and ICR features for 
program ranking 

Type of Features Rho Correlation 

IGR0 0.8182933 (S = 9106.4,  

p-value < 2.2e-16) 

IGR0 and IGR1 0.9010911 (S = 4956.9,  
p-value < 2.2e-16) 

IGR0, IGR1 and IGR2 0.9058649  (S = 4717.7,  

p-value < 2.2e-16) 

IGR0, IGR1, IGR2 and 0.9078048  (S = 4620.5,  

IGR3 p-value < 2.2e-16) 

IGR0, IGR1, IGR2, IGR3 

and ICR 

0.9142086 (S = 4299.5,  

p-value < 2.2e-16) 

5. Discussion 

The proposed features use n-gram based method called as 

instruction-gram ratio (IGR) to assess computer program based 

on text-based solution template. Rather than writing complete 

computer program as a solution template, this method only re-

quires a sequence of main expected computer instructions (i.e. 

Keywords) to be provided. Instead of calculating several correct 

instruction sequences, its ratio was chosen to represent the com-

puter feature. This is due to the diversity of end user's program 

that can be compared with different templates where each tem-

plate has a number of different instructions. The proposed IGR has 

also applied the n-skip-gram based method that allowed the se-

quence to be skipped up to 3 sequences. This is to compensate 

computer program that may be missing in the earlier sequence, but 

matching well in the following instructions' sequence. It is im-
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portant to note that those who has the lowest score in igr-0 but 

highest in igr-1 may be possibly ranked in the same group with 

who has scored higher in igr-0. For example, a computer program 

of a maybe missing the last sequence, while a computer program 

of b may be missing only the first sequence. These computer pro-

grams are having the same difficulty level of only one mistake. 

Thus, it is important to also include igr-1, igr-2 and igr-3 as the 

main features to be used in assessing the similarity of difficulty 

level. 

Meanwhile, a feature of instruction-count ratio (ICR) was also 

used to represent similar difficulty level among computer pro-

grams without considering the correct sequence. This feature is 

important, especially in the differentiating computer program of 

same IGRs values. There may be a case of among similar lowest 

score of IGRs, there are computer programs that should be ranked 

in a different position due to its highest score in meeting all the 

instructions template without sequence constraint. In a computer 

program, although using same instructions, some of the sequences 

may be flexible. Consider the statements of "if (a==1) print 1; 

else print 0;" and expected sequence template is "if =>print 

1=>else=>print 0". If a computer program was written as not in 

the expected sequence such as "if (a!=1) print 0; else print 1;", the 

score of IGR-1 will be 0.25 (1/4) although this is a correct solution. 

On the other hand, when evaluated using ICR, the program will 

gain full score. Thus, including the ICR feature is important espe-

cially in supporting the limitation of template insufficiency to 

cover the varieties of the correct solution. 

It also noted that these features were purposely designed to repre-

sent ordinality rather than common cardinal features such as a line 

of codes, cyclometric complexity, number of methods, number of 

selection, number of loops, number of comments and etc. These 

ordinal features were used to represent a certain level of computer 

program's difficulty in answering computational programming 

exercise. Based on this representation, the computer program can 

be ranked and sorted for further analysis 

6. Conclusion 

Automated computer program ranking is important to sort stu-

dents into certain difficulty level in answering a computational 

programming question. It can help educators to tackle most strug-

gled students in practicing computer programming. However, 

current practices put burden on educators to prepare a complete 

solution template for automating student's answer assessment. 

This research has proposed features that can be used to automati-

cally assess student's answer using text-based parser based on 

keyword-solution template of computer instruction sequence.  The 

features have managed to sort among good and bad computer 

programs according to the specific items of solution structure. 

However, the features cannot provide detail assessment on the 

correctness level of an item. As in the rubric assessment, the 

goodness of an item can be represented with detail ordinal mark 

such as ranging from 0 to 5. On the other hand, the proposed fea-

tures were only capable of accessing availability (0 or 1) of an 

item rather than its quality. Thus, a future research on this issue 

can enhance the result to be applicable as an automated marking 

assessment method. 
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