

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.28) (2018) 278-283

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Automated Ranking Assessment based on Completeness and

Correctness of a Computer Program Solution

S. Suhailan1*, M.K. Yusof1, A.F.A. Abidin1, S.A. Fadzli1, M.S. Mat Deris1, S. Abdul Samad2

1Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, 22200 Terengganu, Malaysia

2School of Information Technology, Faculty of Business and Information Science, UCSI University, Kuala Lumpur, Malaysia

*Corresponding author E-mail: suhailan@unisza.edu.my

Abstract

Many automated programming assessment methods requires program to be represented into certain calculated features. In order to assess

the difficulty of a program in answering a computational programming question, two main factors need to be considered in extracting the

features; program incompleteness and solution correctness. Common features were based on solution's template matching to assess a

program correctness. However, incomplete program that usually occurs among novice learners may rise difficulty for the technique in

parsing the program's structure. This research proposes program's scoring features based on instruction template's sequence and ratio to

represent the programs into a solution ranking list in solving a programming question. The features were evaluated against manual ru-

bric's assessment of 67 incomplete Java programs. The result shows that the proposed features were highly correlated with the manual

rubric's assessment (rho = 0.9142086, S = 4299.5, p-value < 2.2e-16). Thus, the proposed features can be used to automatically rank

computer programs based on expected instruction-based of solution templates. The ranking result can be used to identify most struggled

user especially in assisting students in a programming lab exercise session.

Keywords: program features; automated assessment; ranking features.

1. Introduction

Extracting incomplete source code features are among important

factor need to be considered in the context of assisting learning

difficulties for computational programming exercises. It will be a

tough role for a teacher to assist on each student's difficulties dur-

ing programming exercises. However, in most cases, students'

difficulties are commonly shared among others. Thus, it is possi-

ble to group them together using clustering technique. Learning

difficulties can be measured using ordinal features of source codes

that denote to certain ranking range.

Many computer program features were addressed especially in

realizing the automated assessment process. The assessment is not

only in the scope of solution correctness for marking purposes, but

also to assess program's quality in term of maintainability, com-

plexity, cost and plagiarism similarity. However, as features were

meant on specific aim and objective, there were no universal fea-

tures that can meet all application requirement. Thus, different

practitioners may adopt different strategies to represent the mean-

ing of respective data [1].

In respect to assessing specific computational program's correct-

ness, two general strategies were commonly used covering test

cases analysis and solution template matching [2]. Unfortunately,

test cases analysis cannot be executed on an incomplete computer

program that may contain errors. On the other hand, many

solutions template matching were implemented to find mismatch-

es between computer program's structure with the solution model.

However, this kind of approach may be abused by students

through trial and error strategy to get closer to the solution without

really understand the reason why the changes need to be per-

formed accordingly to match the template [3]. The matching pro-

cess that was based on the discrete structure of the solution tem-

plate using syntax tree has also limited the approach to be only

applicable on a specific programming language syntax. It also

requires more efforts for an expert user to provide the solution

templates.

2. Source Code Features

In general, source code features are usually extracted using three

kind of methods; parser-based, token-based and text-based meth-

od [4-5]. Parser-based method recognizes the structure of codes

based on specific grammar using abstract syntax tree (AST) or

dependency graph. In [6] use K-Means to group similar C source

codes based on ordinal features such as number of loops, number

of selection, number of modules/functions/classes, number of

variables, number of jump statement instructions, and number of

expression. In [7] extract Java source code features based on num-

ber of variables, number of objects instantiation, and number of

return value in order to classify its class pattern (e.g. utility, DOA,

builder, bean, adapter, etc.). These features are extracted from the

codes based on their matched parse tree of specific programming

language grammar. However, designing own syntax tree to extract

occurrence of specific features of incomplete source code patterns

requires a lot of works and vary among languages. The easiest

way to extract incomplete source code features is by using syntax

errors report generated by existing compiler tool [8]. However,

some of syntax errors can be arguable when they are used in rep-

resenting difficulties in programming. For example, consider

missing semicolon or unbalance braces which may generate cas-

cading errors, these occurrences are more related to mistakes ra-

ther than misunderstanding or difficulties. On the other hand, to-

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 279

ken-based and text-based method represent source code features

based on token frequency or sequence. The only different between

these methods is on their token identification technique. Token-

based method identify tokens based on syntactical tokens generat-

ed by specific programming language parser. In [9] use this meth-

od to extract source code features based on n-gram token sequenc-

es such as header, keywords, identifier, operators, and numerals.

Although, this approach is language-dependent, there are many

independent tools available that can easily tokenize the source

codes. Meanwhile, text-based method identifies tokens based on

characters or words. In [10] use n-gram to represent the source

code as set of string sequences. In [11] extract source code fea-

tures based on frequency of characters and words in a line, fre-

quency of whitespace (in the beginning, interior and ending) of

non-whitespace lines and frequency of underscore. Although

source code feature using token-based or text-based is based on

cardinal numbers that cannot be used to rank source code [12],

however, both method has its own strength as it can represent

feature for incomplete codes.Ranking source codes can be done

through three approaches; dynamic testing, software metrics and

solutions template [13]. Dynamic testing involves with execution

of source code with certain test cases. Good source codes can be

represented by having high number of successful test cases of his

source code. In [14] review strategies to automatically assess cor-

rectness of test cases by tracing the program output. Among them

are simple output character matching using exact-match or fil-

tered-match such as eliminate whitespaces and case insensitive

[15-16]. Regular expression [17] and token pattern [18] are also

among filtered-match of the program output. Unfortunately, most

of learning difficulties in programming occurs in syntax errors

which resulting dynamic testing failed to be executed. Meanwhile,

software metrics are usually evaluated manually based on expert

views by assessing source code's metrics at four different levels;

system (e.g. maintainability), module (e.g. interoperability), class

(e.g. reusability) and method (e.g. understandability) [19]. How-

ever, some of the attributes can be automatically extracted such as

size of codes (smaller is better), comment percentage (higher is

better), cyclomatic complexity (low is better), and number of

methods (more is better) [20]. The metrics represent good or bad

category of source codes based on higher or lower marks obtained.

However, these kinds of features may not applicable for incom-

plete codes (i.e. codes with syntax and semantic errors). As an

example, size of codes of an incomplete source codes do not really

represent good or bad solution as it may consist of trial and error

statements. On the other hand, solution template is used as syntax

structure to find any mismatches or missing element from stu-

dent's codes structure while answering a computational program-

ming question [21-24]. This approach can possibly assign the

ordinal features to the source codes by assessing the matching

percentage of solution template. However, providing full solution

codes as template for each question may increase workload of a

teacher especially when new problem set are needed for different

student groups. Furthermore, as features are extracted using par-

ser-based using language-dependent syntax tree, this approach is

not flexible for other languages and static for specific set of prede-

fined problems.

On the other hand, extracting source code features using text-

based method are more generic and flexible for incomplete codes.

Many of researches are using N-gram method in extracting source

code features for closeness measurement such as plagiarism [25],

authorship [26], and malware [27-28]. N is usually set to four [29]

to be meaningful in representing features of source code. Most of

these source codes features are based on set of cardinal numbers

that represent source code identification or fingerprint. To be used

in ranking application, features need to be in ordinal representa-

tion. This paper proposes new ranking-based source codes feature

extraction for incomplete codes based on solution template using

text-based method.

3. Ranking-based Program Features

Computer program features have been widely proposed by other

researchers especially in software engineering and plagiarism

detection domain, but most of them are meant for a complete or

working program and lack of ordinal representation [30]. Ordinal

feature is important to enable ranking of computer programs from

least to worst program difficulty. To access the correctness of a

computer program, these features need to be related with related

knowledge model such as by using solution templates. In this

research, two ordinal features are proposed to process the incom-

plete program; instruction-gram ratio (IGR) and instruction count

ratio(ICR). These text-based features eliminate the rigidness in

preparing complete program as solution templates on each specific

computational programming question. They are more flexible and

independent from rigidness of syntax rules as the template can just

be provided using sequence of symbols or instructions.

3.1. Instruction-gram ratio (IGR)

Instruction-gram Ratio (IGR) feature is derived from n-skip-gram

model. It counts the ratio of consecutive instructions or symbols

sequence in a program as compared to the template's instructions

or symbols sequence with certain skippable instruction(s). This

feature is meant to represent student's level of difficulty to formu-

late solution logics or flows in solving specific computational

programming question. Multiple templates can be provided to

accept various solution. In these case, the highest IGR among the

templates matching will be taken as the program's features. The

template(s) consists of expected instructions sequence prepared by

an expert user on each computational programming question.

These instruction sequence will be processed as a list of words.

The algorithm to calculate IGR is given as the following.

Algorithm 1: Instruction-Gram Ratio with skip sequence

1: IGR = 0

2: N = number of instructions (IS) in template

3: loc = 0

4: nskip = 0

5: TOTALSKIP= number of allow skip sequence

6: for i=0 to N do

7: found_loc = find location of ISi in program start at

loc

8: if found_loc > 0 and found_loc > loc

9: IGR++

10: loc = found_loc + sizeof(ISi)

11: else if nskip < TOTALSKIP

12: nskip++

13: else

14: exit for

15: end if

16: end for

17: return IGR / N

As an example, consider the following computational program-

ming question.

"Write a program that can receive THREE integer input and de-

termine whether the input is greater than or less than or same

number with 100."

A solution template for the above question can be prepared using

sequence of Java instructions as {"nextInt", "nextInt", "nextInt",

"if", "else if", "else if", "if", "else if", "else if", "if", "else if", "else

if"}. Then, let consider an example of student answer as the fol-

lowing.

Scanner k = new Scanner(System.in);

int num = k.nextInt();

if(num>100)

280 International Journal of Engineering & Technology

 System.out.println(num+" is greater than 100");

else if (num ==100)

 System.out.println(num+" is a same number");

else

 System.out.println(num+" is less than 100");

Based on the given solution template, total instruction (N) is 12.

The IGR calculation starts by initializing loc to 0 and searches the

first instruction in the sequence, IS1 ("nextInt"). This instruction is

found at location 40 of non-empty space characters and the loca-

tion is stored to found_loc. As found_loc is greater than 0 and the

loc's value, IGR is then incremented to 1 and loc is updated to the

new search location of found_loc (40) + size of IS1(7). Then, it

continues to search next consecutive instruction such as IS2 ("nex-

tInt") started from the new search location of loc. The searching

process is continued until all the instructions are searched. How-

ever, if one or number of skip-able instruction is not found, the

searching process is terminated. In this research, four IGR features

are proposed based on zero to three of skip-able instructions.

Alternatively, there are other correct solution template that may be

also included such as {"nextInt", "if", "else if", "else if", "nextInt",

"if", "else if", "else if", "nextInt", "if", "else if", "else if"}. Imple-

menting loop for input and selection instruction is also another

correct sequence that can be considered as one of the templates. In

the case of multiple templates are provided, IGR feature for a

program is selected based on the highest IGR value among the list

of templates

3.2. Instruction count ratio (ICR)

Instruction Count Ratio (ICR) is an average ratio of all unique

instructions count in a program that matches with all unique in-

structions count specified in a template. The template is a same

template that used in extracting previous IGR feature. This feature

is meant to represent student's level of difficulty in identifying

specific computer statements (e.g. numbers of input, numbers of

selection, or looping statement) that are required in solving a spe-

cific computational programming question. The algorithm to cal-

culate ICR is given in Algorithm 2.

Algorithm 2: Instruction Count Ratio Average

1: N = number of unique instructions (I') in the template

2: ICR = 0

3: for i=1 to N do

4: Nt = number of I'i in template

5: Np = number of I'i in program

6: if Np / Nt <= 1

7: ICR = ICR + (Np / Nt)

8: else

9: ICR = ICR + 1

10: end if

11: end for

12: ICR = ICR / N

13: if ICR>1

14: ICR=1

15: return ICR

Considering previous example of instruction sequence template,

they are three unique instructions covering "nextInt", "if" and

"else if". Each of them is counted as three. By having instruction

map table, ICR is calculated on each instruction as in Table 1.

Table 1: Instruction Count Ratio

Unique Instruction in
Template

Template
Count

Program
Count

Ratio

nextInt 3 1 1/3

if 3 1 1/3

else if 3 1 1/3

ICR (average) (1/3 + 1/3 + 1/3) / 3 = 1.33

All the ratio values on each unique instruction specified in a tem-

plate will be total up together and its average will represent the

ICR feature for a program. If the value is above 1, then its ICR

will be set to 1. In case there are more than one set of templates,

ICR feature will be calculated based on the template that carry

highest IGR value.

4. Results and Analysis

A query was performed on AOPC's MySQL database to extract all

the latest Java program attempts on "Hangman Question" which

dated on 12 December 2013 12:00pm as a dataset for simulating

assisted feedback's experiments. The database can be downloaded

at https://figshare.com/s/d68c4af2abef31811cb4. The attempts

were made by 67 participants of first year students from one of

public university. The same dataset is also used by researcher to

manually give marks based on rubrics for each program's attempt.

The information on the question detail, answer template, rubric's

specification, programs' attempt, rubric's marks, ranking order and

features result can be located in

https://dx.doi.org/10.6084/m9.figshare.3159967.

A ranking list of computer programs in answering a question were

generated based on weighted sum method using the dataset. Five

proposed features; IGR with no-skip sequence (IGR0), IGR with

one-skip sequence (IGR1), IGR with two-skip sequences (IGR2),

IGR with three-skip sequences (IGR3) and an average of ICRs

(ICR) were extracted based on answer templates that consist of 11

instructions with 7 of unique instructions. There are four templates

specified for the question and the features' value were taken based

on the highest score among of these templates. Based on these

extracted features, ranking of computer programs were generated

using simple weighted sum method. To compare these feature-

based ranking result, a manual ranking list was also generated

through researcher's assessment on the computer programs using a

rubric. The rubric contains five criteria that represent the expected

structure of correct answer. Table 2 shows the complete ranking

result of the computer programs.

Table 2: Ranking result of computer programs

ID IGR0 IGR1 IGR2 IGR3 ICR Total Features(%)
Rubric's Mark

(%)
Rubric's

Rank
Features'

Rank

75 1 1 1 1 1 100 100 62 60

113 1 1 1 1 1 100 100 62 60

103 1 1 1 1 1 100 100 62 60

82 1 1 1 1 1 100 84 59 60

117 1 1 1 1 1 100 100 62 60

95 1 1 1 1 1 100 68 47 60

51 1 1 1 1 1 100 100 62 60

96 1 1 1 1 1 100 92 61 60

89 0.90909 0.90909 0.90909 0.90909 0.85714 89.87 52 32 59

141 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 60 43 55

85 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 80 57 55

54 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 84 59 55

69 0.81818 0.90909 0.90909 0.90909 0.85714 88.0518 100 62 55

143 0.81818 0.81818 0.81818 0.81818 0.71429 79.7402 80 57 54

International Journal of Engineering & Technology 281

134 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 56 40 47

138 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 68 47 47

68 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47

131 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47

73 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47

112 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 68 47 47

100 0.63636 0.72727 0.81818 0.81818 0.71429 74.2856 72 52 47

91 0.09091 0.90909 0.90909 0.90909 0.85714 73.5064 76 56 46

86 0.63636 0.72727 0.72727 0.72727 0.71429 70.6492 52 32 45

126 0.63636 0.72727 0.72727 0.72727 0.57143 67.792 68 47 44

99 0.54545 0.54545 0.63636 0.63636 0.71429 61.5582 68 47 43

124 0 0.72727 0.72727 0.72727 0.71429 57.922 40 12 42

88 0.45455 0.54545 0.54545 0.54545 0.57143 53.2466 64 46 41

93 0.09091 0.54545 0.63636 0.72727 0.57143 51.4284 56 40 39

109 0.09091 0.54545 0.63636 0.72727 0.57143 51.4284 56 40 39

110 0.09091 0.54545 0.63636 0.63636 0.57143 49.6102 52 32 37

128 0.09091 0.54545 0.63636 0.63636 0.57143 49.6102 44 18 37

90 0.18182 0.36364 0.36364 0.36364 0.57143 36.8834 60 43 36

108 0.18182 0.27273 0.27273 0.27273 0.71429 34.286 60 43 34

130 0.18182 0.27273 0.27273 0.27273 0.71429 34.286 52 32 34

129 0.18182 0.27273 0.27273 0.27273 0.57143 31.4288 52 32 33

125 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 52 32 25

59 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 44 18 25

78 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25

70 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25

87 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25

83 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 32 5 25

80 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 48 21 25

98 0.18182 0.27273 0.27273 0.27273 0.42857 28.5716 52 32 25

145 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 52 32 12

122 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12

107 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12

139 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12

136 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12

79 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12

60 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12

114 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 44 18 12

101 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12

142 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12

62 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12

84 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 48 21 12

77 0.18182 0.27273 0.27273 0.27273 0.28571 25.7144 40 12 12

56 0.09091 0.09091 0.27273 0.27273 0.42857 23.117 36 10 10

71 0 0 0.36364 0.36364 0.42857 23.117 40 12 10

116 0.09091 0.09091 0.18182 0.18182 0.28571 16.6234 28 3 8

115 0.09091 0.09091 0.18182 0.18182 0.28571 16.6234 36 10 8

146 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3

92 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 28 3 3

67 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3

94 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3

144 0.09091 0.09091 0.18182 0.18182 0.14286 13.7664 32 5 3

97 0 0.09091 0.09091 0.09091 0.28571 11.1688 4 1 2

118 0 0 0 0.09091 0.14286 4.6754 8 2 1

This feature-based ranking result is effective if it generates rank of

computer programs that is similar to the manual or normal ranking

approach. A Spearman's rank correlation was used to assess the

correlation between the computer program's rank using the pro-

posed automated ordinal features and manual rubrics assessment.

The correlation results were generated using R software version

3.2.2. The result in Table 3 shows that there was a very strong

positive correlation between ranking result of the automated pro-

posed features and manual marks especially when all the features

were combined (rho = 0.9142086, S = 4299.5, p-value < 2.2e-16).

Table 3: Spearman's rank correlation using IGR and ICR features for
program ranking

Type of Features Rho Correlation

IGR0 0.8182933 (S = 9106.4,

p-value < 2.2e-16)

IGR0 and IGR1 0.9010911 (S = 4956.9,
p-value < 2.2e-16)

IGR0, IGR1 and IGR2 0.9058649 (S = 4717.7,

p-value < 2.2e-16)

IGR0, IGR1, IGR2 and 0.9078048 (S = 4620.5,

IGR3 p-value < 2.2e-16)

IGR0, IGR1, IGR2, IGR3

and ICR

0.9142086 (S = 4299.5,

p-value < 2.2e-16)

5. Discussion

The proposed features use n-gram based method called as

instruction-gram ratio (IGR) to assess computer program based

on text-based solution template. Rather than writing complete

computer program as a solution template, this method only re-

quires a sequence of main expected computer instructions (i.e.

Keywords) to be provided. Instead of calculating several correct

instruction sequences, its ratio was chosen to represent the com-

puter feature. This is due to the diversity of end user's program

that can be compared with different templates where each tem-

plate has a number of different instructions. The proposed IGR has

also applied the n-skip-gram based method that allowed the se-

quence to be skipped up to 3 sequences. This is to compensate

computer program that may be missing in the earlier sequence, but

matching well in the following instructions' sequence. It is im-

282 International Journal of Engineering & Technology

portant to note that those who has the lowest score in igr-0 but

highest in igr-1 may be possibly ranked in the same group with

who has scored higher in igr-0. For example, a computer program

of a maybe missing the last sequence, while a computer program

of b may be missing only the first sequence. These computer pro-

grams are having the same difficulty level of only one mistake.

Thus, it is important to also include igr-1, igr-2 and igr-3 as the

main features to be used in assessing the similarity of difficulty

level.

Meanwhile, a feature of instruction-count ratio (ICR) was also

used to represent similar difficulty level among computer pro-

grams without considering the correct sequence. This feature is

important, especially in the differentiating computer program of

same IGRs values. There may be a case of among similar lowest

score of IGRs, there are computer programs that should be ranked

in a different position due to its highest score in meeting all the

instructions template without sequence constraint. In a computer

program, although using same instructions, some of the sequences

may be flexible. Consider the statements of "if (a==1) print 1;

else print 0;" and expected sequence template is "if =>print

1=>else=>print 0". If a computer program was written as not in

the expected sequence such as "if (a!=1) print 0; else print 1;", the

score of IGR-1 will be 0.25 (1/4) although this is a correct solution.

On the other hand, when evaluated using ICR, the program will

gain full score. Thus, including the ICR feature is important espe-

cially in supporting the limitation of template insufficiency to

cover the varieties of the correct solution.

It also noted that these features were purposely designed to repre-

sent ordinality rather than common cardinal features such as a line

of codes, cyclometric complexity, number of methods, number of

selection, number of loops, number of comments and etc. These

ordinal features were used to represent a certain level of computer

program's difficulty in answering computational programming

exercise. Based on this representation, the computer program can

be ranked and sorted for further analysis

6. Conclusion

Automated computer program ranking is important to sort stu-

dents into certain difficulty level in answering a computational

programming question. It can help educators to tackle most strug-

gled students in practicing computer programming. However,

current practices put burden on educators to prepare a complete

solution template for automating student's answer assessment.

This research has proposed features that can be used to automati-

cally assess student's answer using text-based parser based on

keyword-solution template of computer instruction sequence. The

features have managed to sort among good and bad computer

programs according to the specific items of solution structure.

However, the features cannot provide detail assessment on the

correctness level of an item. As in the rubric assessment, the

goodness of an item can be represented with detail ordinal mark

such as ranging from 0 to 5. On the other hand, the proposed fea-

tures were only capable of accessing availability (0 or 1) of an

item rather than its quality. Thus, a future research on this issue

can enhance the result to be applicable as an automated marking

assessment method.

Acknowledgement

This work has been supported and funded by ministry of higher

education (MOHE) Malaysia under SLAI scholarship.

References

[1] M. Joy, 2010, “Automated Assessment,” University of Warwick.

https://www2.warwick.ac.uk/fac/sci/dcs/research/edtech/automated

assessment/.
[2] S. Safei, A. S. Shibghatullah, and B. Mohd Aboobaider, 2014, “A

Perspective of Automated Programming Error Feedback

Approaches,” Journal of Theoretical and Applied Information

Technology, 70(1), 121–129.
[3] B. E. Vaessen, F. J. Prins, and J. Jeuring, 2014, “Computers and

Education University Students’ Achievement Goals and Help-

Seeking Strategies in An Intelligent Tutoring System,” Computers
and Education, 72, 196–208.

[4] Y. Udagawa, “A Novel Technique for Retrieving Source Code

Duplication,” Proceedings of the Ninth International Conference on
Systems, 2014, pp. 172–177.

[5] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl, and S. Demeyer,
“Comparison of Similarity Metrics for Refactoring Detection,” Pro-

ceedings of the 8th Working Conference on Mining Software

Repositories, 2011, pp. 53–62.
[6] E. Stankov, M. Jovanov, A. M. Bogdanova, and M. Gusev, 2013,

“A New Model for Semiautomatic Student Source Code

Assessment,” Journal of Computing and Information Technology,
21(3), 185–194.

[7] M. Mojzeš, M. Rost, J. Smolka, and M. Virius, “Feature Space for

Statistical Classification of Java Source Code Patterns,” Proceed-
ings of the 15th International Carpathian Control Conference, 2014,

pp. 357–361.

[8] C. Fernandez-Medina, J. R. Pérez-Pérez, V. M. Álvarez-García, and

M. D. P. Paule-Ruiz, “Assistance in Computer Programming

Learning Using Educational Data Mining and Learning Analytics,”

Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, 2013, pp. 237–242.

[9] S. Sharma, C. S. Sharma, and V. Tyagi, “Plagiarism Detection Tool

‘Parikshak,’” Proceedings of the International Conference on
Communication, Information and Computing Technology, 2015, pp.

1–7.

[10] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
Algorithms for Document Fingerprinting,” Proceedings of the

ACM SIGMOD International Conference on on Management of

Data, 2003, pp. 76–85.
[11] U. Bandara and G. Wijayarathna, 2013, “Source Code Author

Identification With Unsupervised Feature Learning,” Pattern

Recognition Letters, 34(3), 330–334.
[12] R. Lange and S. Mancoridis, “Using Code Metric Histograms and

Genetic Algorithms to Perform Author Identification for Software

Forensics,” Proceedings of the Genetic and Evolutionary
Computation Conference, 2007, pp. 2082–2089.

[13] T. Wang, X. Su, Y. Wang, and P. Ma, 2007, “Semantic Similarity-

Based Grading of Student Programs,” Information and Software
Technology, 49(2), 99–107.

[14] C. M. Tang, Y. T. Yu, and C. K. Poon, “A Review of the Strategies

for Output Correctness Determination in Automated Assessment of
Student Programs,” Proceedings of the 14th Global Chinese Con-

ference on Computers in Education, 2010, pp. 584–591.

[15] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx,
“Understanding the Syntax Barrier for Novices,” Proceedings of the

16th Annual Joint Conference on Innovation and Technology in

Computer Science Education, 2011, pp. 208-212.
[16] A. Papancea, J. Spacco, and D. Hovemeyer, “An Open Platform for

Managing Short Programming Exercises,” Proceedings of the Ninth

Annual International ACM Conference on International Computing
Education Research, 2013, pp. 47–51.

[17] D. S. Morris, “Automatic Grading of Student’s Programming

Assignments: An Interactive Process and Suite of Programs,” Pro-
ceedings of the 33rd ASEE/IEEE Frontiers in Education

Conference, 2003, pp. 1–6.

[18] C. M. Tang, Y. T. Yu, and C. K. Poon, “An Approach Towards

Automatic Testing of Student Programs Using Token Patterns,”

Proceedings of the 17th International Conference on Computers in
Education, 2009, pp. 188–190.

[19] P. Garg, S. Sangwan, and R. K. Garg, 2014, “Design an Expert

System for Ranking of Software Metrics,” International Journal for
Research in Applied Science and Engineering Technology, 2(8),

109–117.

[20] H. M. Manoj and A. N. Nandakumar, 2014, “A Survey on
Modelling of Software Metrics for Ranking Code Reusability in

Object Oriented Design Stage,” International Jornal of Engineering

Research and Technology, 3(12), 538–544.
[21] M. Suarez and R. Sison, 2008, “Automatic Construction of a Bug

Library for Object-Oriented Novice Java Programmer Errors,”

Intelligent Tutoring System, 5091, 184–193.
[22] E. R. Sykes, 2005, “Qualitative Evaluation of the Java Intelligent

Tutoring System,” Journal of Systemics, Cybernetics and

Informatics, 3(5), 49–60.
[23] R. Singh, S. Gulwani, and A. Solar-lezama, “Automated Feedback

Generation for Introductory Programming Assignments,” Proceed-

International Journal of Engineering & Technology 283

ings of the ACM Programming Language Design and

Implementation, 2013, pp. 15–26.
[24] A. Bagini, 2011, “Automatic Assessment of Java Programming

Patterns for Novices,” University of Western Australia.

[25] C.-H. Hsiao, M. Cafarella, and S. Narayanasamy, 2014, “Using
Web Corpus Statistics for Program Analysis,” ACM SIGPLAN

Notices, 49(10), 49–65.

[26] G. Frantzeskou, E. Stamatatos, S. Gritzalis, C. E. Chaski, and B. S.
Howald, 2007, “Identifying Authorship by Byte-Level N-Grams:

The Source Code Author Profile (SCAP) Method,” International
Journal of Digital Evidence, 6(1), 1–18.

[27] A. Pektaş, “Proposal of n-gram Based Algorithm for Malware

Classification,” Proceedings of the Fitth International Conference
on Emerging Security Information, Systems and Technologies,

2011, pp. 14–18.

[28] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan,
“Detection of New Malicious Code Using N-Grams Signatures,”

Proceedings of the Second Annual Conference on Privacy, Security

and Trust, 2004, pp. 193–196.
[29] A. Jadalla and A. Elnagar, 2008, “PDE4Java: Plagiarism Detection

Engine for Java Source Code: A Clustering Approach,”

International Journal of Business Intelligence and Data Mining,

3(2), 121–135.

[30] S. Safei, S. Abdul Samad, M. A. Burhanuddin, and A. H. Nazirah,

2017, "Program Statement Parser for Computational Programmng
Feedback", Journal of Engineering and Applied Science, 12(5),

7057-7062.

