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Abstract 
 

State estimation considered the main core of the Energy Management System and plays an important role in stability analysis, control 

and monitoring of electric power systems. Therefore, accurate and timely efficient state estimation algorithm is a prerequisite for a stable 

operation of modern power grids. These papers introduce an intelligent centralized State Estimation method based on Firefly algorithm 

for distribution power systems. The mathematical procedure of distribution system state estimation which utilizing the information col-

lected from available measurement devices in real-time. A consensus based static state estimation strategy for radial power distribution 

systems is proposed in this research. The states of these systems are first estimated through centralized approach using the proposed algo-

rithm to compare with power flow algorithm. The result a proved to be computational efficient and accurately evaluated the impact of 

distributed generation on the power system. In addition, the proposed FA show faster with increasing the number of buses. 

 
Keywords: Estate Estimation; Power System; Firefly Algorithm. 

 

1. Introduction 

The world today is more dependent on electrical energy than any 

other form of energy. State estimation is a tool that is widely used 

in electrical energy control centres to improve the quality of di-

rectly telemetered data, to provide a way for direct monitoring of 

network conditions. The state estimation also provide the best 

available estimate of network model that can be used as a starting 

point for further real-time power system application such as Volt-

age Automatic Regulation (VAR) optimization, contingency anal-

ysis, congestion management, and constrained re-dispatch [1-3]. 

State estimation and its subordinate applications such as parameter 

estimation, bad data identification, breaker status estimation, and 

external model estimation are widely used in industry with differ-

ent degrees of success. 

In power system state estimation, a measurement may contain 

gross error because of communication noise, incorrect sign con-

vention or measurement device failure. These measurements are 

called bad measurements (data) and can lead to biased estimates. 

Therefore, it is important to implement robust state estimators. 

Estimators with high breakdown points, which are the smallest 

amount of contamination that can cause an estimator to give an 

arbitrarily incorrect solution [4] have been investigated and devel-

oped by researchers. Some of these have also been applied to 

power system state estimation. Among these robust estimators [5], 

the Least Absolute Value (LAV) estimator was shown to have 

desirable properties where its implementation can be made com-

putationally efficient by taking advantage of power system’s prop-

erties [6].  

In this paper, a novel framework to perform Firefly algorithm 

based dynamic state estimation in a distributed way is proposed 

considering increasing complexity associated with large-scale 

power system. According to Dynamic State Estimation (DSE) can 

be implemented in a distributed environment by decomposing the 

systems into subsystems to increase the computational speed of 

DSE process in large scale power systems [7]. To validate the 

proposed algorithm based on (FA) compared with Weighted Lease 

Square (WLS), GA, and PSO, estimation for standard IEEE 14 

bus. 

2. Related Work  

2.1. Power State Estimation 

State Estimation (SE) plays a key role in security frameworks as 

one of the major application used in energy management system 

(EMS) [8]. Describe the role of SE in power systems control cen-

tre in above Figures. This includes a survey about the numerical 

algorithms for state estimation, topology processing, bad data 

identification, and network observability. The SE accesses meas-

urements from monitored areas of the control centre to determine 

the best estimate of the state of the power system based on these 

redundant measurements [9]. The state of the power system refers 

to voltage magnitude and angle at every bus of the control area, 

since other attributes of the power system, such as the real and 

reactive power injections at each bus can be calculated from the 

state variables. 

The convergence property of the WLS state estimator is a critical 

issue for real time monitoring and control of power grids. In addi-

tion to the three reasons mentioned in the last section that cause 

ill-conditioned gain matrix, the topology error can also cause the 

WLS state estimator to diverge without reaching a solution. The 
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fact that the WLS did not converge due to the existence of a to-

pology error was an indirect factor leading to the blackout. Be-

sides, it is known that the load levels became severe before the 

blackout. The impact of topology errors on the convergence char-

acteristics of the WLS state estimator during the blackout when 

the loads gradually increase. Topology errors can be broadly clas-

sified in two categories: branch status errors and substation con-

figuration errors. Branch status errors include branch exclusion 

error and 18 branches inclusion error. 

Selective monitoring of the generation and transmission system 

has been providing the data needed for economic dispatching and 

load frequency. Besides this, the task of operate the system safely 

has become more difficult. To help avoid major system failures 

and regional power blackouts, electric utilities have installed more 

extensive Supervisory Control and Data Acquisition (SCADA) 

[10]. Throughout the network to support computer based systems 

at the operations control centre. Continuously, the SCADA system 

receives measurements of state variables on the power system 

networks. Transducers from power system measurements are sub-

ject to errors (bad data) like any measurement devices. If errors 

are relative small, the errors may be undetected. Besides, if the 

errors are considerable, the output of the measurement devices 

may be unacceptable and/or useless. In power systems, the voltage 

magnitudes and the phase angles at buses are the primary state 

variables. Normally, the process is surrounded by imperfect meas-

urements. Therefore, the process is based on statistical criteria of 

the true values of the state variables in order to minimize a select-

ed objective. 

2.2 Global Optimization Methods  

In most cases, the objective functions in nonlinear optimization 

problems are not convex. Traditional optimization methods (such 

as gradient-based approaches) can only find local optimal values 

[3, 11]. Moreover, the results from traditional optimization meth-

ods often have strong connections with the initial values. To over-

come these problems, global optimization methods are suggested 

in this paper. Global optimization methods can only guarantee to 

achieve acceptable solutions. Usually, finding the global optimal 

results will take plenty of time and resources. Sometimes it is not 

profitable to do so. If the improvement is insignificant, then it is 

probably a bad deal to take the time to find the global optimal 

solution. Therefore, if the result is very close to the global optimal 

solution, it can be viewed as an acceptable solution. In global 

optimization methods, some concessions have to be made (for 

instance, increasing their objective function values in some itera-

tions) to allow potential solutions to escape from the local opti-

mum. Most of the time, there is no way to determine if a global 

optimal value is already achieved or not, so global optimization 

methods usually need to take plenty of iterations without bias. 

This requirement will in turn force the scheme of the global opti-

mization methods to be as simple as possible. In the following 

sections of this chapter, two of the most representative heuristic 

global optimization methods (Genetic Algorithm, and Particle 

Swarm Optimization) are introduced. These three global optimiza-

tion methods can be easily programmed and are well suited for 

solving reactive power dispatch problems [12]. 

3. Methodology 

The proposed method utilized in this paper is focused on find the 

optimum state estimation for distributed network. The first part 

developing power and load flow simulation tool using M-file 

MATLAB software which is an integer optimization problem 

where by the results will either be the selected bus to increase load 

or line contingency for any transmission line. 

At each iteration, every particle determines a possible set of esti-

mated values for voltages magnitudes and voltages angles. Then, 

they are used to calculate the other estimated values such as real 

and reactive loads, real and reactive power generation at buses, 

and real and reactive power flow through the transmission lines. 

Once all the estimated values are obtained [13], the fitness func-

tion described below is evaluated as in (1): 

 

 (1) 

 

where 

Nb: number of buses 

NG: number of generation buses 

NL: number of load buses 

NT: number of transmission lines measurement 

Vi: measured value for the voltage magnitude at bus i 

: estimated value for the voltage magnitude at bus i 

: variance of the measurement of the voltage magnitude at bus 

i : measured value for the real power injection at bus i 

: estimated value for the real power injection at bus i  

: variance of the measurement of the real power injection at 

bus i 

: measured value for the reactive power injection at bus i. 

: estimated value for the reactive power injection at bus i. 

: variance of the measurement of the reactive power injection 

at bus i 

: measured value for the real power flow through trans-

mission line k. 

: estimated value for the real power flow through transmis-

sion line k. 

: variance of the measurement of the real power flow 

through transmission line 

: measured value for the reactive flow through transmis-

sion line k. 

: estimated value for the reactive flow through transmis-

sion line k. 

: variance of the measurement of the reactive flow 

through transmission line k 

 

In a power system network, the measured quantities are MW, 

MVAR, MVA, and voltage magnitude. These quantities are repre-

sented by zi in (1). As presented before, fi represents functions 

dependable of estimated values (x1, x2,…, xN). These functions 

are nonlinear functions and are used to calculate the estimated 

values corresponding to measured values zi. Only the voltage 

magnitude functions are linear, where fi is simply unity times the 

particular xi that corresponds to the voltage magnitude being 

measured. The following expressions correspond to the fi func-

tions of power injections and flows: Estimation of real power in-

jected into the system at bus i is represented in (2): 

 

  (2) 
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Estimation of reactive power injected into the system at bus i: 

  (3) 

Estimation of real power flow through transmission line i-j: 

  (4) 

Estimation of reactive power flow through transmission line i-j: 

  (5) 

 

where: 

Pi: real power injection at bus i 

Qi: reactive power injection at bus i 

Gij: transfer conductance between buses i and j 

Bij: transfer susceptance between buses i and j 

: voltage angle at bus i 

: voltage angle at bus j 

Bcapij: total line-charging susceptance of transmission line be-

tween buses i and j 

 

These steps had been applied to all non-dominated solutions in Et, 

which enabled the algorithm to discover the less congested area in 

the external archive as shown in Error! Reference source not 

found.. 

 

 
Fig. 1: Proposed method using Firefly Algorithm technique 

4. Results and Discussion 

The IEEE 14 Node Distribution Feeder is an actual feeder with a 

nominal voltage of 12.66 kV. The test case was slightly modified 

in order to properly evaluate the impact of state estimation on the 

various power system parameters. More validation for proposed 

FA compared with PSO and GA [14] based on IEEE 14 bus sys-

tem. Error! Reference source not found. shows this test system 

32 measurements as 14 bus active power, 14 bus reactive power, 

and four voltage magnitudes at bus 1, 7, 11 and 14. 

 
Table 1: Measured values for IEEE 14-bus 

Bus V Q P 

1 1.0653 0.1473 2.3219 

2 – 0.3680 0.1994 

3 – 0.0833 0.9397 

4 – 0.0478 0.4783 

5 – 0.0214 0.0693 

6 – 0.1610 0.1113 

7 1.0514 0.0007 0.0101 

8 – 0.2094 0.0111 

9 – 0.1766 0.2946 

10 – 0.0727 0.0661 

11 1.0143 0.0136 0.0395 

12 – 0.0057 0.0572 

13 – 0.0536 0.1298 

14 1.0221 0.0476 0.1477 

 

This can be seen from  

Table  for the voltage magnitudes estimation and from Table 3 for 

the voltage angles estimation. It can be inferred from the results 

that the FA have a much better estimate for voltage magnitudes 

and voltage angles than the original PSO, GA methods gives a 

better accuracy when estimating the voltage magnitudes and an-

gles.  

 
Table 2: Comparison voltage estimation using Load Flow, FA, PSO and 
GA 

Bus Load Flow FA PSO GA 

1 1.06 1.0608 1.061 1.061 

2 1.045 1.0449 1.0448 1.0427 

3 1.01 1.01 1.01 1.0110 

4 1.0132 1.0133 1.0134 1.0142 

5 1.0166 1.01648 1.0163 1.0171 

6 1.07 1.0702 1.0706 1.0711 

7 1.0457 1.0457 1.0457 10.0471 

8 1.08 1.08005 1.0801 1.0871 

9 1.03 1.0293 1.0296 1.0316 

10 1.0299 1.03 1.0301 1.0306 

11 1.0461 1.04605 1.0460 1.0459 

12 1.0533 1.0534 1.0537 1.0547 

13 1.0466 1.04635 1.0461 1.0461 

14 1.0193 1.0191 1.0191 1.0190 

 
Table 3: Comparison power angle estimation using Load Flow, FA, PSO 

and GA 

Bus Load Flow FA PSO GA 

2 -4.9891 -4.98908 -4.989 -4.999 

3 -12.7492 -12.7492 -12.7491 -12.75 

4 -10.242 -10.2421 -10.2422 -10.2429 

5 -8.7601 -8.76023 -8.7604 -8.7611 

6 -14.4469 -14.4468 -14.4466 -14.446 

7 -13.2368 -13.2369 -13.237 -13.237 

8 -13.2368 -13.2368 -13.2371 -13.2371 

9 -14.8201 -14.8204 -14.8207 -14.821 

10 -15.036 -15.0362 -15.0363 -15.0369 

11 -14.8581 -14.8582 -14.8582 -14.86 

12 -15.2973 -15.2972 -15.2975 -15.2978 

13 -15.3313 -15.3315 -15.3314 -15.332 

14 -16.0717 -16.0718 -16.072 -16.0719 

 

Table Error! No text of specified style in document. shows the com-

putational time for the performances of each algorithms using FA, 

PSO, and GA. The FA and PSO are quite close and have a better 

computation time than the GA. The time computation difference is 

due to related to update velocity and position calculation process. 

In addition, the proposed FA show faster with increasing the num-

ber of buses. 
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Table Error! No text of specified style in document.: Computation time 

(second) 

System FA PSO GA 

IEEE14 0.238 0.250 1.9 

5. Conclusion 

In this paper, the proposed firefly for a distributed state model and 

a consensus based static SE method for smart distribution grid. 

Decentralized power system state estimation has been treated here 

in a unified and systematic manner. Specially consider the case 

when for each agent, the local measurement model is underdeter-

mined and all state elements for a particular agent is completely 

shared with its neighbours. It has been shown that the developed 

method FA is practical for current power systems and these meth-

ods have also been demonstrated on a benchmark power system 

model. Simulation results radial distribution on a grid show that 

the proposed method can give satisfactory convergence based on 

the appropriate selection of agents. The advantages of the Firefly 

Algorithm are high computational efficiency; accuracy is similar 

to the integrated solution.  
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