

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.31) (2018) 40-45

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Comparing Web Vulnerability Scanners with a New Method for

SQL Injection Vulnerabilities Detection and Removal

EPSQLiFix

Kabir Umar
1*

, Abu Bakar Sultan
2
, Hazura Zulzalil

3
, Novia Admodisastro

4
, Mohd Taufik Abdullah

5

1Faculty of Computer Science and Information Technology, Bayero University Kano, Gwarzo Road, Kano, Nigeria

2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
*Corresponding author E-mail: ukabir.se@buk.edu.ng

Abstract

Web vulnerabilities have become a major threat to the security of information and services accessible via the internet. Dynamic analys is
based Web Vulnerability Scanners (WVS) have been employed to facilitate detection of vulnerabilities, though, such scanners could not
remove the detected vulnerabilities. Empirical evidences show that some existing static analysis techniques targeted both detection and

removal of vulnerabilities. However, these techniques are not adequately effective – they report considerably large number of false posi-
tives and do not achieve fully automatic vulnerabilities removal. Although, clear understanding of the workflow of WVSs is very essen-
tial in designing more improved scanners, current literature does not provide a comprehensive presentation on workflow of WVSs. Thus,
this paper presents thorough description of generic WVS through synthesis and aggregation of knowledge. In addition, the paper presents
overview of an Evolutionary Programming (EP) based static analysis method for automatic detection and removal of vulnerabilities
called EPSQLiFix. Lastly, the paper compares the workflow of WVSs to that of EPSQLiFix method.

Keywords: SQL Injection, Reachability Analysis, Vulnerability Detection and Removal.

1. Introduction

In today’s world of increasing dependence on Internet based ap-

plications and services, web vulnerabilities have become a major
threat to information security [1]. Thus, it is highly desirable to
conduct adequate testing of web applications for detection and
removal of vulnerabilities at development stage, before deploy-
ment [2, 3]. Although Web Vulnerability Scanners (WVSs) have
been employed by developers to facilities testing for vulnerabili-
ties detection [4], unfortunately, WVSa are generally incapable of
correcting (i.e., removing) vulnerabilities after detection. Conse-

quently, modification of source code for vulnerabilities removal is
predominantly done manually by the developer, thus allowing
room for human errors and limitations [3, 5-7].
Clear understanding of workflow of WVSs is very essential for
revealing strengths and weaknesses of existing WVSs, and also,
for designing more improved scanners.
This paper presents comprehensive description of generic WVS
through synthesis and aggregation of knowledge reported in sev-

eral empirical studies. In addition, the paper presents overview of
an Evolutionary Programming (EP) based static analysis method
for automatic detection and removal of SQLIVs, called
EPSQLiFix, and highlights how the workflow of the method com-
pares to that of WVSs. The remaining of this paper is arranged as
follows. Section II presents review on existing WVSs, and high-
light vulnerability detection approaches followed by WVSs. Sec-
tion III presents generic workflow of WVS. Section IV gives

overview of proposed method for detection and removal of
SQLIVs, EPSQLiFi. Section V presents comparative analysis

between the proposed method and WVS. Finally, conclusion is
presented in Section VI.

2. Existing Web Vulnerabilities Scanners

In general, Web Vulnerability Scanners (WVSs) perform black-
box testing for detection of vulnerabilities, where an application is
tested by analysis of its behavior at runtime [1, 2, 8 - 15]. These
scanners provide mechanisms for analyzing response of web ap-
plication in order to reveal vulnerabilities. [1, 2]. Scanners do
provide report about detected security vulnerabilities to the devel-
oper [1, 8, 9, 16], though, code modifications for vulnerabilities

removal is mostly done manually by developers. This is liable to
human errors and limitations [3, 6, 7, 17].
Several WVSs are available from industry, research communities
and open-source communities. Some scanners target detection of
wide range of web vulnerabilities, for example, AppScan from
IBM and WebInspect from HP are capable of detecting wide
range of vulnerabilities including SQL injection, Cross-site script-
ing, Buffer overflow, OS Command injection, and XPath injec-

tion. Other scanners are designed to focus on detection of specific
type of vulnerability, for example, Wasapy web scanner targets
SQLIV [1]. Table 1. shows some existing web vulnerability scan-
ners that are commercial scanners, open-source scanners, or re-
ported in research articles. The table also shows capacity of scan-
ners at detection and removal of SQLIVs. Existing WVSs follow
two major approaches for vulnerabilities detection, namely. Pat-
tern matching approach, and HTML Page Similarity approach.

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 41

2.1. Pattern Matching Approach

The idea behind this approach is to send HTTP request containing

imbedded keywords (i.e., patterns) to a web application. Obvious-
ly, if the application did not sanitize (or validate) the request, then
it would returns corresponding HTTP response page containing
the imbedded keywords [8, 9]. Another possibility is that such
application might return HTTP response containing SQL error
message generated by database server [16]. In both scenarios,
when an attack request is sent to an application, then presence of
imbedded keywords or SQL error patterns in corresponding re-

sponse page, could serve as evidence that the application is vul-
nerable [1]. For detection of SQLIVs, techniques that follow this
approach send specially crafted attacks to web application. There-
after, responses are collected and analyzed to check for specified
keywords-pattern or error-pattern [1]. Existing WVSs that follow
this approach include W3af (http://w3af.sourceforge.net), Wapiti
(http://wapiti.sourceforge.net), Secubat [16], and the scanners
proposed in [8, 9]. Error pattern matching strategy was adopted in

W3af and SecuBat [16]. In W3af, the sqli module sends three
requests based on the SQL injection d’z"0 (or d%2Cz%220 en-
coded in ASCII), and analyze the three corresponding responses.
An application is reported as vulnerable if SQL error messages is
found in any response. Similarly, SecuBat uses single quote char-
acter to craft and launch attacks targeting injection points, and
then analyze responses for patterns that matches known database
error

Table 1: Some Existing Web Vulnerabilities Scanners

Company/ Reference Tool

Name

SQLIVs

Detection

SQLIVs

Removal

*Commercial Scanners

Acunetix WVS Yes No

HP WebInspect Yes No

IBM AppScan Yes No

N-Stalker QA Edition Yes No

Qualys QualysGuard Yes No

Cenzic HailStorm Yes No

PortSwigger Burp Suite (1.6.18) Yes No

NTObjectives NTOSpider Yes No

MileScan ParasPro Yes No

 Powerfuzzer Yes No

NetSparker NetSparker Yes No

*Open Source Scanners

Nicolas Surribas Wapiti (2.3.0) Yes No

Michal Zalewski Skipfish Yes No

Andres Riancho W3Af Yes No

Marcin Kozlowski Powerfuzzer Yes No

David Byrne Grendel-Scan Yes No

Reported in Research Article

[1] Wasapy Yes No

[16] SecuBat Yes No

[8] Not mentioned Yes No

[9] Not mentioned Yes No

[18] WAVES Yes No

[21] BIOFUZZ Yes No

*Source: Deepa & Thilagam [2]

messages. Keywords pattern matching strategy was adopted in
scanners proposed by Patil, et al. [8], and Chen & Wu [9]. In [9],
the technique use rules set to craft and launch attacks targeting
injection points, and then analyze response for patterns that

matches imbedded keywords.

2.2. HTML Page Similarity Approach

The idea behind this approach is that when many diverse HTTP
requests are sent to web application, then it is possible to classify
the response pages into distinct clusters based on pages similari-

ties. The principle is based on three basic assumptions as reported
in [1].
1. Execution and rejection pages are dissimilar,
2. Requests which generate rejection pages are easy to build

(e.g., through generation of random or syntactically invalid

requests), and
3. It is not easy to build successful injection attacks that gener-

ate execution pages.
For detection of SQLIVs, scanner crafts and launches several at-
tacks to web application. Responses are then analyzed and catego-
rized into clusters based on textual similarity distance. Finally,
SQLIVs are detected by analyzing attributes of the clusters [1].
Scanners such as Wasapy, and Skipfish
(http://code.google.com/p/skipfish) follow this approach. Wasapy

uses Levenshtein textual similarity distance measure to group
responses into three clusters. Skipfish evaluates similarity distance
based on frequency of words in the response pages[1]. In addition,
Huang, et al., [18] proposed WAVES scanner based on similarity
approach. However, their algorithm incorporated error pattern
matching strategy as first step that guide classification, and then
employs similarity approach to address uncertainty which arises
when an injection does not generate error message.

2.3. Discussion

The various WVSs presented above have achieved considerable
results in testing of web application for detection of vulnerabili-
ties. However, thorough literature investigation reveals their
common weaknesses such as partial coverage of vulnerabilities
detection, reporting of false negatives and false positives [12, 15].
Coverage becomes an issue where the crawling stage of scanner is

unable to find all web pages [9]. In scanners that use attack pat-
terns [8] or rules sets [9] to craft attacks, the accuracy and effec-
tiveness of vulnerability detection relies heavily on the quality and
adequacy of attack patterns or rules used. Techniques based on
error pattern matching could face uncertainty of vulnerability de-
tection where an injection does not generate error message [1].
Additionally, error message found in HTML response page may
not necessarily have come from database server. The aforemen-

tioned scenarios could possibly lead to false negative or false posi-
tive. Techniques that follow similarity approach requires wide
coverage of different types of response pages that could possibly
be generated by an application. Thus, emphasizing the need to
craft and launch large number of attacks. Unfortunately, most
existing scanners following this approach generate too few re-
quests. For example, Skipfish and the scanner proposed in [8] use
only 3 requests.
Generally WVSs conduct black-box testing, often called penetra-

tion testing, where an application is tested dynamically by subject-
ing it to attacks, and its responses analyzed. The actual code of the
application is not accessed during the testing [18]. Consequently,
this kind of testing cannot support actual code modification for
vulnerabilities removal. The weaknesses of WVSs highlighted
above and the need to support code modification for automating
vulnerabilities removal, serves as motivation for finding white-
box testing approach, specifically, static source code analysis,

very attractive. In white-box testing approach, the actual code of
an application is accessed, and analyzed for vulnerabilities detec-
tion, and could be modified for vulnerabilities removal.

3. Generic Workflow of Web Vulnerability

Scanner

In general, detection of vulnerabilities using an automatic WVS
involves generation of HTTP request, sending requests to web
application, and analysis of response [11]. Several research works
analyzed performance of existing WVSs, and consequently, re-
vealed that the workflow of most existing WVSs consist of three

steps as listed below [12, 13, 19, 20].

https://scholar.google.com/citations?user=H3ArWIoAAAAJ&hl=en&oi=sra

42 International Journal of Engineering & Technology

1. Crawl: Navigates URL of target web application to discover

available web forms and injection points.
2. Attack: Crafts and launches several attacks targeting all dis-

covered injection points.
3. Analyze: Analyze responses returned by web application, so

as to ascertain vulnerabilities
Further investigation of related empirical studies listed in Table 2.
reveals that the above three-steps workflow of “Crawl, Attack, and
Analyze” does not cover some important steps involved in the
working of a typical WVS. Hence, for the purpose of clarity and
completeness, generic workflow of WVS can be refined into a

Table 2: Vulnerabilities Detection Approaches of Some WVSs

Reference Product/Tool name SQLIV Detection Approach

[8] Not mentioned Pattern Matching & HTML page

similarity

[18] WAVES Pattern Matching & HTML page

similarity

[9] Not mentioned Pattern Matching

[1] Wasapy HTML Page Similarity

[16] SecuBat Pattern Matching

[17] BIOFUZZ Pattern Matching

seven steps process. This is because, the working of a typical
WVS begins with collection of target URL as input, and ends with
generation of output report. Tthese kinds of important steps need
to be reflected in the generic workflow of WVS. Consequently,
we propose seven steps workflow as listed below.
1. Get initial target URL

2. Crawl website to discover injection points
3. Craft attacks targeting injection points
4. Launch attacks
5. Collect responses
6. Analyze responses
7. Report vulnerabilities found

start

Get target

URL

Crawl website,

get injection

points

Cratf attacks

targeting injection

points

Launch targeted

attacks

Collect

application

responses

Analyze

application

responses

Report

Vulnerabili

ties found

stop

Fig 1: Generic Workflow of Web Vulnerability Scanner.

The seven steps workflow is diagrammatically depicted using
flowchart of Fig. 1. The flowchart shows chain of processing ac-
tivities performed by WVS during testing of web application for
detection of vulnerabilities. Further literature investigation has
shown some important facts about WVSs.

First, the initial steps (i.e., steps i, ii and iii) are for information
gathering and generation of inputs for subsequent steps. Scanner
collects input of target url. Then it crawls website to gather infor-
mation about injection points. The information is used to craft
attacks. Most existing scanners use site crawling for information
gathering, though, few scanners use combinatorial crawling for
improving website coverage [1]. Existing scanners employ differ-
ent strategies for crafting attacks targeting injection points. For
example, [1, 8, 16] uses attack patterns, [9] uses rules set, whereas

[21] uses GP.
Second, the middle steps (i.e., steps iv, v and vi) are for attacks
launching, response analysis and vulnerabilities detection. To
launch attacks, some scanner use replay strategy [21], whereas
others send http requests containing malicious inputs [9,18]. In
response analysis, scanners follow a number of approaches, in-
cluding pattern matching [9,15], HTML page similarity [1] and
combination of pattern matching and HTML page similarity [8].

Third, the last step (i.e., step vii), is for providing vulnerabilities
detection report to developer or tester. The report guides devel-
oper as to the vulnerabilities found, and possibly names of files
and corresponding location where vulnerability are found.

4. Proposed EPSQLiFix Method for Detection

and Removal of Web Vulnerability

Generally, black-box WVSs fail at removal of vulnerabilities,
because vulnerability removal requires modifying source code.
Unfortunately, to secure vulnerable web application, vulnerabili-
ties need to be removed by actual code modification. Empirical

evidences reveal that static analysis techniques are capable of
addressing SQLIVs detection and removal. However, existing
detection techniques do not consider grammatical linkages among
program statements into detection process, as such, they report
many false positives [25, 26]. On the other hand, existing removal
techniques do not perform fully automatic vulnerabilities removal.
Instead, they only generate fix, and allows developer to manually
apply the auto-generated fix to the vulnerable source code for

SQLIVs removal [5, 17]. Apparently, such techniques left the very
important, yet very challenging task of SQLIVs removal predomi-
nantly manual, regardless of the fact that manual bug fixing is
prone to errors and human limitations [27, 28]. These issues sug-
gest the need for new method for automatic detection and removal
of SQL injection vulnerabilities for web application.
Consequently, this section presents an overview of the proposed
Evolutionary Programming (EP) based static analysis method for
automatic detection and removal of SQLIVs, called EPSQLiFix.

The method consists of four components, namely, grammar rules
extractor component, EP search component, SQLIVs detector
component, and SQLIVs remover component. The processes per-
formed by the components, and sequence of interactions between
them is diagrammatically represented using activity diagram of
Fig. 2, and briefly explained below.
As shown in Fig. 2, the working of EPSQLiFix starts in a gram-
mar rules extractor component. The component uses string analy-

sis to recognize all declaration and assignment statements from
source code, and then extracts Context Free Grammar (CFG) pro-
duction rules for each statements. The extracted CFG production
rules serve as input to EP search component which performs EP
reachability search to evolve candidates, which are represented as
productions sequences, for finding reachability from SS (Sensitive
Sink) statements to AEP (Application’s Entry Point) statements.
Optimal solutions are collected and analyzed by SQLIVs detector

component. The component performs grammar reachability analy-
sis for detection of vulnerabilities. The SQLIVs remover compo-

International Journal of Engineering & Technology 43

nent implements EP search variation operations that performs
source code modification for SQLIVs removal. Finally,
EPSQLiFix produce modified version of web application contain-
ing insertions of auto generated data validation for fixing SQLIVs.

5. Comparison of EPSQLiFix Method and

Web Vulnerability Scanners

This section discuss the underlying techniques of vulnerabilities

detection and removal employed by Web Vulnerabilities Scanner

(WVS) in comparison with the underlying techniques behind the
proposed method, EPSQLiFix.
The key goal is to highlight differences between the two.
Flowchart diagram showing generic workflow of WVS, and
flowchart diagram showing workflow of the proposed method are

shown side-by-side in Fig. 3. For ease of comparison, we map
steps of the flowcharts into three stages, namely: 1) preparatory
stage, 2) Vulnerabilities detection and removal stage, and 3) re-
porting stage. These three stages are shown in Fig. 2 by applying
different colours to flowchart steps belonging to each stage (See
figure legend). The comparative analysis is presented according to
these three stages.

Termination ?

Grammar rules

extractor
EP Search SQLIVs Detector SQLIVs Remover

read WP

extract info
Decl & assign stmts

Generate
CFG rules

Init first
generation

Update candidates
population

Evaluate fitness

Select parents
Generate

OffSprings

Produce next
generation

Analyze candidates

Gen. SQLIVs
params report

Gen. data
validation stmt

Modify
WP source code

Produce secure
version of WP

Yes

No

Fig 2: Activity Diagram for EPSQLiFix

5.1. Preparatory Stage

In both WVS and the EPSQLiFix method, the preparatory stage is
basically for information gathering and getting inputs for tasks of
stage two. The strategy followed by WVS is very different from
that followed by EPSQLiFix. The working of WVS, generally,
begins with input of initial url, and then crawling of website, start-

ing from initial url, to discover other webpages of application [2,
8, 9]. Some WVSs use spider crawling strategy [9], whereas oth-
ers use combinatorial site crawling strategy [1]. Webpages are
downloaded and analyzed to find forms and injection points [9].
The information gathered during crawling is used to craft attacks
which target all discovered injection points. WVSs suffer problem
of partial coverage of web site during crawling, which happens
when crawler could not find some pages. This problem do affects

vulnerability detection accuracy and lead to false negatives [9, 12,
15]. Use of inadequate attack patterns for crafting targeted attacks
is another problem associated with WVSs. This could compromise
vulnerabilities exploitation, and reduces vulnerability detection
coverage.
In contrast, the preparatory stage of EPSQLifix begins with input
of source code files of web application. Since all source code files
are provided as input, then application coverage is guaranteed.

EPSQLiFix uses parsing to extract grammar rules from source
code of application. The grammar extraction is guided by source
language grammar, therefore, no any attack patterns or rules set is
required.

5.2. Vulnerabilities Detection and Removal Stage

This stage involves applying techniques for detecting vulnerabili-
ties, as well as techniques for code modification aimed at vulnera-
bilities removal. In WVSs, this stage begins by launching targeted
attacks. Thereafter, responses are analyzed for vulnerabilities.
Most scanners launch attacks by sending http request containing

malicious input [1, 2, 8, 9, 16], although few scanners use replay
strategy [21]. In WVSs, responses are mostly collected using http
proxy [1, 8, 9], or through database logger [21]. The responses are
analyzed to verify vulnerabilities. The analysis approaches used in
WVSs include error pattern matching [9], keywords pattern
matching [8], HTML page similarity [1], and combination of error
pattern matching and HTML page similarity [18]. Regardless of
the response analysis approach, existing WVSs suffer noticeable

weaknesses. For example, scanners based on error pattern match-
ing face uncertainties about presence of vulnerabilities where an
injection did not result in error message. Scanners based on
HTML page similarity requires large number of attacks. As
black-box testing tools, WVSs do not support code modification,
and hence cannot achieve vulnerabilities removal.
In contrast, the vulnerabilities detection and removal stage of
EPSQLiFix begins by finding grammar reachability productions

sequences that shows data flow from Sensitive Sink statement to
Application’s Entry Point statement. The reachability productions
sequences are then analyzed using grammar reachability analysis
for detection of vulnerabilities. In EPSQLiFix, vulnerability is

44 International Journal of Engineering & Technology

found when no data validation function is applied along reachabil-
ity path. It should be acknowledged that grammar reachability
analysis has been successfully applied in static analysis detection
of vulnerabilities [22, 23]. The vulnerabilities detection of
EPSQLiFix is achieved by statically analyzing reachability paths

for inclusion of data validation function, and does not require
launching of attacks. Moreover, EPSQLiFix identifies parts of
source code that contains vulnerabilities, and automatically gener-
ate appropriate data validation statements that could fix the vul-
nerabilities. EPSQLiFix employs Evolutionary Programming (EP)
search operator to automate code modification which insert auto-
generated data validation statements into source code, and conse-
quently, produce modified and secure version of application.

5.3. Reporting Stage

This stage involves generation of report to developer or tester.
Most scanners produce an on-screen vulnerabilities report at the
end of the testing process [24]. The report gives information about
application being tested, vulnerabilities detected, and names of
vulnerable parameters. In contrast, EPSQLiFix also provides an

on-screen vulnerabilities report at the end of testing process.
However, report of EPSQLiFix provides information about both
detection and removal of vulnerabilities. It contains information
about application being tested, vulnerabilities found, vulnerable
parameters and their corresponding locations, and name/location

of folder containing modified version of application.

6. Conclusion

The paper presented comprehensive description on generic work-
flow of Web Vulnerability Scanner comprising seven steps of
activities. The workflow is derived through synthesis and aggrega-
tion of knowledge. An Evolutionary Programming based static

analysis method for automated detection and removal of SQLIVs,
called EPSQLiFix, was proposed. The difference between WVSs
and EPSQLiFix was highlighted. The proposed method is current-
ly implemented in a software tool based on static source code
analysis, and is capable of removing SQLIVs through source code
modification using EP mutation operation. Details about

EPSQLiFix method is in the process of being published.

start

Get target

URL

Crawl website,

get injection points

Cratf attacks

targeting injection

points

Launch targeted

attacks

Collect application

responses

Analyze application

responses

Report

Vulnerabiliti

es found

stop

start

Get source

code files of

WAuT

Extraact Context Free

Grammar rules

Get SS-to-AEP

reachability

productions sequenses

Perform grammar

reachability analysis

Perform code

modification for

SQLIVs removal

Report

SQLIVs found

stop

Report

modified &

secure WAuT

 Fig 3: Flowchart Comparison between WVS and EPSQLiFix

 (a) Web Vulnerability Scanner (b) EPSQLiFix Method

Legend Preparatory stage Reporting stage Vulnerabilities detection and removal stage

International Journal of Engineering & Technology 45

Acknowledgement

We acknowledge that this research received support from the
Fundamental Research Grant Scheme
FRGS/1/2015/ICT01/UPM/02/12 awarded by Malaysian Ministry
of Education to the Faculty of Computer Science and Information

Technology at Universiti Putra Malaysia.

Reference

[1] Arcuri A (2011), Evolutionary repair of faulty software, Journal of

Applied Soft Computing, 11, 4, 3494–3514. DOI:

10.1016/j.asoc.2011.01.023.

[2] Arcuri A (2008), On the automation of fixing software bugs, In

Proceedings of the 30th International Conference on Software En-

gineering. Leipzig, Germany: ACM, pp. 1003-1006, DOI:

10.1145/1370175.1370223

[3] Halfond W & Orso A (2005), AMNESIA: Analysis and monitoring

for neutralizing sql-injection attacks, In Proceedings of the 20th In-

ternational Conference on ASE. Long Beach, CA: IEEE/ACM.

pp.174-183

[4] Medeiros I, Neves NF & Correia M (2014), Automatic detection

and correction of web application vulnerabilities using data mining

to predict false positives, Proceedings of the 23rd International

Conference on World Wide Web. New York: IEEE, 63-74, DOI:

10.1145/2566486.2568024.

[5] Kaur D & Parminder K (2017), SQLI Attacks: Current State and

Mitigation in SDLC, Proceedings of the 5th International Confer-

ence on Frontiers in Intelligent Computing: Theory and Applica-

tions. Springer, Singapore.

[6] Sun F, Xu L & Su Z (2011), Static Detection of Access Control

Vulnerabilities in Web Applications, USENIX Security Symposium.

[7] Minamide Y (2005), Static approximation of dynamically generated

web pages, Proceedings of the 14th international conference on

World Wide Web. ACM.

[8] Thomé J, Gorla A & Zeller A (2014), Search-based security testing

of web applications, Proceedings of the 7th International Workshop

on Search-Based Software Testing. ACM.

[9] Doupé A, Cova M & Vigna G (2010), Why Johnny can’t pentest:

An analysis of black-box web vulnerability scanners, International

Conference on Detection of Intrusions and Malware, and Vulnera-

bility Assessment. Springer, Berlin, Heidelberg.

[10] Bau J, Bursztein E, Gupta D & Mitchell J (2012), Vulnerability fac-

tors in new web applications: Audit tools, developer selection &

languages, Stanford, Tech. Rep.

[11] Huang YW, Huang SK, Lin TP & Tsai CH (2002), Web application

security assessment by fault injection and behavior monitoring,

Proceedings of the 12th international conference on World Wide

Web. ACM, pp. 148-159.

[12] Thomas S, Williams & Xie T (2009), On automated prepared

statement generation to remove SQL injection vulnerabilities, In-

formation and Software Technology 51.3, 589-598.

[13] Kals S, Kirda E, Kruegel C & Jovanovic N (2006), Secubat: a web

vulnerability scanner, Proceedings of the 15th international confer-

ence on World Wide Web. ACM.

[14] Vieira M, Antunes N & Madeira H (2009), Using web security

scanners to detect vulnerabilities in web services, International

Conference on Dependable Systems & Networks,DSN'09.

IEEE/IFIP. IEEE.

[15] Jose S, Priyadarshini K & Abirami K (2016), An Analysis of

Black-Box Web Application Vulnerability Scanners in SQLi Detec-

tion, Proceedings of the International Conference on Soft Compu-

ting Systems. Springer, New Delhi, pp. 177-185.

[16] Bau J, Bursztein E, Gupta D & Mitchell J (2010), State of the art:

Automated black-box web application vulnerability testing, IEEE

Symposium on Security and Privacy (SP).

[17] Fonseca J, Vieira M & Madeira H (2007), Testing and comparing

web vulnerability scanning tools for SQL injection and XSS attacks,

13th Pacific Rim International Symposium on Dependable Compu-

ting,PRDC2007, IEEE.

[18] Pałka D, Zachara M & Wójcik K (2016), Evolutionary scanner of

web application vulnerabilities, International Conference on Com-

puter Networks. Springer, Cham.

[19] Saleh AZM, Rozali NA, Buja AG, Jalil KA, Ali FHM & Rahman

TFA (2015), A method for web application vulnerabilities detection

by using boyer-moore string matching algorithm, Procedia Com-

puter Science 72, 112-121.

[20] Chen JM & Wu CL (2010), An automated vulnerability scanner for

injection attack based on injection point, International Computer

Symposium (ICS), IEEE.

[21] Patil S, Marathe N & Padiya P (2016), Design of efficient web vul-

nerability scanner, Proceedings of International Conference on In-

ventive Computation Technologies (ICICT), 2. IEEE.

[22] Trivedi SH (2012), Software testing techniques, International

Journal of Advanced Research in Computer Science and Software

Engineering 2.10.

[23] Al-Khashab E, Al-Anzi FS & Salman AA (2011), PSIAQOP: pre-

venting SQL injection attacks based on query optimization process,

Proceedings of the Second Kuwait Conference on e-Services and e-

Systems. ACM.

[24] Thomas S & Williams L (2007), Using automated fix generation to

secure SQL statements, Proceedings of the Third International

Workshop on Software Engineering for Secure Systems. IEEE

Computer Society.

[25] Salas MIP & Eliane M (2015), A black-box approach to detect vul-

nerabilities in web services using penetration testing. IEEE Latin

America Transactions 13, 3, 707-712.

[26] Deepa G & Thilagam PS (2016), Securing web applications from

injection and logic vulnerabilities: Approaches and challenges. In-

formation and Software Technology 74, 160-180.

[27] Irena J (2006), Software testing methods and techniques. Journal of

the IPSI BgD Transactions on Internet Research 30.

[28] Akrout R, Alata E, Kaaniche M & Nicomette V (2014), An auto-

mated black box approach for web vulnerability identification and

attack scenario generation. Journal of the Brazilian Computer Soci-

ety 20.1: 4.

