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Abstract 
 

In this study, a procedure is proposed to optimize the ship’s trajectory by identification of optimal hydrodynamic coefficients from sea 

trials, which coupled the dynamic ship motion model with optimization techniques. In order to assess efficiently the hydrodynamic 

parameters, a sensitivity analysis is first per- formed to identify the most sensitive coefficients, then an identification procedure, based on 

SQP and BFGS algorithms, is carried out to determine optimal hydrodynamic parameters. The validation of this procedure is done for 

Turning Circle and Zig-Zag tests by using experimental data of sea trials of the Esso Bernicia 193000DWT Tanker model. Comparisons 

between experimental and computed data show a fair agreement of overall tendency in ship trajectories. The RMSD (Root-Mean-Square 

Deviation) of ship trajectory decreases from 68.0m to 5.8m in Turning Circle test, and RMSD of yaw angle decreases from 17.3deg to 

6.6deg in Zig-Zag test. 
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1. Introduction 

Ship maneuvering models are fundamental to the research of ship 

maneuverability, design of ship motion control systems and 

development of ship handling simulators. The complexity of the 

hydrodynamic processes caused by the wide variety of ship shapes, 

sizes and motion leads to a multitude of ship models. Thus, to 

obtain an optimized trajectory and also a better understanding of 

ship maneuvering it is necessary to improve the understanding of 

the hydrodynamic forces acting on the hull, the rudder and the 

propeller. Many mathematical models of dynamic ship motion 

have been proposed to identify the hydrodynamic parameters [1], 

[2] and [3]. Hyeon Kyu Yoon et al. [4] proposed a model based on 

the Estimation-Before-Modeling (EBM) technique, which is an 

identification method that estimates parameters in a dynamic 

model. The algorithm was validated using real sea trial data of a 

113K tanker. Viviani et al. [5] carried out a numerical study based 

on optimization techniques that used a Multi Objective Genetic 

Algorithm (MOGA). They identified the five most sensitive 

hydrodynamic parameters from standard maneuvers (specified by 

International Maritime Organization - IMO) for a series of twin-

screw ships.  Rajesh et al.  [6] Proposed a numerical study based 

on system identification for a nonlinear maneuvering model 

dedicated for large tankers by using the artificial neural network 

method. In this model all nonlinear terms are clubbed together to 

form one unknown time function per equation which are sought to 

be represented by the neural network coefficients. M.G. Seo and 

Y. Kim [9], proposed a numerical analysis of ship maneuvering 

performance in the presence of incident waves and resultant ship 

motion responses. To this end, a time domain ship motion program 

is developed to solve the wave body interaction problem with the 

ship slip speed and rotation, and it is coupled with a modular type 

4DOF maneuvering problem. X.G. Zhang and Z.J.Zou [8] 

analyzed the data of longitudinal and transverse velocity, rudder 

angle etc. in the simulated zig-zag test, the hydrodynamic 

derivatives in the Abkowitz model for ship maneuvering motion 

are identified using E-Support Vector Re-gression (E-SVR). The 

identification results of the hydrodynamic derivatives are 

compared with the Planar Motion Mechanism (PMM) test results 

to verify the identification method.  The agreement is satisfactory, 

which shows that the regressive Abkowitz model has a good 

generalization performance. This paper presents an efficient 

procedure to determine optimal hydrodynamic parameters by 

using the single-objective optimization techniques for ship 

maneuvering simulation from sea trials.  Accurate modeling of a 

ship trajectory is achieved efficiently using three steps. The first 

step concerns the modeling of the dynamic ship motion, for this 

purpose, a 3 − DOF model based on the dynamic motion of a rigid 

body has been developed taking into account the hydrodynamic 

forces acting on the ship hull. Then a sensitivity analysis is carried 

out to identify the most important hydrodynamic parameters that 

control the ship trajectory. The main advantage of applying the 

sensitivity analysis is to reduce the number of parameters to be 

estimated so that the hydrodynamic model can easily be treated by 

a single-objective minimization procedure with constraints or 

unconstraint, and multi-variables. In the present investigations, we 

found 14 most sensitive parameters, and the validated is done by 

using experimental data of sea trials of the Esso Bernicia 

193000DWT Tanker for the turning circle and zig-zag tests. The 

last step of the proposed procedure concerns the determination of 

optimal hydrodynamic parameters using optimization techniques. 

http://creativecommons.org/licenses/by/3.0/
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These steps in the process of identification are summarized in 

Table 1. 

 
Table 1: Steps in the strategy of parameters identification process 

Step 1 Step 2 Step 3 

Computing with 

original coefficients 

() from ship 

motion equations 

Filtering the most 

important coefficients 

(S), using the 

sensitivity analysis 

Computing of 

optimal coefficients 

(opt), using the 

identification 

analysis 

The structure of this paper is as follows. Section 2 deals with the 

mathematical formulation of the dynamic motion of ships. The 

Section 3 is devoted to the numerical resolution, where validation 

tests are presented in subsection 3.3 and results of the 

identification of hydrodynamic parameters procedure are 

presented in subsection 3.4. Section 4 summaries the conclusions 

drawn from this work  

2.  Mathematical formulation 

2.1. Dynamic ship motion equations 

In the ship maneuvering problem, 3 degrees of freedom (3 − DOF) 

motions are considered in the space-fixed coordinate system, 

where all frames are right handed orthogonal coordinate systems 

whose z-axes are positive downward. For this problem, the 

equations of motion can be written as follows: [10; 17]: 

 

( )
2

" " " "; ; Zv ur gY v ur gY Lk r gLN+ = + = =             (1) 

 

Where: 

G is the gravity center of ship; u and v are the ship velocities in 

GX0-axis (surge motion) and GY0 axis (sway motion) respectively; 

r is the turning rate about GZ0-axis (yaw motion); u and v are the 

ship axial accelerations in GX0-axis and GY0-axis respectively (see 

Fig. 1); r  is the turning acceleration around GZ0-axis; g is the 

gravity acceleration; L is the ship length between perpendiculars; 

" 1 Z
Z

I
k

L m
= is the non-dimensional radius of gyration, Iz is the 

inertial moment of ship with respect to GZ0-axis, where Ts is the 

ship draft and ρ is the density of water.  

 
Fig.1: Definition of the ship motion coordinate system 
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Where: 

X”, Y”, N” are the non-dimensional forces and moments in GX0-

axis, GY0-axis and GZ0-axis respectively;  
" " " " " " ", ,..., , ,..., , ,...,u v uv r uvu u c c

X X Y Y N N N    
are the non-

dimensional derivatives of ship hydrodynamic coefficients, which 

will be identified by SQP and BFGS algorithms;   is the rudder 

angle; td  is the thrust deduction coefficient; β = v/u.  

 = Ts/(h − Ts), where h is the water depth;  

T” is the non-dimensional propeller thrust given by: 

 

" " 2 " "1 1
uu un n n

L
T T u T un T n n

gL g g
= + +                                   (5) 

 

Where: Tuu, Tun and T|n|n are the hydrodynamic coefficients, n is the 

shaft velocity; c is the flow velocity at the rudder estimated by: 
2 2 2 2

un nnc c un c n= +                                            (6) 

 

Where: cun and cnn are the hydrodynamic coefficients. 

3. Numerical resolution 

3.1. Simulation and optimization procedure 

Given motion variables and the hydrodynamic forces and moment, 

computed at the first step from dynamic ship motion, we carried 

out the sensitivity analysis as the second step, and the 

minimization analysis to identify the hydrodynamic coefficients 

from hydrodynamic force as the third step. Firstly, we computed 

the motion variables (state of ship motions) x = [u v r Xpos Ypos ψ  

n]T as a nonlinear time-varying system: 

 

( , , )cx f x u t=    (7)  

 

Where: t is the time; Xpos and Ypos are the coordinates of ship in 

OX-axis and OY-axis of the earth-frame respectively; uc = [c  nc]T 

is the control input; δc is the commanded rudder angle; nc is the 

commanded shaft velocity; ẋ = [u̇ v̇ ṙ Ẋ pos Ẏ pos ψ̇   ṅ]
T  

is the 

vector derivative of x, which is computed simultaneously by 

solving the equations (1) and (8-12) by the Runge-Kutta 4th order 

method (RKF45) as follows: 

• First, the derivatives u̇, v̇ and ṙ are computed by solving equations 

(1) 
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• Then, the others derivatives Ẋ pos, Ẏ pos, ψ̇ ,   and ṅ are computed 

by solving the equations (8-12) [10]: 

 

( ) ( )cos sinposX u v = −    (8) 

 

( ) ( )cos sinposX u v = −                                        (9) 

 

r =                                            (10) 

 

c  = −                        (11) 

 

( )
60

c
m

n n n
T

= −                                                  (12) 

 

where Tm is a coefficient of propeller. 

In this work, a single objective function for minimization 

procedure with inequality constraints or unconstraint, and multi-

variable is used to identify ship hydrodynamic coefficients [11].  

As the sign of the hydrodynamic parameters must fit 

hydrodynamic forces, some constraints can be included into the 

minimization problem, which leads to a constrained minimization 

problem.  

Thus, the problem is stated as follows 

 

Minimize ( )

1/2

2

1

N

obj i

i

F f 
=

 
=  
 
 
                                    (13) 

 

with 1 2, ,...,
T

N   =     

Where: 

 is the vector of identification variables which represents the ship 

hydrodynamic parameters to be determined; N is the number of 

variables; ( )if   is the discrepancy between computed and 

experimental data.  

Problem given in (13) can be solved using different approaches.  

One of the most efficient approach is based on the optimization 

techniques, where not only information on the objective-function 

Fobj are necessary but also values of the gradients of Fobj with 

respect to the vector α, are required to update the solution from one 

iteration to the other. Among all optimization techniques, the 

Sequential Quadratic Programming (SQP) algorithm [12] is a 

widely applicable optimization method which converges for many 

problems with constraint in engineering science. The BFGS 

(Broyden-Fletcher-Goldfarb-Shanno) algorithm [13] is a part of 

the family of quasi-Newton algorithms, which may be used for the 

unconstrained optimization problems.  

In the present numerical investigations, two tests proposed by the 

International Maritime Organization (IMO [14]) are used, which 

consist of Turning Circle and Zig-Zag tests [15]. The associated 

input data of each test are presented in Table 2[16]. 

(i) For the Turning Circle test, the expression of Fob j, reads: 

 

( )

1/2 1/2

2 2

1 1

p pN N

cbj i i

i i

F f S
= =

   
   = = 
   
   
                             (14) 

 

Where: 
2
iS  is the square root of the difference between the 

computed and the experimental ship trajectories, which depends 

on ship hydrodynamic coefficients . It reads: 

 

( ) ( )
2 2

2 exp expcal cal
i i i i iS x x y y = − + −                    (15) 

 
Table 2: Input data of Turning Circle and Zig-Zag tests of Esso Bernicia 

193,000DWT Tanker [16] 

Input data 
Turning Circle 

test 
Zig-Zag 

(x0, y0): initial ship’s 

position 
(0,0) m (0,0) m 

ψ0: initial yaw angle 0 deg 0 deg 

U0: initial advance 

velocity of ship 
5.3 m/s 7.5 m/s 

0: initial of rudder angle 

0 deg 

 

 

0 deg 

 

 

max : maxi rotation 

velocity of rudder 
2.7 deg/s 2.7 deg/s 

n0: initial shaft velocity 57 rpm 80 rpm 

nc: shaft velocity 

command 
57 rpm 80 rpm 

c: rudder command -35 deg [-20,+20] deg 

Subscripts cal and exp indicate the computed and experimental 

data respectively, (xi, yi) are the coordinates of the point i on the 

ship’s trajectory, and Np is the number of pairs of points to be 

approximated. (ii) For the Zig-Zag test, the expression of Fob j 

reads: 

 

( ) ( )
1/2 1/2

22 exp

1 1

N N
cal

obj i i i

i i

F f   
= =

   
= = −   
   
   
              (16) 

 

Where: ψi is the ship’s heading angle, which depends also on ship 

hydrodynamic coefficients α;  Np is the number of pairs of points 

to be approximated. 

3.2. Numerical results 

The validation of the present investigation is done for the Esso 

Bernicia 193000DWT Tanker model [10], where the associated 

parameters are given in Table 3. Here, the 35 hydrodynamic 

parameters (hydrodynamic coefficients) to be identified are given 

in Table 4. 

The numerical identification procedure starts from original values 

of all hydrodynamic parameters (α) in the dynamic ship motion 

equations (Eq. 2-4), which will be firstly analyzed through a 

sensitivity analysis sensitivity analysis will show how important is 

the relative gradient value of Fob j response for a small variation of 

the hydrodynamic coefficient i.  

 
Table 3: Parameters of the Esso Bernicia 193000DWT Tanker model [10] 

Ship parameters Value 

Lpp: length between perpendicular 304.8 (m) 

B: beam 47.17 (m) 

T : draft to design waterline 18.46 (m) 

∇: displacement 220000  (m3) 

Lpp/B 6.46 

B/T 2.56 

CB: block coefficient 0.83 

U0: design speed 16 (knots) 

n: nominal propeller 80 (rpm) 

By using Eq. 14-16, the most sensitive hydrodynamic coefficients 

are identified and are summarized in Table 5 and Table 6.  

The simulation and optimization procedure consists on the 

following steps: 

• Step 1: Computing and simulation of ship trajectories with 

original coefficients (α) from dynamic ship motion equations Eq. 

1-4. 
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• Step 2: Filtering the most important coefficients (αS) among all 

others (α), based on the sensitivity analysis 

• Step 3: Computing of optimal values (αS opt) for only most 

sensitive coefficients (αS), by carrying out an optimization analysis 

based on a optimization procedure. 

 
Table 4: Original hydrodynamic coefficients of Esso Bernicia 

193000DWT Tanker model [10] 

No id. Coefficient Reference Value 

1 
"
uX  -0.05 

2 
"
vrX  1.020 

3 
"

vY  -0.020 

4 
"
c c

Y  
 -2.16 

5 
"

TY  0.04 

6 
"
TN  -0.02 

7 
"
rN  -0.0728 

8 
"
v v

Y  -2.4 

9 
"
v r

N  -0.3 

10 
"
v v

X  0.3 

11 
"

uvY  -1.205 

12 
"
uvN  -0.451 

13 
"
uX   -0.05 

14 
"

vY   -0.378 

15 
"

urY   0.182 

16 
"
urN   -0.047 

17 
"
vrX   0.378 

18 
"
v v

Y 
 -1.5 

19 
"
vrN   -0.12 

20 
"
c c

Y 
 0.208 

21 
"

uvY   0 

22 
"
uvN   -0.241 

23 
"
c c

X 
 0.152 

24 
"
c c

N 
 -0.098 

25 
"
vvX   0.0125 

26 
"
c c

Y  
 -2.16 

27 
"
c c

N  
 0.688 

28 
"
c c

Y  
 -0.191 

29 
"
c c

N    
 0.344 

30 
"
urY  0.248 

31 
"
urN  -0.207 

32 
"
u u

X  -0.0377 

33 
"
rN   -0.0045 

No id. Coefficient Reference Value 

34 
"
u u

X 
 -0.0061 

35 
"
c c

X 
 -0.093 

 

Table 5: Most sensitive coefficients of Turning Circle and Zig-Zag tests 

No id. Coefficient 

6 "
TN  

15 "
urY   

16 "
urN   

22 "
uvN   

34 "
u u

X 
 

24 "
c c

N 
 

 

Table 6: Independent most sensitive coefficients for the Esso Bernicia 
193000DWT Tanker model 

No id. 
Turning circle 

test 
No id. Zig-zag test 

20 
"
c c

Y 
 7 

"
rN  

23 
"
c c

X 
 32 

"
uuX  

31 
"
urN  33 

"
rN   

35 
"
c c

X 
 5 

"
TY  

 
Fig.2: Flowchart of the optimization procedure 

 

The flowchart of the optimization procedure is shown in Fig.2. In 

the minimization procedure, we deal with disparate values of the 

objective function objF . Thus, we have to normalize the objective 

function by the following scaling: 

 

0

iter
objiter

obj

obj

F
F

F
=                                   (17) 
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where iter is the iteration number and 
0

objF  corresponds to the 

objective function value in the initial iteration. 

3.3.  Validation tests 

3.3.1. Turning Circle test 

 The validation process consists on computing the discrepancy 

between computed and experimental data. Thus, in order to 

analyze the discrepancy of ship trajectory we used the Root Mean 

Square Deviation (RMSD) given by: 

 

( )

1/2

2

1

1
N

iRMSD

i

S S
N

=

 
 =  

 
 
                                    (18) 

 

Where: 
2
iS  is given by Eq. (15); N is the total of points to be 

optimized.  

Validation tests are carried out by using SQP and BFGS 

algorithms. The optimal hydrodynamic coefficients obtained by 

SQP and BFGS algorithms are presented in Table 8.  

Before optimization, we obtained from Eqs. 15-20: 

∆S(RMSD) = 68m.  

After minimization, the optimal solutions obtained by both SQP 

and BFGS algorithms are summarized in Table 7. 

 
Table 7: Numerical results of the minimization procedure for Turning 

Circle test 

 SQP BFGS 

error: 
1iter iter

obj objF F −−  1 x 10-4 1 x 10-4 

error: 
1iter iter

S S  −−  1 x 10-4 1 x 10-4 

Max Nb iterate 29 9 

Min objF  0.084 0.120 

( )RMSD
S   (m) 5.8 8.0 

The optimal ship trajectory is given in Fig.3, and the convergence 

of objective function is given in Fig.4.  Fig.4 shows that by using 

the same tolerances for the two algorithms, we see that SQP 

algorithm converged after 30 iterations while BFGS algorithm 

converges only in 10 iteration. 

However, the computing time of SQP algorithm is smaller than 

that of BFGS algorithm. Otherwise, the variation of the objective 

function during the iterations of SQP algorithm is more convergent 

than that of BFGS algorithm. Also, we notice a very good results 

of RMSD of discrepancy of ship trajectory after minimization, 

which are 5.8m and 8.0m by using SQP and BFGS algorithms 

respectively, whereas prior to the minimization the RMSD was 

68.0 m (Tab.7). This shows that ∆S (see Eq.15) obtained by SQP 

algorithm is more satisfactory than that obtained by BFGS 

algorithm.  

 

 
Fig.3: Ship trajectory before and after optimization (Turning Circle test) 

 
Fig.4: Convergence of the objective function (Turning Circle test) 

 

We note also the remarkable low values of the objective function 

obtained by SQP and BFGS algorithms after convergence, which 

are 0.084 and 0.120 respectively. It shows that SQP algorithm is 

the best optimization algorithm for Turning Circle test.  

The surge force, sway force and yaw moment before and after 

optimization in case of using the SQP method are presented in 

Fig.5. This shows that at the beginning of Turning Circle test, the 

absolute value of forces and moment are reduced, thus the Turning 

radius is reduced also after optimization. We can explain this 

phenomenon by comparing the value of hydrodynamic 

coefficients before and after using the SQP method in Tab.8 and 

Eq. 2-4. 

 
Table 8: Optimal hydrodynamic coefficients in Turning Circle test 

Variables Coefficient 
Original 

value 

Optimal 

value (SQP) 

Optimal 
value 

(BFGS) 

x(1) 
"
TN  -0.02 -0.0240 -0.0207 

x(2) 
"

urY   0.182 0.1598 0.1822 

x(3) 
"
urN   -0.047 -0.0416 -0.0533 

x(4) 
"
c c

Y 
 0.208 0.1761 0.2052 

x(5) 
"
uvN   -0.241 -0.2823 -0.2400 
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x(6) 
"
c c

X 
 0.152 0.1684 0.1519 

x(7) 
"
c c

N 
 -0.098 -0.0805 -0.0942 

x(8) 
"
urN  -0.207 -0.2105 -0.2096 

x(9) 
"
u u

X 
 -0.0061 -0.0073 -0.0065 

x(10) 
"
c c

X 
 -0.093 -0.1000 -0.0936 

 
Fig.5: Surge force, sway force and yaw moment (turning Circle test, SQP method) 

 

Firstly, among the components of surge force in Turning Circle test, 
" 2
c c

X c c  is the most important component because this is the 

component that acts on the rudder surface in GX0 axis when the 

rudder rotates. 
"
c c

X  increased from -0.093 to -0.1000, which 

means that the resistance of rudder in GX0 axis was increased, thus 

the ship turns more difficultly on to the port side. 

Secondly, "
c c

Y c c  is the most important component that acts on 

the rudder surface in GY0 axis. "
c c

Y 
reduced from 0.208 to 0.1761, 

which means that the ship turns more slowly on to the port side.  

Finally, "
c c

N c c  is the most important component in yaw 

moments, which caused by the components of rudder forces when 

the rudder rotates. 
"
c c

N  reduced from -0.098 to -0.085, which 

means that yaw moment is reduced when the rudder rotates to the 

port side.  

For conclusion, by applying the SQP algorithm to optimize the ship 

trajectory in Turning Circle test, the turning radius was increased, 

which means that the optimal ship trajectory is more close to the 

experimental trajectory as Fig.3. 

3.3.2.  Zig-Zag test 

By using Eq. 20, we obtained the RMSD of the discrepancy 

between computed and experimental heading angles of ship before 

minimization, which is: ( )RMSD
  = 17.3 deg.  

The optimal hydrodynamic coefficients are presented in Tab. 8. 

Computed and experimental headings of ship before and after 

minimization are given in Fig. 8. It shows that by using SQP 

algorithm the computed heading angle can approximate to 

experimental heading angle after 400 sec., whereas BFGS 

algorithm does it after 700 sec.  

By using the same tolerances of minimization variable for the two 

algorithms, the SQP algorithm converged after 18 iterations 

whereas BFGS algorithm converges only after 3 iterations (Fig.7). 

However, the computed time of the SQP algorithm is smaller than 

that of BFGS algorithm.  

Also, we notice satisfactory results of RMSD of discrepancy of 

ship’s heading angles after minimization, which are 6.6 degs and 

7.1 degs by using SQP and BFGS algorithms respectively, while its 

value before minimization is 17.3 degs (Fig.6). This means that the 

reduction of discrepancy between computed and experimental 

heading angle obtained by SQP algorithm is more considerably than 

that by BFGS algorithm.   

We note also the low value of the objective function after 

convergence are 0.365 and 0.389 by using SQP and BFGS 

algorithms respectively. It means that the final value of objective 

function by using the SQP algorithm is smaller than that by using 

BFGS algorithm. Finally, for these reasons we conclude that the 

SQP algorithm is the best optimization algorithm for Zig-Zag test. 

Fig.8 shows surge force, sway force and yaw moment before and 

after optimization by using SQP method. 
 

Table 9: Numerical information of the minimization procedure in Zig-Zag 

test 

 SQP BFGS 

error: 
1iter iter

obj objF F −−  1 x 10-4 1 x 10-4 

error: 
1iter iter

S S  −−  1 x 10-4 1 x 10-4 

Max Nb iterate 18 3 

Min objF  0.365 0.389 

( )RMSD
S   (m) 6.6 7.1 
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3.4. Identification of hydrodynamic parameters 

 
Fig.6: Heading angle (yaw angle) of ship before and after minimization 

(Zig-Zag test). comparison between computed results and experimental 
data. 

 

From the result of coefficient identification for Turning Circle and 

Zig-Zag tests (Section 3.3), we can choose finally a set of identified 

hydrodynamic coefficients for Esso Bernicia 193000DWT Tanker 

model, which may be used both for these two tests and other 

maneuvering simulations. This set has 35 hydrodynamic 

coefficients, which includes the average optimal values of 6 

common most sensitive coefficients, the optimal values of 8 

independent most sensitive coefficients of each test, and 21 other 

original coefficients that influence weakly the gradient of objective 

function.  For more details, we summarize all of coefficients before 

and after identification in Table 11-12. 

 
Fig.7: Converge of objective function (Zig-Zag test) 

 

Table 10: Optimal hydrodynamic parameters in Zig-Zag test 

Variables Coefficient 
Original 

value 
Optimal 

value (SQP) 

Optimal 

value 

(BFGS) 

x(1) 
"

TY  0.04 0.0300 0.0356 

x(2) 
"
TN

 
-0.02 -0.0160 -0.0006 

x(3) 
"
rN

 
-0.0728 -0.0878 -0.0813 

x(4) 
"
urY   

0.182 0.1420 0.1783 

x(5) 
"
urN   

-0.047 -0.0380 -0.0383 

x(6) 
"
uvN   

-0.241 -0.2910 -0.2434 

x(7) 
"
c c

N 
 

-0.098 -0.0800 -0.0941 

x(8) 
"
uuX

 
-0.0377 -0.0457 -0.0395 

x(9) 
"
rN   

-0.0045 -0.0054 -0.0254 

x(10) 
"
u u

X 
 

-0.0061 -0.0073 -0.0104 

 

 
Fig.8: Surge force, sway force and yaw moment (Zig-Zag test, SQP 

algorithm) 

 
Table 11: Identified hydrodynamic coefficients for the Esso Bernicia 

193000DWT Tanker model  

(First part of the list). 
No id. Hydrody-

namic 
coefficients 

Original 

values 

Optimal 

values 
(Turning test) 

Optimal 

values 
(Zig-Zag 

test) 

Identified 

values 

1 "
uX

 

-0.0500 - - -0.050 
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2 "

vrX
 

1.0200 - - 1.0200 

3 "
vY

 

-0.0200 - - -0.020 

4 "
c c

Y  
 

-2.16 - - -2.16 

5 "
TY

 

0.0400 - 0.0300 0.030 

6 "
TN

 

-0.0200 -0.0240 -0.0160 -0.020 

7 "
rN

 

-0.0728 - -0.0878 -0.087 

8 "
v v

Y
 

-2.4000 - - -2.400 

9 "
v r

N
 

-0.3000 - - -0.300 

10 "
v v

X
 

0.3000 - - -1.2050 

11 "
uvY

 

-1.2050 - - -0.4510 

12 "
uvN

 

-0.4510 - - -0.0500 

13 "
uX   

-0.0500 - - -0.3780 

14 "
vY   

-0.3780 - - 0.1509 

15 "
urY   

0.1820 0.1598 0.1420 -0.04 

16 "
urN   

-0.0470 -0.0416 -0.0380 0.0378 

17 "
vrX   

0.3780 - - -1.500 

18 "
v v

Y 
 

-1.5000 - -  

 
Table 12: Identified hydrodynamic coefficients for the Esso Bernicia 
193000DWT Tanker model  

(Second part of the list). 

No id. 

Hydrodynam-

ic 

coefficients 

Original 

values 

Optimal 

values 

(turning test) 

Optimal 

values 

(zig-zag 

test) 

Identified 

values 

19 
"
vrN   

-0.1200 - - -0.120 

20 
"
c c

Y 
 

0.2080 0.1761 - 0.1761 

21 
"

uvY   
0.0000 - - 0.0000 

22 
"
uvN   

-0.2410 -0.2823 -0.2910 -0.287 

23 
"
c c

X 
 

0.1520 0.1684 - 0.1684 

24 
"
c c

N 
 

-0.0980 -0.0805 -0.0800 -0.080 

25 
"
vvX   

0.0125 - - 0.0125 

26 
"
c c

Y  
 

-2.1600 - - -2.160 

27 
"
c c

N  
 

0.6880 - - 0.6880 

28 
"
c c

Y  
 

-0.1910 - - -0.191 

29 
"
c c

N  
 

0.3440 - - 0.3440 

30 
"

urY
 

0.2480 - - 0.2480 

31 
"
urN

 
-0.2070 -0.2105 - -0.210 

32 
"
u u

X
 

-0.0377 - -0.0457 -0.046 

33 
"
rN   

-0.0045 - -0.0054 -0.005 

34 
"
u u

X 
 

-0.0061 -0.0073 -0.0073 -0.007 

No id. 

Hydrodynam-

ic 

coefficients 

Original 

values 

Optimal 

values 

(turning test) 

Optimal 
values 

(zig-zag 

test) 

Identified 

values 

35 
"
c c

X 
 

-0.0930 -0.1000 - -0.100 

4. Conclusion 

A ship manoeuvring numerical procedure based on the coupling 

between ship dynamic motion model and optimization techniques 

is presented. Numerical identification of hydrodynamic parameters 

is carried out by considering a constrained minimization problem 

based on the SQP algorithm, and an unconstrained minimization 

problem based on the BFGS algorithm. 

The model was validated using experimental data of sea trials of 

Esso Bernicia 193000DWT Tanker for the Turning Circle and Zig-

Zag tests. The identification procedure was carried out successfully 

for the 14 most sensitive hydrodynamic parameters, after a 

preliminary screening using sensitivity analysis. 

In the Turning Circle test, we found that the SQP algorithm 

predicted accurately the experimental trajectories, with a RMSD of 

5.8m, starting from an initial value of 69m (before optimization), 

which means that this RMSD was decreased by 91.6%.  

In the Zig-Zag test of ship heading, the SQP algorithm gave a 

RMSD of 6.6 deg, starting from an initial value of 17.3 deg (before 

optimization), which means that this RMSD was decreased by 

61.8%.  

Finally, we choose and proposed a set of identified hydrodynamic 

parameters for Esso Bernicia 193000DWT Tanker model, which 

may be used for both the Turning circle, Zig-Zag tests and other 

maneuvering simulations. 
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