

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.32) (2018) 1-6

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Automatic Lexical Alignment between Relational Database and

Heterogeneous Big Data Based on NOSQL Systems

IBN BATOUTA Zouhair1*, HAJOUI Omar1, TALEA Mohamed1

1 Hassan II University, Faculty of Science Ben M’Sik, LTI Laboratory, MOROCCO

*Corresponding author E-mail: zouhair.ibnbatouta@gmail.com

Abstract

In the absence of a universal consensus governing the use of models, the IDM has led to the creation of a large number of heterogeneous

(distinct) meta-model systems with similar or complementary uses and objectives. To solve this problem of increasing heterogeneity of

meta-models, we proposed an approach that we named generative automatic matching GAM. In this approach, we have dealt with the

problem of the heterogeneity of meta-models in a new way that uses automatic matching, the alignments found are then took into profit

to facilitate generation between source and target models which are conform to the linked meta-models.

This article presents an application of our GAM approach on a case study composed of heterogeneous meta-models of relational data-

bases and big data, we specially treat the application of lexical automatic matching based on hybrid meta-heuristic. We have selected

three types of databases and big data based on NoSql: Key Store, Document Store and Columnar Store; at the end of our article we pre-

sent an evaluation of the results found based on quality mathematical measurements.

Keywords: : Automatic Matching; Big Data; Columnar Store; Document Store; Generative automatic matching; Heterogeneous Meta-models; hybrid

meta-heuristic; Key value Store; NoSql; Quality mathematical measurements.Relational;

1. Introduction

Although model driven engineering has greatly propelled software

engineering, our TSMR review and our multi-criteria comparative

study of generation and automation approaches in software engi-

neering [1, 2], allowed us to detect that the absence of a universal

consensus governing the creation of models has led to the emer-

gence of a large number of systems based on heterogeneous meta-

models, with similar or complementary uses and objectives, lead-

ing to a problem of increasing heterogeneity of created meta-

models.

In this context, we have proposed in [3, 4] the architecture and

implementation of our approach called GAM (generative automat-

ic matching), which is particularly useful as a palliative measure

to this major disadvantage. This approach, which consists in com-

bining the automatic matching of meta-models with the generation

of models is, in fact, new and novel in the literature. Among other

things, it will make it possible to overcome the many existing gaps

in matching approaches [5, 6, 7, 8, 9, 10, 11, and 12].

In this article, we will apply GAM's automatic lexical matching on

a case study composed of heterogeneous meta-models of relational

databases and big data, the ultimate goal is to test the results of the

lexical heuristics used in our GAM approach on a promising and

in full expansion domain, namely big data systems; first of all, we

will present a reminder of our GAM approach in section 2, then in

section 3 we continue with our Big Data Meta-models (BDM)

case study, after that, in section 4 we will sum up the results of the

application of different hybrid lexical heuristic of our GAM ap-

proach on the case study, in section 5 we will end up with the

conclusion and future works.

2. Recall: Generative Automatic Matching

Approach (Gam)

In this section, we will present a reminder of our GAM approach.

First of all, we will present the architecture of GAM as well as the

matching meta-model MMG (meta-model of generative matching).

The latter helps to identify the basic concepts treated by our ap-

proach, for example, the various elements of a meta-model as well

as the relationship between them, the types of connections or pos-

sible alignments between two or more elements of the different

meta-models, the management of the matching versions and also

the matching history.

Fig.1 shows the overall architecture of our approach.

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

2 International Journal of Engineering & Technology

Fig 1: Global architecture of the generative matching approach

As shown in Fig.2, the set of platforms are seen as a heterogene-

ous global system, consisting of exogenous meta-models repre-

senting various domains.

The first step of the approach is to constitute a universal virtual

meta-model consisting of source meta-models SMM1 ... SMMi,

which will be matched with TMM1 ... TMMj target meta-models

using hybrid heuristics. The resulting matching will allow de-

scending to layer 1; Indeed, the approach will allow, from source

input models SM1 .. SMi conform to the source meta-models, to

generate target models TM1 .. TMj conform to the target meta-

models.

Fig.2 introduces key notions of the meta-model MMG (Generative

Matching Meta-Model):

Fig 2: Core of the Generative Matching Meta-Model

In section 3, we will present our BDM case study of meta-models

compliant to the MMG.

3. Case Study: Bdm

To test our GAM approach, especially the meta-models’ automatic

lexical matching part, we have designed the Big Data Meta-

models (BDM) case study, which represents a heterogeneous da-

tabase system, in fact we have developed four meta-models which

represent four important types of database, namely relational data-

bases and three types of NoSql big data [13, 14]: Key Value Store,

Document Store and Columnar Store.

Fig.3 represents the source meta-model that is a relational SQL

database.

Fig 3: Source meta-model: Relational Database

Fig.4, Fig.5 and Fig.6 respectively represent the meta-models of

the Big Data Key Value Store, Columnar Store and Document

Store.

Fig 4: Target meta-model 1: Key Value Store

Fig 5: Target meta-model 2: Columnar Store

Fig 6: Target meta-model 3: Document Store

International Journal of Engineering & Technology 3

In the next section we will present the various automatic lexical

matching heuristics applied to our case study, namely Name-

Matching hybrid meta-heuristic.

4. Automatic Lexical Matching Results

In this section, we will present the lexical heuristic named Name-

Matching, it allows the generation of lexical alignments between

the elements of the meta-models; we will also present the results

of its application on the BDM case study.

4.1 Namematching meta-heuristic

The nameMatching heuristic aims calculating the lexical similarity

between two elements of MMG by comparing their names, this

hybrid meta-heuristic is based on two sub heuristics:

• PSN heuristic (name similarity permutations): this heuristic takes

a value between 0 and 1; it is equal to 1 if the names of two ele-

ments are composed of the same permuted words, for example:

“superElement” and “Elementsuper”, the value tends to 0 when

the two elements differ too much.

• The heuristic LSN (Levenshtein Similarity of Names): this heu-

ristic compares the two elements based on a metric called the Le-

venshtein distance: the Levenshtein distance between two labels

is given by the minimum number of operations needed to trans-

form a label into the other, where an operation is an insertion,

deletion or substitution of a character.

In Table 1 and Table 2 we recall the Algorithms which implement

the PSN and LSN heuristics:

Table 1: Computing Permutation name similarity PSN

Table 2: Recursive Computing Levenshtein Similarity of names RLS

To normalize the heuristic of levenshtein we applied the following

formula which allows having a final value between 0 and 1:

LevNameSimilarity = 1−lev(element1, element2)/max(

len(element1), len(element2))

To compute the final hybrid nameMatching similarity, we first

apply the PSN heuristic, if the value is greater than a threshold

“Threshold1”, we take the similarity value found and consider it

as the final similarity, otherwise we apply a linear interpolation

using two weights w1 and w2 allocated respectively to the heuris-

tics PSN and LSN :

nameMatching = w1 * PSN + w2 * LSN

Where w1 + w2 = 1

For further calculations, we took the values w1 = 0, w2 = 1 and

Threshold1=1.

4.2 Namematching results between sql and key value

metamodels

The application of the NameMatching heuristic on the meta-

models, source SQL and Target Key Value, gave the following

results (Table 3)

Table 3: Lexical heuristic NameMatching results between SQL and Key Value Store

SQL Elements

Lexical

NameMatching

Value

Key Value Elements

Kind 0,1666667 Entity

Kind 0,25 Key

Kind 0,1333333 KeyStoreElement

Kind 0,125 KeyValue

Kind 0,3333333 String

Name 0,1333333 KeyStoreElement

Name 0,25 KeyValue

Name 1 Name

Name 0,4 Value

SQLColumn 0,2666667 KeyStoreElement

SQLColumn 0,2222222 KeyValue

SQLColumn 0,1111111 Name

SQLColumn 0,1111111 String

SQLColumn 0,2222222 Value

SQLElement 0,5333334 KeyStoreElement

SQLElement 0,1 KeyValue

SQLElement 0,2 Name

SQLElement 0,2 String

SQLElement 0,2 Value

SQLTable 0,2 KeyStoreElement

SQLTable 0,25 KeyValue

SQLTable 0,25 Name

SQLTable 0,125 String

SQLTable 0,25 Value

String 0,1666667 Entity

String 0,2666667 KeyStoreElement

String 1 String

Type 0,1333333 KeyStoreElement

Type 0,25 KeyValue

Type 0,25 Name

Type 0,2 Value

4 International Journal of Engineering & Technology

SQLElement 0,1 Entity

SQLElement 0,1 Key

In order to refine the results found, we will apply the threshold of

0.4 to the matching values found, Tab.4 illustrates the remaining

matching.

Table 4: NameMatching results SQL/ Key Value - Threshold :0.4

SQL ElemEnts

Lexical

NameMatching

Value

Key Value Elements

Name 1 Name

SQLElement 0,5333334 KeyStoreElement

String 1 String

Table 5 shows all the real matching that exist between the two

meta-models SQL and Key Value, this table of real values will

allow us in section 5 to calculate the different mathematical met-

rics that will determine the precision of automatic matching heu-

ristics.

Table 5: SQL/ Key Value - All real matches
SQL Elements Key Value Elements

SQLElement KeyValueElement

SQLTable Entity

SQLcolumn KeyValue

String String

Name Name

4.3 NameMatching results between SQL and Columnar

Store Metamodels

Table 6 shows all the results of the application of the NameMatch-

ing heuristic on both meta-models: source SQL and target Colum-

nar Store.

Table 6. Lexical heuristic NameMatching results between SQL and Columnar Store

SQL Ele-

ments

Lexical NameMatch-

ing

Value

Columnar Store Ele-

ments

Kind 0,07692308 ColumnElement

Kind 0,0625 ColumnStoreTable

Kind 1 Kind

Kind 0,3333333 String

Name 0,1666667 Column

Name 0,1538462 ColumnElement

Name 0,125 ColumnStoreTable

Name 1 Name

Name 0,09090909 SuperColumn

Name 0,25 Type

SQLColumn 0,6666667 Column

SQLColumn 0,2307692 ColumnElement

SQLColumn 0,1875 ColumnStoreTable

SQLColumn 0,1111111 Name

SQLColumn 0,1111111 String

SQLColumn 0,6363636 SuperColumn

SQLElement 0,3 Column

SQLElement 0,5384616 ColumnElement

SQLElement 0,0625 ColumnStoreTable

SQLElement 0,1 Kind

SQLElement 0,2 Name

SQLElement 0,2 String

SQLElement 0,1818182 SuperColumn

SQLElement 0,1 Type

SQLTable 0,1538462 ColumnElement

SQLTable 0,375 ColumnStoreTable

SQLTable 0,25 Name

SQLTable 0,125 String

SQLTable 0,1818182 SuperColumn

SQLTable 0,25 Type

String 0,07692308 ColumnElement

String 0,1875 ColumnStoreTable

String 0,3333333 Kind

String 1 String

String 0,1818182 SuperColumn

Type 0,07692308 ColumnElement

Type 0,125 ColumnStoreTable

Type 0,25 Name

Type 0,1818182 SuperColumn

Type 1 Type

In order to refine the results found, we will apply the threshold of

0.4 to the matching values found, Table 7 shows the remaining

results.

Table 7: NameMatching results SQL/ Columnar - Threshold :0.4

SQL Elements

Lexical

NameMatching

Value

Columnar Store Elements

Kind 1 Kind

Name 1 Name

SQLColumn 0,6666667 Column

SQLColumn 0,6363636 SuperColumn

SQLElement 0,5384616 ColumnElement

String 1 String

Type 1 Type

Table 8 shows all the real alignments that exist between the two

meta-models SQL and Columnar Store.

Table 8: SQL/ Columnar - All real matches

SQL Elements Columnar Elements

SQLElement ColumnElement

SQLTable ColumnStoreTable

SQLcolumn Column

SQLcolumn SuperColumn

String String

Name Name

Type Type

Kind Kind

4.4 NameMatching results between SQL and Document

Store Metamodels

Table 9 shows the results of the application of the NameMatching

heuristic on both the two meta-models SQL and Columnar Store.

Table 9. Lexical heuristic NameMatching results between SQL and Document Store

SQL Elements

Lexical

NameMatching

Value

Document Store Elements

Kind 0,125 Document

SQLElement 0,1 Field

SQLElement 0,1 Kind

SQLElement 0,2 Name

SQLElement 0,2 String

International Journal of Engineering & Technology 5

Kind 0,05 DocumentStoreElement

Kind 0,4 Field

Kind 1 Kind

Kind 0,3333333 String

Name 0,25 Document

Name 0,1 DocumentStoreElement

Name 1 Name

Name 0,4 Value

SQLColumn 0,2222222 Document

SQLColumn 0,2 DocumentStoreElement

SQLColumn 0,1111111 Field

SQLColumn 0,1111111 Name

SQLColumn 0,1111111 String

SQLColumn 0,2222222 Value

SQLElement 0,4 Document

SQLElement 0,4 DocumentStoreElement

SQLElement 0,2 Value

SQLTable 0,15 DocumentStoreElement

SQLTable 0,125 Field

SQLTable 0,25 Name

SQLTable 0,125 String

SQLTable 0,25 Value

String 0,125 Document

String 0,2 DocumentStoreElement

String 0,3333333 Kind

String 1 String

Type 0,125 Document

Type 0,05 DocumentStoreElement

Type 0,25 Name

Type 0,2 Value

The refinement of the results by applying the thresholds: 0.4 gives

the following results (Tab.10).

Table 10: NameMatching results SQL/ Document - Threshold :0.4

SQL

Elements

Lexical Matching

Value
Document Store Elements

Kind 1 Kind

Name 1 Name

SQLElement 0,4 DocumentStoreElement

String 1 String

Tab.11 shows all the actual matching that exist between the two

SQL and Document Store meta-models.

Table 11 : SQL/ Document Store - All real matches

SQL Elements Document Sore Elements

SQLElement DocumentStoreElement

SQLTable Document

SQLcolumn Field

String String

Name Name

In the next section, we will present an evaluation of the results of

the application of lexical heuristics on the BDM case study, using

a set of reliable mathematical measures.

5. Evaluation Based on Reliable Mathematical

Measurements

We evaluated the automation aspect of our GAM approach based

on four mathematical metrics: Recall, Precision, F-Measure and

Overall. To define these metrics, we will present the following

sets of matching:

• Set A (false negatives): contains the correct alignments, but not

found automatically by our approach.

• Set B (true positives): contains the correct alignments that are

found automatically.

• Set C (false positives): contains the false matching links pro-

posed by our approach.

In the following sections we will present the quality metrics used,

we consider |A| = cardinal (A), |B| = cardinal (A), |C| = cardinal

(A), where cardinal represents the number of elements of the

treated set.

5.1 The Recall metric

The Recall reflects the part of the actual matching among the real

global matching. His mathematical formula is presented as follows:

This metric is between 0 and 1, its value tends to 1 if the number

of matching links not detected is minimal.

5.2 The precision metric

It reflects the share of real matching among all those found, its

mathematical formula is the following one:

This metric is between 0 and 1; its value tends to 1 if the matching

errors are minimal.

5.3 The f-measure metric

It represents the harmonic average of the Precision and Recall

metrics. the harmonic mean is the arithmetic mean of the inverse

of the terms, defined by the following formula:

The mathematical formula of the F-Measure is therefore:

This metric is between 0 and 1, it can be considered as a global

metric of quality matching calculation.

5.4 The overall metric

It quantifies the effort needed to add false negatives and remove

false positives. His formula is:

5.5 The evaluation of results

The following table 12 shows the results of the metrics found after

the generation of lexical matching by the NameMatching heuristic

following the BDM case study.

Table 12. Quality Measures results

 Measures

Meta-model’

Couples
Recall

Preci-

sion

F-

Measure
Overall

(SQL, Key Value) 0,6 1 0,75 0,6

(SQL, Document-
Store)

0,8 1
0,8888888

9
0,8

6 International Journal of Engineering & Technology

(SQL, Columnar) 0,875 1
0,9333333

3
0,875

FINAL Values
0,8571428

6
1

0,9230769
2

0,8571428
6

Figure 7 shows the histogram explaining the reliable values found,

this diagram shows that the metrics all have values that tend to-

wards 1 which shows the good quality of the matching found.

Fig.7: Measures results Histogram

6. Conclusion

In conclusion, we have presented in this article the results of our

work consisting in the automatic generation of lexical matching

applied on a case study composed of a heterogeneous system of

SQL and NoSql databases. The final evaluation of the results

found using mathematical metrics showed the validity of our heu-

ristics.

Currently we are working on the evaluation of structural matching

heuristics between heterogeneous meta-models, we are also work-

ing on the implementation of the GAM approach using .NET plat-

form and based on M.A.S (Multi-Agents System).

References

[1] Ibn Batouta, Z., Dehbi, R., Talea, M., & Hajoui, O. Automation in

code generation: Tertiary and systematic mapping review. In In-

formation Science and Technology (CiSt), 2017 4th IEEE Interna-
tional Colloquium on (pp. 200-205). IEEE.

[2] Ibn Batouta, Z., Dehbi, R., Talea, M., & Hajoui, O. Multi-criteria

analysis and advanced comparative study between automatic gener-
ation approaches in software engineering. Journal of Theoretical

and Applied Information Technology, 2016, 81.3: 609.

[3] Ibn Batouta, Z., Dehbi, R., Talea, M., & Hajoui, O, Generative au-
tomatic matching between heterogeneous meta-model’ systems

Journal of Engineering and Applied Sciences 2017 (In press).

[4] Ibn Batouta, Z., Dehbi, R., Talea, ‘’Generative matching between
heterogeneous meta-model’ systems based on hybrid heuristic’’

Journal of Information Technology Research, IGI Global 2018 (In

Press).
[5] Morin, Brice, et al. "A generic weaver for supporting product

lines." Proceedings of the 13th international workshop on Early
Aspects. ACM, 2008.

[6] Schmidt, Maik, and Tilman Gloetzner. "Constructing difference

tools for models using the SiDiff framework." Companion of the
30th international conference on Software engineering. ACM,

2008.

[7] Toulmé, Antoine, and I. Inc. "Presentation of EMF compare utili-
ty." Eclipse Modeling Symposium. 2006.

[8] Melnik, Sergey, Hector Garcia-Molina, and Erhard Rahm. "Similar-

ity flooding: A versatile graph matching algorithm and its applica-
tion to schema matching." Data Engineering, 2002. Proceedings.

18th International Conference on. IEEE, 2002.

[9] Lin, Yuehua, Jeff Gray, and Frédéric Jouault. "DSMDiff: a differ-
entiation tool for domain-specific models." European Journal of In-

formation Systems 16.4 (2007): 349-361.

[10] Xing, Zhenchang, and Eleni Stroulia. "UMLDiff: an algorithm for
object-oriented design differencing." Proceedings of the 20th

IEEE/ACM international Conference on Automated software engi-

neering. ACM, 2005.

[11] Nejati, Shiva, et al. "Matching and merging of statecharts specifica-

tions." Software Engineering, 2007. ICSE 2007. 29th International
Conference on. IEEE, 2007.

[12] Kolovos, Dimitrios S. "Establishing Correspondences between

Models with the Epsilon Comparison Language." ECMDA-FA 9
(2009): 146-157.

[13] Hajoui, O., Dehbi, R., Talea, M., & Batouta, Z. I. An advanced

comparative study of the most promising nosql and newsql data-
bases with a multi-criteria analysis method. Journal of Theoretical

and Applied Information Technology, 81(3), 579 2015.
[14] Hajoui, O ; R Dehbi ; M Talea ; Z Ibn Batouta , ‘’A Survey on Big

Data Interoperability’’, 5th International Conference on Multimedia

Computing and Systems (ICMCS'16) – IEEE Conference 29 Sep-
tember – 1 October 2016.

