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Abstract 
 

Generally, in cyber-physical systems, there are various attacks detected such as internet-based load altering attacks, False-Data Injection 

Attack (FDIA), stealthy deception attacks, covert attacks, time synchronization attacks, etc. Over the past decades, attack detection and 

secure control system design has a high interest due to the rapid growth of cyber security challenges by sophisticated attacks in cyber-

physical system like Internet-of-Things (IoT). Among various techniques, Transfer Entropy Measure (TEM) was introduced to detect 

four types of attacks like Denial-of-Service (DoS), replay, innovation-based deception attack and data injection attacks. Since, it discov-

ers the interaction behavior among pairs of entities generating by each cyber-physical systems. As well, conventional machine-learning 

based attack detection mechanisms have been successfully employed in IoT i.e., wireless sensors to detect cyber-attacks. However, such 

mechanisms have less accuracy and scalability with high computational complexity. Hence in this article, a novel distributed deep learn-

ing algorithm is proposed for cyber attack detection in IoT since deep learning algorithms try to learn high-level features from data in an 

incremental manner and solve the problem end to end. Here, the transfer-entropy is measured with different parameters like node, net-

work and channel for sensor measurements. Then, the obtained values are gathered as training dataset. Subsequently, Artificial Neural 

Network (ANN) and Deep Neural Network (DNN) are trained with training dataset to detect the existence of the attacks in cyber-

physical system. Finally, the average detection accuracy values of ANN and DNN are evaluated through the simulation results as 98.9% 

and 99.6% respectively. 
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1. Introduction 

Nowadays, reinforced safety and security requirements in cyber-

physical systems are excitedly designed due to its emergence and 

significance of communication networks. The security related 

accidents and smart grid attacks [1] are obviously indicating the 

impedance of such requirements since vulnerabilities in civil in-

frastructures and commercial processes may cause destroying 

consequences to financial system, public security and individual 

life. Many attack detection and secure control system design on 

certain types of attacks have the objective of designing detection 

schemes and constructing attack-resilient controllers according to 

the feature of the considered attacks. In several scenarios, such 

designs have high complexity for understanding what type of at-

tacks to be inserted into the system. Conversely, detection of at-

tack types is not always required since the major target is detect-

ing the existence of the attacks and removing it for ensuring se-

cure function. Therefore, systematic approaches have been devel-

oped for attack detection and secure estimation policies applicable 

to different attack scenarios. The problem of cyber attacks detec-

tion was resolved by using system and graph-theoretic schemes, 

cryptographic techniques and machine-learning algorithms. 

As well, efficient countermeasures are required to detect the exist-

ence of different attacks for dynamic systems which are affected 

by noises or other disturbances. As a result, TEM were introduced 

for anomaly detection in cyber-physical systems like IoT, smart 

grids, process control systems, etc [2]. In this method, transfer 

entropy was evaluated for both sensor measurements and innova-

tion sequences based on data-driven manner without relying on a 

model of the underlying dynamic system to detect the four types 

of attacks were considered such as Denial-of-Service (DoS), re-

play, innovation-based deception and data injection attacks [3]. 

The relationship between the countermeasures and the system 

parameters including noise statistics was estimated and also the 

time convergence of the countermeasures was ensured according 

to the conditions provided to observe an abnormal characteristic of 

the transfer entropy. 

However, the novel and emerging IoT application requires ad-

vanced cyber security controls, models and decisions distributed at 

the network. Though the above mentioned approach achieves 

better solutions, factors like system development flaws, increased 

attack surfaces and hacking skills have confirmed the certainty of 

detection mechanisms. Also, they have less accuracy and scalabil-

ity for cyber-attack detection in fog computing. Therefore, anoma-

ly detection in cyber-physical systems requires an improvement on 

detection performance by unsupervised deep learning algorithms. 

Hence in this article, a novel distributed deep learning scheme of 

cyber-attack detection in IoT is adopted. Deep learning algorithm 

provides more accurate and fast processing since it has self-

learning capability. It has been used in different fields such as 
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image processing, pattern recognition and computer vision for its 

advantages in training stability and scalability of huge amount of 

data. Due to merits of this algorithm, the investigations are carried 

out in application of deep learning algorithm in security domains. 

In this algorithm, the transfer-entropy estimation problem is for-

mulated as an adaptive estimation problem. The transfer-entropy 

based causality countermeasures are obtained with different pa-

rameters like node, network and channel for sensor measurements. 

Then, the obtained values are gathered as training dataset. Moreo-

ver, the deep learning algorithms such as ANN and DNN are 

trained with training dataset to generate different attack models. 

As a result, the relationship between the counter measures and the 

considered parameters is learned from training dataset. This 

learned model is utilized for predicting existence of attacks in 

cyber-physical system by improving the accuracy, scalability and 

reducing the computational complexity. This proposed model 

differs from the conventional approaches by learning the transfer 

entropy measures using deep learning algorithm and providing the 

simplest attack detection. The rest of the article is organized as 

follows: Section 2 presents the research works related to the 

cyber-attacks detection mechanisms. Section 3 explains the pro-

posed methodology in IoT. Section 4 illustrates the performance 

effectiveness of the proposed technique. Section 5 concludes the 

research work.  

2. Literature survey 

In this section, the existing methods for different attacks detection 

in cyber-physical systems are discussed in brief. In addition, the 

limitations in those methods are also observed to improve the 

detection performance. Distributed internet-based load altering 

attacks [4] were proposed against smart power grids. Such attacks 

were launched by compromising direct load control command 

signals, demand side management price signals or cloud computa-

tion load distribution algorithms for affecting the load at the most 

significant positions in the grid to cause the circuit overflow or the 

other malicious activities and damage the power system equip-

ment. By using this technique, different types of practical loads 

that can be vulnerable to internet-based load altering attacks were 

identified. In addition, preventive techniques were studied to miti-

gate such attacks or reduce the damage caused by them. However, 

the cost of load prevention was high.  

Detection of FDIA [5] was proposed in cyber-physical DC micro 

grids. In this technique, the attack detection problem was formu-

lated as detecting a modification in the set of candidate invariants. 

The candidate invariants were generated by using Hynger that 

provides an interface between Simulink/Stateflow (SLSF) models 

and the Daikon tool. Also, a hybrid automation of cyber-physical 

DC microgrid was presented for obtaining the reach sets via 

reachability analysis. As well, the original invariants were ob-

tained after verifying whether the reach sets were contained within 

the candidate invariants. But, the computational complexity of this 

method was high.  

Centralized and distributed monitors [6] were proposed for attack 

detection and identification. Initially, optimal centralized attack 

detection and identification monitors were designed. Then, an 

optimal distributed attack detection filter was designed based on 

the waveform relaxation scheme. Furthermore, a sub-optimal dis-

tributed attack identification process was designed to ensure the 

performance guarantees. However, the computational complexity 

of this method was high. 

Secure estimation and control [7] was proposed for cyber-physical 

systems under adversarial attacks. In this approach, a novel simple 

characterization of the maximum number of attacks was provided 

that can be detected and corrected as a function of the pair of the 

system. Also, the state of a system was not precisely reconstructed 

when more than half the sensors were attacked. As well, a secure 

local control loop was designed for improving the resilience of the 

system. Moreover, an efficient algorithm was proposed for esti-

mating the state of the plant despite attacks while number of at-

tacks was smaller than a threshold. However, computational com-

plexity was high due to one-shot estimator.  

On finite-state stochastic modelling and secure estimation of 

cyber-physical systems [8] were proposed. In this method, the 

problem of secure state estimation and attack detection in cyber-

physical system was considered. Initially, a stochastic modelling 

method was proposed and attacked system was modelled as a 

finite-state hidden Markov model with switching transition proba-

bility matrices controlled by a Markov decision process. Accord-

ing to this method, a joint state and attack estimation problem was 

formulated and resolved. An un-normalized joint state and attack 

distribution conditioned on the sensor measurement data was in-

troduced by using the change of probability measure scheme for 

optimal estimation by evaluating the normalized marginal condi-

tional distributions. However, computation burden was high and 

the parameter estimation problem for the attack process was not 

resolved.  

Through this survey, it is observed that the previous approaches 

are mostly based on statistical measures. Such conventional statis-

tical measure models or machine learning approaches have high 

computational complexity due to requirement of large amount of 

data and less detection accuracy. As a result, deep learning algo-

rithm like DNN and ANN are applied to detect the attacks on 

cyber-physical systems with reduced computational complexity 

and maximized detection accuracy. 

3. Proposed methodology 

In this proposed technique, a simple system model [3] is consid-

ered for linear Gaussian process that serves as a reasonable ap-

proximation of the considered system. Also, it is useful to under-

stand how the countermeasures control the detection of the modi-

fications caused by the secret attacks. The main aim of this tech-

nique is introducing deep learning based generic countermeasures 

that are having the ability for detecting the existence of attacks 

and evaluating the effectiveness of the countermeasures in attack 

detection. Four types of attacks are considered such are described 

in below. 

• DoS Attacks: It denies the successful transmission of data 

between nodes in the control systems. The types of DoS at-

tacks are given in Fig. 1. 

 

 
Fig. 1: Types of DoS Attacks. 

 

• Replay Attacks: It prevents the system nodes from knowing 

the true data and generally consists of two phases. In the 

first phase, an adversary records the process data for a spe-

cific time period and replays the recorded data continuously 

in the second phase. Thus, destruction on the system is per-

formed in silent manner.  

• Innovation-based Deception Attacks: While the measure-

ments are pre-processed on the sensor such that innovation 

sequences are transmitted to the remote controller, an adver-

sary will try for degrading the system performance by per-

forming attacks on the innovation process. 

DoS At-
tacks 

Distributed DoS Attacks (DDoS) 

Application layer DDoS Attacks 

Advanced Persistent DoS Attacks  

DoS as a Service  
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• Data Injection Attacks: It allows an adversary to inject un-

trusted input to the system that alters the normal system 

functions resulting in data loss, data theft, etc. Assume the 

type of attack on the system is anonymous. 

 

The transfer-entropy  [9] between two sensor measurement 

processes  and  as well innovative processes  and at time 

 is defined by using the positive integer-valued parameters 

 and  as follows: 

 

                                                                 (1) 

 

Where , 

 

          (2) 

 

Similarly, 

 
  

 

Where , 

 

  

 

In above equations,  is the relevant Probability Density Func-

tions (PDF). For the above transfer-entropy measures, the conver-

gence property is analysed using two conditions [3]. In addition, 

different parameters such as node, network and channel parame-

ters are also estimated for both sensor and innovative processes. 

Node parameter refers node density, capacity, etc. Network pa-

rameter refers delay, packet loss, etc. Channel parameter refers 

Signal-to-Noise Ratio (SNR), transmission bandwidth, etc. The 

estimated parameter values are gathered as training database. 

Once the training dataset is obtained, ANN and DNN are used to 

train the dataset for creating the different types of attack models 

by providing the dataset with those measured parameters as input. 

Here, four types of attacks are identified such as DoS, replay, 

innovation-based deception and data injection attacks. Fig. 2 show 

that the attack detection mechanism using this proposed system. 

3.1. ANN and DNN classification 

The estimated parameters are given to train the ANN classifier. 

ANN has three layers namely input, hidden and output layer. The 

probabilities are denoted as  are given to the input layer of 

neurons. In this work,  includes transfer entropy of sensor meas-

urement and innovative processes, node, network and channel 

parameters. The hidden layer of ANN is defined as tan-sigmoid 

transfer function. 

 

                                                                         (3) 

 

Each input has its own weight values as  and the 

weighted sum of the inputs is done by the adder function as fol-

lows: 

 

                                                                               (4) 

 

The output layer of ANN is described by the following equation: 

 

                                                                  (5) 

 

In the equation (5),  is the output neuron value;  is the trans-

fer function,  refers the weight values,  denotes input data 

values and  refers to the bias value. Based on the output neuron 

values, the relationship between countermeasures and the consid-

ered parameters is learned which generates the attack models. By 

using this learned attack models, the existence of different types of 

attacks in cyber-physical system is predicted. The basic structure 

of ANN and DNN is shown in Fig. 3 and Fig. 4. The parameter 

values for deep learning algorithms are given in Table 1.  

 
Table 1: DNN Parameters 

Parameters Values 

Input layer neurons 120 

First hidden layer neurons 80 
Second hidden layer neurons 80 

Third hidden layer neurons 50 

Output layer neurons 2 
Learning rate 0.01 

Transfer function Tan-Sigmoid 

Maximum number of iteration 50 

 

During training, learning rate is used to control the weight and 

bias value changes in each iteration process i.e., each updation of 

weight and bias values. By configuring the parameters mentioned 

in Table 1, training dataset can be trained using deep learning 

algorithms. 

Pseudocode of the Proposed System 

Step 1: Initialize the cyber-physical system using number of sen-

sors with set of process. 

Step 2: Estimate the transfer entropy of each process using (1) and 

(2). 

Step 3: Compute the different parameters like node, network and 

channel. 

Step 4: Collect the training dataset with number of computed pa-

rameters and transfer entropy. 

Step 5: Learn the training dataset using ANN and DNN algorithm. 

Step 6: Predict the existence of the attacks. 

4. Result and discussion 

In this section, the performance effectiveness of the proposed 

method is evaluated in MATLAB 2018a by using the most popu-

lar dataset such as DARPA’s NSL-KDD dataset that consists of 

selected records of the complete KDD dataset [13, 14]. It has both 

training and testing dataset and widely used in attacks detection. 

This dataset has different advantages as follows: 

• There are no duplicate records in the testing dataset. Hence, 

the performance of the learners is not biased by the detec-

tion methods which have better detection accuracies on the 

frequent records. 

• The amount of records in the training and testing datasets 

are realistic which makes it inexpensive for performing the 

experiments on the complete dataset without the require-

ment for randomly selecting a small segment.  

• It does not contain redundant records in the training dataset. 

Therefore, the classifiers will not be biased towards more 

frequent records. 

 

It includes 10% of original dataset i.e., approximately 4,94,020 

single connection vectors and each of which has 41 features such 

as time period, protocol, service type, source bytes, destination 

bytes and normal or specific attack labels. The traffic distribution 

of NSL-KDD dataset is given in Table 2.  

 
Table 2: Traffic Distribution of NSL-KDD Dataset 

Traffic Training  Testing 

Normal 67,343 9,711 

Attack 58,630 12,833 

Total 1,25,973 22,544 
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Fig. 2: Proposed System for Cyber Attack Detection. 

 
Fig. 3: Basic Structural Design of ANN. 

 
Fig. 4: Architecture of DNN Algorithm. 

 

In this experiment, the detection accuracy and sensitivity of ANN 

and DNN based cyber attacks detection schemes for each type of 

attack is compared to the existing TEM approach. Since sensitivity 

evaluates how good the system is performed a positive detection 

and also detection accuracy measures how correctly a detection 

system detects and excludes a given condition. In addition to these 

metrics, Receiver Operating Characteristic (ROC) is also analysed. 

These metrics are considered for scalability measure. 

4.1. Detection accuracy 

Detection accuracy is defined as the fraction of anomaly systems 

and normal cyber-physical systems correctly detected. It is calcu-

lated as follows: 

 

                         (6) 

 

Here, TP is True Positive, TN is True Negative, FN is False Nega-

tive and FP is False Positive. Table 3 shows the detection accuracy 

values of proposed and existing approaches in cyber attack detec-

tion. 

 
Table 3: Comparison of Detection Accuracy (%) 

Types of Attacks TEM ANN DNN 

DoS Attack 93.33 95.33 98 
Replay Attack 88 90 94 

Innovation-based Deception Attack  85.88 88.24 91.76 

Data Injection Attack 91.46 94.51 96.95 
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Fig. 5: Comparison of Detection Accuracy. 

 

Fig. 5 shows that the comparison of detection accuracy for both 

ANN and DNN-based cyber attacks detection compared to the 

TEM. From the graph, it is observed that the DNN and ANN 

based cyber attack detection achieves better detection accuracy 

compared to the TEM according to the various types of attacks. 

Clearly, it demonstrates that existence of the attacks is efficiently 

predicted by learning the transfer-entropy measures that reduces 

the computational complexity. 

4.2. Sensitivity  

Sensitivity is defined as the fraction of anomaly systems correctly 

detected and is used for evaluating the uncertainty in the output of 

attack model may be assigned to different sources of uncertainty 

in its inputs. It is computed as follows: 

 

                                                       (7) 

 

Table 4 shows the sensitivity values of proposed and existing ap-

proaches in cyber attack detection. 

 
Table 4: Comparison of Sensitivity 

Types of Attacks TEM ANN DNN 

DoS Attack 0.93 0.95 0.98 

Replay Attack 0.71 0.83 0.92 

Innovation-based Deception Attack 0.50 0.75 0.75 
Data Injection Attack 0.91 0.94 0.97 

 

 
Fig. 6: Comparison of Sensitivity Analysis. 

 

Fig. 6 illustrates that the analysis of sensitivity for both ANN and 

DNN-based cyber attacks detection compared to the TEM ap-

proach. From the graph, it is observed that the DNN and ANN-

based cyber attack detection achieves better sensitivity compared 

to the TEM approach according to the various types of attacks. 

Obviously, it proves that existence of the attacks is efficiently 

predicted by learning the transfer-entropy measures that reduces 

the computational complexity. 

4.3. ROC analysis 

The ROC curve is defined as the relation between the FP rate and 

TP rate. The values of ROC curves of TEM, ANN and DNN 

methods for detecting DoS attacks are given in Table 5. 

 
Table 5: Comparison of ROC Curves for DoS Attack 

FP Rate 
TP Rate % of Improvements 

TEM ANN DNN DNN & TEM DNN & ANN 

0 0.9 0.95 0.98 8.89% 3.15% 

0.2 0.89 0.92 0.96 7.87% 4.35% 

0.4 0.87 0.91 0.96 10.34% 5.50% 
0.6 0.86 0.91 0.96 11.63% 5.50% 

0.8 0.86 0.91 0.96 11.63% 5.50% 

1 0.86 0.91 0.96 11.63% 5.50% 

 

 
Fig. 7: ROC Curves for Dos Attack. 

 

Fig. 7 illustrates that the analysis of ROC curves for DoS attack 

detection using both ANN and DNN-based cyber attacks detection 

compared to the TEM approach. From the graph, it is observed 

that the effectiveness of DNN in that the TP value is 0.96 while 

the FP value accounts less than 0.2. As a result, DNN-based cyber 

attack detection behaves observably better than the other ap-

proaches for detecting DoS attacks.  

The values of ROC curves of TEM, ANN and DNN methods for 

detecting replay attacks are given in Table 6. 

 
Table 6: Comparison of ROC Curves for Replay Attack 

FP Rate 
TP Rate % of Improvements 

TEM ANN DNN DNN & TEM DNN & ANN 

0 0.92 0.93 0.99 7.61% 6.45% 

0.2 0.90 0.92 0.99 10% 7.61% 

0.4 0.89 0.91 0.99 11.24% 8.80% 
0.6 0.89 0.91 0.99 11.24% 8.80% 

0.8 0.89 0.91 0.98 10.11% 7.70% 

1 0.89 0.91 0.97 8.99% 6.60% 

 

 
Fig. 8: ROC Curves for Replay Attack. 

 

Fig. 8 illustrates that the analysis of ROC curves for replay attack 

detection using both ANN and DNN-based cyber attacks detection 

compared to the TEM approach. From the graph, it is observed 

that the effectiveness of DNN in that the TP value is 0.99 while 

the FP value accounts less than 0.2. Consequently, DNN-based 

cyber attack detection behaves noticeably better than the other 

approaches for detecting DoS attacks.  
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The values of ROC curves of TEM, ANN and DNN methods for 

detecting innovation-based deception attack are given in Table 7. 

 
Table 7: Comparison of ROC Curves for Innovation-Based Deception 

Attack 

FP Rate 
TP Rate % of Improvements 

TEM ANN DNN DNN & TEM DNN & ANN 

0 0.90 0.96 0.99 10% 3.13% 
0.2 0.86 0.89 0.99 15.12% 11.24% 

0.4 0.85 0.89 0.98 16.47% 10.11% 

0.6 0.85 0.89 0.98 16.47% 10.11% 
0.8 0.85 0.89 0.972 14.35% 9.21% 

1 0.85 0.89 0.96 12.94% 7.87% 

 

 
Fig. 9: ROC Curves for Innovation-based Deception Attack. 

 

Fig. 9 illustrates that the analysis of ROC curves for innovation-

based deception attack detection using both ANN and DNN-based 

cyber attacks detection compared to the TEM approach. From the 

graph, it is observed that the effectiveness of DNN in that the TP 

value is 0.99 while the FP value accounts less than 0.2. Accord-

ingly, DNN-based cyber attack detection behaves clearly better 

than the other approaches for detecting innovation-based decep-

tion attack. 

The values of ROC curves of TEM, ANN and DNN methods for 

detecting data injection attacks are given in Table 8. 

 
Table 8: Comparison of ROC Curves Data Injection Attack 

FP Rate 
TP Rate % of Improvements 
TEM ANN DNN DNN & TEM DNN & ANN 

0 0.86 0.90 0.99 15.12% 10% 

0.2 0.84 0.89 0.99 17.86% 11.24% 
0.4 0.82 0.88 0.98 19.51% 11.36% 

0.6 0.82 0.88 0.975 18.90% 10.80% 

0.8 0.82 0.88 0.968 18.05% 10% 
1 0.82 0.88 0.96 17.07% 9.10% 

 

 
Fig. 10: ROC Curves for Data Injection Attack. 

 

Fig. 10 illustrates that the analysis of ROC curves for data injec-

tion attack detection using both ANN and DNN-based cyber at-

tacks detection compared to the TEM approach. From the graph, it 

is observed that the effectiveness of DNN in that the TP value is 

0.99 while the FP value accounts less than 0.2. Thus, DNN-based 

cyber attack detection behaves evidently better than the other ap-

proaches for detecting data injection attacks. 

5. Conclusion 

In this article, cyber attack detection is improved by proposing a 

novel distributed deep learning scheme in cyber-physical systems. 

By using this scheme, the transfer-entropy based causality coun-

termeasures are obtained with node, network and channel parame-

ters for both sensor measurements and innovation sequences to 

form training dataset. Then, ANN and DNN are applied to the 

training dataset for creating four types of attack models. Moreover, 

the relationship between the countermeasures and the considered 

parameters is learned from training dataset. This learned model is 

utilized to predict the existence of attacks in cyber-physical sys-

tem. Thus, the proposed scheme achieves better cyber security 

than the classical cyber attack detection schemes and scalability in 

terms of detection accuracy, sensitivity and ROC. Through the 

simulation results, it is noticed that anomaly detection using DNN 

achieves higher performance than the other attacks detection ap-

proaches.  

References 

[1] Liu Y, Ning P, & Reiter MK (2011), “False data injection attacks 
against state estimation in electric power grids”, ACM Transactions 

on Information and System Security (TISSEC), 14(1), 13. 

https://doi.org/10.1145/1952982.1952995. 
[2] Mo Y, Chabukswar R, & Sinopoli B (2014), “Detecting integrity 

attacks on SCADA systems”, IEEE Transactions on Control Sys-

tems Technology, 22(4), 1396-1407. 
https://doi.org/10.1109/TCST.2013.2280899. 

[3] Shi D, Guo Z, Johansson KH, & Shi L (2018), “Causality counter-

measures for anomaly detection in cyber-physical systems”, IEEE 
Transactions on Automatic Control, 63(2), 386-401. 

https://doi.org/10.1109/TAC.2017.2714646. 

[4] Mohsenian-Rad AH, & Leon-Garcia A (2011), “Distributed inter-
net-based load altering attacks against smart power grids”, IEEE 

Transactions on Smart Grid, 2(4), 667-674. 

https://doi.org/10.1109/TSG.2011.2160297. 
[5] Beg OA, Johnson TT, & Davoudi A (2017), “Detection of false-

data injection attacks in cyber-physical dc microgrids”, IEEE 

Transactions on Industrial Informatics, 13(5), 2693-2703. 
https://doi.org/10.1109/TII.2017.2656905. 

[6] Pasqualetti F, Dörfler F, & Bullo F (2013), “Attack detection and 

identification in cyber-physical systems”, IEEE Transactions on 
Automatic Control, 58(11), 2715-2729. 

https://doi.org/10.1109/TAC.2013.2266831. 

[7] Fawzi H, Tabuada P, & Diggavi S (2014), “Secure estimation and 
control for cyber-physical systems under adversarial attacks”, IEEE 

Transactions on Automatic Control, 59(6), 1454-1467. 

https://doi.org/10.1109/TAC.2014.2303233. 
[8] Shi D, Elliott RJ, & Chen T (2017), “On Finite-State Stochastic 

Modeling and Secure Estimation of Cyber-Physical Systems”, 

IEEE Trans. Automat. Contr., 62(1), 65-80. 
https://doi.org/10.1109/TAC.2016.2541919. 

[9] Yu W, & Yang F (2015), “Detection of causality between process 

variables based on industrial alarm data using transfer entropy”, En-
tropy, 17(8), 5868-5887. https://doi.org/10.3390/e17085868. 

[10] Duan P, Yang F, Chen T, & Shah SL (2013), “Direct causality de-

tection via the transfer entropy approach”, IEEE transactions on 
control systems technology, 21(6), 2052-2066. 

https://doi.org/10.1109/TCST.2012.2233476. 

[11] Duan P, Yang F, Shah SL, & Chen T (2015), “Transfer zero-
entropy and its application for capturing cause and effect relation-

ship between variables”, IEEE Transactions on Control Systems 
Technology, 23(3), 855-867. 

https://doi.org/10.1109/TCST.2014.2345095. 

[12] Marques VM, Munaro CJ, & Shah SL (2015), “Detection of causal 
relationships based on residual analysis”, IEEE Transactions on 

Automation Science and Engineering, 12(4), 1525-1534. 

https://doi.org/10.1109/TASE.2015.2435897. 
[13] Tavallaee M, Bagheri E, Lu W, & Ghorbani, AA (2009), “A de-

tailed analysis of the KDD CUP 99 data set”, In Computational In-

telligence for Security and Defense Applications, 2009. CISDA 
2009. IEEE Symposium on (pp. 1-6). IEEE. 

https://doi.org/10.1109/CISDA.2009.5356528. 

[14] KDD’99 Competition Dataset. Available on: 
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999. 

https://doi.org/10.1145/1952982.1952995
https://doi.org/10.1145/1952982.1952995
https://doi.org/10.1109/TCST.2013.2280899
https://doi.org/10.1109/TCST.2013.2280899
https://doi.org/10.1109/TAC.2017.2714646
https://doi.org/10.1109/TAC.2017.2714646
https://doi.org/10.1109/TSG.2011.2160297
https://doi.org/10.1109/TSG.2011.2160297
https://doi.org/10.1109/TII.2017.2656905
https://doi.org/10.1109/TII.2017.2656905
https://doi.org/10.1109/TAC.2013.2266831
https://doi.org/10.1109/TAC.2013.2266831
https://doi.org/10.1109/TAC.2014.2303233
https://doi.org/10.1109/TAC.2014.2303233
https://doi.org/10.1109/TAC.2016.2541919
https://doi.org/10.1109/TAC.2016.2541919
https://doi.org/10.3390/e17085868
https://doi.org/10.3390/e17085868
https://doi.org/10.1109/TCST.2012.2233476
https://doi.org/10.1109/TCST.2012.2233476
https://doi.org/10.1109/TCST.2014.2345095
https://doi.org/10.1109/TCST.2014.2345095
https://doi.org/10.1109/TASE.2015.2435897
https://doi.org/10.1109/TASE.2015.2435897
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/CISDA.2009.5356528

