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Abstract 
 
New materials are essential for the development and advancement in material manufacturing technology. A brief overview of the history 
of human civilization shows that from stone tools to the steel age and then to the space age, had proven that the revolution of materials is 

key for new technology development. Today, it is known that phenomenon such as interface delamination and de-bonding on a conven-
tional thermal barrier coating (which are present in an environment with high temperature) degrades the performance of the material and 
its mechanical properties. In overcoming this adverse effects, two or more types of materials such as ceramic and metal are composed 
together creating a type of composite named Functionally Graded Material (FGM) in the literature. In studying the behavior of FGM, 
models based on a theoretical derivation of Euler-Bernoulli beam theory using the superposition method clearly demonstrate the superi-
ority of two different configurations of FGM against the conventional coated beam. The FGM coated and under coated models apply a 
power-law function on the material properties across the FGM layers in comparing the effects of thermo-mechanical loading to those of 
conventional coated beam. Specifically, the results show that FGM drastically reduces stress concentration preventing the initiation of 

any delamination or de-bonding. 
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1. Introduction 

This document Functionally Graded Materials (FGMs) which are 

the composition of the component materials, usually gradually 
changing in one direction. Therefore, FGMs are considered as 
inhomogeneous composites that material properties differ 
continuously [1]. Due to change material properties with 
dimension in FGMs, by a function f(z) can be defined the material 
properties. This kind of materials were offered by a group of Japan 
scientists in 1984 [2], and extended by other scientists [3, 4]. In 
Figure one shows three kind of material functions in composite 

structures. The first graph, the function of material along the z-
direction is constant. It means the homogeneous materials (Figure 
1.a). The second case, the composite materials are a combination 
of two different homogeneous materials (Figure 1.b). In the third 
one, the function of materials f(z) changes gradually along the z-
direction (Figure 1.c). Some researchers are considered FGM as a 
composition of several narrow layers [5]. FGMs are usually 
combining ceramics and metals which were at first considered as a 
thermal barrier for high-temperature surrounding. The 

composition of the ceramic/metal FGM, material properties from 
ceramic side gradually change to the metal side. This 
configuration of FGMs causes to decrease de-bonding between 
FGM layer and homogeneous layer of composite and also thermal 
stresses. The ceramic/metal FGM has ceramic characteristics like 
heat and corrosion resistance, and metal characteristics like high 
toughness and mechanical strength, simultaneously. Because of 
unique properties of ceramic/metal FGMs, The greatest 

community of researchers studied the thermal and mechanical 

properties of this kind of composites [6-9]. 
 

 
Fig. 1: Illustrative material function in three kind of structures: (a) homog-

enous material, (b) conventional composite (junction), (c) FGMs [10] 

 

The intent of this article is to comparison and investigate the me-

chanical behavior of a clamped-clamped FGM coated rectangular 
beam and ceramic coated rectangular beam subjected to thermal 
transverse excitation and transverse mechanical loading (Figure 2).  
 

 
Fig. 2: Clamped coated beam under thermal and uniformed distributed 

load 
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Material properties are function in the z-direction (thickness di-
mension). For FGM layer, the material properties are based on 
Power-law function. The ratio of the length of the beam to its 
thickness is fifty. Because of this ratio is more than 20, it will be 
considered as thin beam [11]. Therefore, Euler and Bernoulli 
Beam Theory (EBT) or Classical Beam Theory (CBT) is used to 
analyze the beam.  This equation of FGM and the ceramic coated 
rectangular beam is solved by superposition method. 

2. Formulations 

2.1 Material Properties of FGMs 

FGMs are mostly used as a thermal barrier in high-temperature 
surrounding and field. Under high- temperature environment, the 
material properties of the material will be changed proportion with 
up and down the temperature field. Thus, the material properties 
of FGMs are a function of temperature. These material properties 

such as thermal conductivity, the coefficient of thermal expansion, 
modulus of elasticity and etc., can be indicated as a nonlinear 
function of temperature [12, 13]: 
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Where
0P , 

1P , 
1P , 

2P  and 
3P  are temperature coefficients. The 

value of each coefficient are listed in table 1-3 for different ceram-
ics and metals [14]. 

 

Table 1: Thermal conductivity of ceramics and metals (W/m K) 

Material P0 p-1 P1 P2 P3 

Zirconia 1.7000 0 1.276x10
-

4 
6.648x10

-

8 
0 

Aluminum 

oxide 

-

14.087 

-1123.6 -

6.227x10
-

3 

0 0 

Silicon 

Nitride 

13.723 0 -

1.032x10
-

3 

5.466x10
-

7 

-

7.876x10
-

11 

Ti-6Al-4V 1.0000 0 1.704x10
-

2 

0 0 

Stainless 

Steel 

15.379 0 -

1.264x10
-

3 

2.092x10
-

6 

-

7.223x10
-

10 

Nickel
a 

187.66 0 -

2.869x10
-

3 

4.005x10
-

6 

-

1.983x10
-

9 

Nickel
b
 58.754 0 -

4.614x10
-

4 

6.670x10
-

7 

-

1.523x10
-

10 

a
 For 300K 635T K    ,  

b
 For 635K T  

 

 

Table 2: Coefficient of thermal expansion of ceramics and metals (1/K) 
Material P0 p-1 P1 P2 P3 

Zirconia 244.27x10
9 

0 -

1.371x10
-

3 

1.214x10
-

6 
-

3.681x10
-

10
 

Aluminum 

oxide 

349.55x10
9 

0 -

3.853x10
-

4 

4.027x10
-

7 
-

1.673x10
-

10
 

Silicon 

Nitride 

348.43x10
9
 0 -

3.070x10
-

4 

2.160x10
-

7 
-

8.946x10
-

11
 

Ti-6Al-4V 122.56x10
9
 0 -

4.586x10
-

4 

0 0 

Stainless 

Steel 

201.04x10
9
 0 3.079x10

-

4 
-

6.534x10
-

0
 

7 

Nickel
 

223.95x10
9
 0 -

2.794x10
-

4 

3.998x10
-

9 
0

 

 

Table 3: Modulus of elasticity of ceramics and metals (Pa) 

Material P0 p-1 P1 P2 P3 

Zirconia 12.766x10
-

6 

0 -

1.491x10
-

3 

1.006x10
-

5 

-

6.778x10
-

11
 

Aluminum 

oxide 

6.8269x10
-

6 

0 1.838x10
-

4 

0 0 

Silicon 

Nitride 

5.8723x10
-

6
 

0 9.095x10
-

4 
0

 
0 

Ti-6Al-4V 7.5688x10
-

6
 

0 6.638x10
-

4 
-

3.147x10
-

6
 

0 

Stainless 

Steel 

12.330x10
-

6
 

0 8.086x10
-

4 
0

 
0

 

Nickel
 

9.9209x10
-

6
 

0 8.705x10
-

4 
0

 
0

 

 

FGM is a composition of metal and ceramic volume fraction 
which is represented in relation to  
 

1m cV V                                                                                       (2) 

 
Power-law distribution is a mathematical function of the volume 

fraction of the composition. This function has been used broadly 
in several numbers of research investigation by several researchers 
[15-19]. The volume fraction of the power-law function of FGM 
structures can be written as below [20]: 
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Where h is the thickness of the FGM structure and n is the materi-

al parameter. When 0n   the FGM layer is a fully metal layer or 

when n   the layer is fully ceramic. Thus based on the power 

law function the material properties vary depending on the posi-
tion and amount of n  in the layer. Therefore, the material proper-

ties are varied through the thickness of FGM layer as follow ac-
cording to power law function.  
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Where , ,c c cE k  are the modulus of elasticity, thermal expansion, 

and thermal conductivity of ceramic as shown in Figure 3, respec-

tively at the top of the FGM layer 
2

h
z

 
  

 
 and , ,m m mE k  are 

modulus elasticity, thermal expansion, and thermal conductivity of 

metal respectively at the bottom of the FGM layer 
2

h
z

 
 

 
. It 

should be noted, Poisson’s ratio is considered to be a constant for 
composite structure [21].  

The distribution of material properties in the thickness direction of 
FGM layer with power-law function are plotted in Figure 4 to 6. 
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Fig. 3: Material properties throughout the thickness of FGM layer [22] 
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Fig. 4: The dispensation of Young’s Modulus in the thickness direction of 

FGM layer  
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Fig. 5: The dispensation of thermal conductivity in the thickness direction 

of FGM layer  
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Fig. 6: The dispensation of Thermal expansion coefficient in the thickness 

direction of FGM layer  

2.2 Composite Models of Beam Structure 

Three composite models as a Thermal Barrier Coating (TBC) are 
considered in beam structure. These three models are based on the 
arrangement of the coated layer was categorized. These three 
models of the coating are as follows: 
 

2.2.1. Homogeneous Coating (HC) Model  
 
This model is consisting of substrate layer at the bottom and ce-
ramic homogeneous coating layer at the top of the beam as shown 
in Figure 7. The diversification of material properties through the 
thickness is expounded by [21]: 
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Fig. 7: Isometric sketch of HC model [23] 
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2.2.2. Functionally Graded Coating (FGC) Model  

 
In FGC.model, FGM layer is located as a coated layer on top and 
homogeneous substrate layer on the bottom of the beam (Figure 8). 
The variation of material properties through the thickness is 
expound by: 
 

        

   

1 2

2

1 2 2 1

2 1 1 2

2
,

2 2

,
2 2

n

f hc h hc

h

h h
z

E z T E T E T E T
h

h h h h
for z

h h h h
E z T E T for z

  
   
    

 
 
 

 
  

 
  

           (8) 

 

        

   

1 2

2

1 2 2 1

2 1 1 2

2
,

2 2

,
2 2

n

f hc h hc

h

h h
z

z T T T T
h

h h h h
for z

h h h h
z T T for z

   

 

  
   
    

 
 
 

 
  

 
  

            (9) 

 



716 International Journal of Engineering & Technology 

 

        

   

1 2

2

1 2 2 1

2 1 1 2

2
,

2 2

,
2 2

n

f hc h hc

h

h h
z

k z T k T k T k T
h

h h h h
for z

h h h h
k z T k T for z

  
   
    

 
 
 

 
  

 
  

            (10) 

 

   
Fig. 8: Isometric sketch of FGC model [21] 

 

2.2.3. Homogeneous-Functionally Graded Coating (H-FGC) 

Model 

 
 H-FGC model consists of three layers. The ceramic coated layer, 
FGC layer and substrate layer which are located from top to bot-
tom of the beam respectively (Figure 9). The variety of material 
properties through the thickness is expounded by: 
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Fig. 9: Isometric sketch of H-FGC model [21] 

2.3 Temperature Distribution Equation 

It is presumed that the beam is without stress in the early stages at 

0T  and then is exposed to a temperature change  0T T T    

which is altered in the direction of the thickness (z-direction) and 
constant in other directions (x-y plane).  The temperature distribu-
tion throughout the thickness of structure can be acquired by re-
solving a heat transfer equation. 
 

  0
d dT

k z
dz dz

 
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 
                                                                    (14) 

 
The linear equation of temperature distribution of single layer of 

isotropic material with boundary conditions 
uT T  at 

2
hz     

and  
LT T  at 

2
hz    , with solving Equation (14) is 
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                                                       (15) 

 
The temperature change equation across the thickness of single 
FGM layer as shown in Figure 3 can be obtained by substituting 
Equation (4) into Equation (14) and then solving with boundary 

conditions 
cT T  at 

2
hz    and 

mT T  at 
2

hz   . Thus, a 

nonlinear equation of altering temperature through thickness of 
single FGM layer is [24]  
 

     f c m cT z T T T z                                                            (16) 

 

Where 
cT  and 

mT  are the temperatures at top and bottom surface 

of single FGM layer and 
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2.4 Governing Equation of Beam 

 
The hypotheses of the EBT or CBT, similar to the Kirchhoff hy-
pothesis that experimental observations present that these hypoth-
esizes are reasonable for long, slender beams consist of isotropic 
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materials with solid cross-sections. The kinematic assumption will 
be as [25, 26]: 

 The deflection of the beam  0 ,w x z  (vertical displacement a 

point on the mid-plane) of any points on the cross-section are 
linear (Figure  10). 

 After bending the deformation (lateral and longitudinal dis-

placement) throughout the mid-plane of the beam is zero. 

 The normal cross-sections to mid-plane of the beam after 

deformation will be remain plane and orthogonal to the beam 
x-axis (Figure  10). 

 

 
Fig. 10: Deformation of cross-section in EBT [26]] 

 

At any point of the beam in the z and x directions displacements 
are 
 

   
 

 

   

0

0

, , ,

, , 0

, ,

dw x
u x y z u x y z

dx

v x y z

w x y z w x

 





                                                   (18) 

 

In Figure 10,  0 ,u x y  is shown as a displacement on the mid-

plane and because of the second assumption, it is equal to zero. 

As a consequence of the assumptions, shear strain xy  and normal 

strain 
z  are negligible. Thus the strain relations can be expressed 

as:   
 

2

2

0

xx x

yy xy zz

du d w
z z

dx dx
 

  

    

  

                                                         (19) 

 

Where 
x  is the curvature of the beam. 

Based on Hooke’s law, the stress-strain relation for FGM beam in 
plane stress condition is 
 

     , ,xx xE z T z z T T z                                                 (20) 

 
The concept of bending moment is defined as 

 

2

2

h

x xx

h

M bz dz



                                                                            (21) 

Where, h and b respectively are height and width of the beam. 
The bending moment by putting Equation (20) into Equation (21) 
can be obtained as 
 

x xx x TM D M  
                                                                    (22) 

 
The flexural rigidity of the beam and thermal moment are given 

by: 
 

 

     

2
2

2

2

2

,

, ,

h

xx

h
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h

D bE z T z dz

M bE z T T z z T zdz













                                             (23) 

 
The elastic curve equation of the EBT beam can be expressed as 
[27]: 
 

2

2

x
x

xx

d w M

dx D
                                                                          (24) 

 
Thus, Equation (24) is governing equation of classical beam which 
is used to analyze the clamped-clamped composite beam.  Both 
sides clamped beam is statically indeterminate, therefore the su-
perposition technique is obtained to puzzle out the governing 

equation of composite beam. This method as shown in Figure 11, 
the statically indeterminate beam is converted to several primary 
beams which is statically determinate and subjected to a separate 
reaction and loaded. The boundary conditions can be represented 
mathematically as: 
 

1 2 3 4 0w w w w at x a                                        (25a) 

 

1 2 3 4 0
dw dw dw dw

at x a
dx dx dx dx

                              (25b) 

 

 Where, a  is a length of the composite beam. 

 

 
Fig. 11: Scheme superposition method of two sides clamped beam under 

distributed transverse load and exposed different temperature through the 

thickness of beam 
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2.5 Solution Composite Rectangular Clamped Beam 

As shown in Figure 11, by using superposition method, the deflec-
tion of the composite rectangular clamped beam is a linear combi-
nation of four deflections of cantilever beam problems. 

 

1 2 3 4w w w w w                                                                   (26) 

 
The first beam problem is the cantilever beam subjected to uni-
formly distributed mechanical load (Figure 11). This problem can 
be determined by using the equation of the beam with boundary 
conditions. 
 

2

1 1

2

x

xx

d w M

dx D
                                                                             (27a) 

1
1 0 0 0

dw
w and on x

dx
                                   (27b) 

 
The bending moment at any section of the beam with x  distance 

from fixed edge is 
 

2 2

0 0
1 0

2 2
x

q bx q ba
M q bax                                                      (28) 

 

Where,
0q  is a pressure load on the beam. Substituting Equation 

(28) into Eq. (27a) and then first and second integration of result 
equation with using boundary conditions (Equation 27b), gives 
slope and deflection equation:  

3 2 2

1 0

6 2 2xx

dw bq x a x ax

dx D

 
   

 
                                                     (29) 

 
4 2 2 3

0
1

24 4 6xx

bq x a x ax
w

D

 
   

 
                                                      (30) 

 

The second beam problem is the deflection 
2w  at any point of the 

cantilever beam under uniformly distributed thermal moment 
TM  , 

which is exerted on the free end as shown in Figure 11. The gov-
erning equation and boundary conditions are 
 

2

2 2

2

x

xx

d w M

dx D
                                                                           (31a) 

2
2 0 0 0

dw
w and on x

dx
                                 (31b) 

 
The bending moment at any section of the beam with x  distance 

from fixed edge is 
 

2 2

2
2 2

T T
x T

M x M a
M M ax                                                    (32) 

 
Substituting Equation (32) into Equation (31a) and then first and 

second integration of result equation with using boundary condi-
tions (Equation 31b), gives slope and deflection equation: 
 

3 2 2

2

6 2 2

T

xx

dw M x ax a x

dx D

 
   

 
                                                    (33) 

4 3 2 2

2
24 6 4

T

xx

M x ax a x
w

D

 
   

 
                                                    (34) 

 

The third beam problem is deflection 3w  at any point of the canti-

lever beam under single concentrated force bF , which is exerted 

on the free end as shown in Figure 11. The governing equation 
and boundary conditions are 
 

2

3 3

2

x

xx

d w M

dx D
                                                                            (35a) 

3
3 0 0 0

dw
w and on x

dx
                                  (35b) 

The bending moment at any section of the beam with x  distance 

from fixed edge is 
 

3x b bM F a F x                                                                          (36) 

 

Substituting Equation (36) into Equation (35a) and then first and 
second integration of result equation with using boundary condi-
tions (Equation 35b), gives slope and deflection equation: 
 

2

3

2

b

xx

dw F x
ax

dx D

 
  

 
                                                                 (37) 

 
3 2

3
6 2

b

xx

F x ax
w

D

 
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 
                                                                 (38) 

 

The fourth beam problem is the deflection 
4w  at any point of the 

cantilever beam under the single moment 
bM  , which is exerted 

on the free end as shown in Figure 11-3. The governing equation 
and boundary conditions are 
 

2

4 4

2

x

xx

d w M

dx D
                                                                            (39a) 

4
4 0 0 0

dw
w and on x

dx
                                  (39b) 

 
The bending moment at any section of the beam with x  distance 

from fixed edge is 
 

4x bM M                                                                                 (40) 

 
Substituting Equation (40) into Equation (39a) and then first and 
second integration of result equation with using boundary condi-

tions (Equation 39b), gives slope and deflection equation: 
 

4 b

xx

dw M
x

dx D
                                                                             (41)    

2

4
2

b

xx

M
w x

D
                                                                           (42)  

 
The set of slope equations of four problems have to be compatible 
with clamped boundary condition. Thus, substituting Equations 
(29), (33), (37) and (41) into Equation (25b)  at x a  gives 

 

0

2 2

T
b

M a q a
F                                                                         (43) 

 
The set of deflection equations of four problems have to be com-
patible with clamped boundary condition. Thus, substituting Equa-
tions (30), (34), (38) and (42) into Equation 25a, at x a  gives 

 
2 2

02

3 4 4

a T
b

aF a M q a
M                                                          (44) 
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By solving the system simultaneous equations (Equation (43) and 
Equation (44)), the unknown force and moment reactions at con-

strain  x a  are obtained: 

 

0

2 2

T
b

abq M a
F                                                                      (45) 

2 2

0

12 12

T
b

a bq M a
M                                                                 (46) 

3. Results and Discussion 

As noted initially, three models coated beam (HC, FGC, H-FGC) 

with the same thickness are considered for the purpose of analyz-
ing two sides fixed rectangular coated beam, where HC and FGC 
models have a coated layer of 4mm and metal substrate of 6mm, 
while the H-FGC model has three layers with a thickness ratio of 
1:1:3. In all models of the composite the Poisson’s ratio is 0.3. 
The sample size of the three models are 50cm by 5cm by 1cm, 
above which a uniformly distributed mechanical load is applied at 

0 22q kPa . The temperature on the top side and the bottom side 

are
uT and 300o

LT K respectively. For testing purposes, the 

models consider bending along the z-axis as the primary mode of 
failure. In validating the results, a verification study is done for 
bending behavior due to uniformly transverse load and also for 
thermal loading. For mechanical loading verification, the equa-

tions of superposition method were validated with the isotropic 
homogeneous beam studies by R. C. Hibbeler [28] and for bend-
ing behaviour due to thermal load by Naotake Noda [29]. And also 
in order to verify the validity of the outputs obtained in the current 
paper, Table 4 is shown comparisons of the deflections at the cen-
ter of HC beam under transverse uniformly distributed mechanical 
loads in Superposition Method (SM) with Energy Method (EM) 
and Finite Element Method (FEM). Table 4 shows wonderful 
concurrence, and therefore the SM solution of HC beam based on 

Euler-Bernoulli is valid. 
 
Table 4: Comparisons of the deflection (m) at the centre of clamped-

clamed HC beam under transverse uniformly distributed mechanical load-

ing in the present paper to the deflections obtained by two other methods 

Ceramic / Metal SM EM FEM 
10 1010 10 / 1 10hc hE E      7.8639e-04 7.8638e-04 7.8640e-

04 

Silicon nitride / Stainless steel 1.6241e-04 1.6241e-04 1.6241e-

04 

Zirconia / Ti - 6Al - 4V 3.1449e-04 3.1448e-04 3.1449e-

04 

Aluminum oxide / Nickel 1.6382e-04 1.6382e-04 1.6382e-

04 

,hc hE Ceramic E Metal       

 
Figures 12 and 14 show the deflections along the length of three 
different coated beam subjected to mechanical loading and 
thermo-mechanical loading respectively by considering different 

values of material parameters ( n ). Since, the changes on the 

material properties of FGM depends on the Power-law function, 
the following graphs defines the FGM coated and under coated as 
P-FGC and H-P-FGC respectively. As shown in Figures 12 and 14 
the deflection of beam in P-FGC model biger than other coated 
models, which with increasing amount of  material parameters the 

deflections are decreased and became closer to the other coated 
models. 

Figure 13 and 15 illustrate the variation of stress x cross the 

layers of beam at the center of the models under both mechanical 
and thermo-mechanical loading followed by stress figures 
(Figures 13, 15, 17 and 19) that show the problem of interface 
singularity between the ceramic coated layer and the substrate 
layer. But in P-FGC model and H-P-FGC model, a drastic 

reduction in stress singularity is observed, especially with 
increasing the material parameters in FGM layer. The stress 
figures show the magnitude of stresses on coated layer in P-FGC 
model compared to H-P-FGC model are significantly increased. 
As a resualt with increase the magnitude of stress on the coating 
layer in P-FGC model, the transverse displacement of the coated 
layer will be increased. Clearly, the superiority of H-P-FGC model 
coated against P-FGC model coated has been demonstrated. 

 

 
Fig. 12: Deflection the center of silicon nitride-stainless steel with three 

models coated beam under mechanical load  

 

 
Fig. 13: Normal stress through the thickness of silicon nitride-stainless 

steel in three models at the centre of the beam under mechanical load  

 

 
Fig. 14: Deflection the center of silicon nitride-stainless steel with three 

models coated beam under thermo-mechanical load  

 

 
Fig. 15: Normal stress through the thickness of silicon nitride-stainless 

steel in three models at the centre of the beam under thermo-mechanical 

load  
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Figure 16 and 18 show the deflections along the length of three 
different coated beam subjected to thermal loading and thermo-
mechanical loading respectively by considering different values of 
material parameters ( n ). The deflections of coated beams in 

absence of mechanical loading are upward in negative direction of 

coordinate. 
 

 
Fig. 16: Deflection the center of silicon nitride-stainless steel with three 

models coated beam under thermal load  

 

 
Fig. 17: Normal stress through the thickness of silicon nitride-stainless 

steel in three models at the centre of the beam under thermal load  

 

 
Fig. 18: Deflection the center of silicon nitride-stainless steel with three 

models coated beam under thermo-mechanical load  

 

 
Fig. 19: Normal stress through the thickness of silicon nitride-stainless 

steel in three models at the centre of the beam under thermo-mechanical 

load  

 
Figure 20 shows the deflection along the length of three different 
coated beam with three different couples material under thermo-

mechanical loading with several material parameters. In case two 
the thermal expansion coefficient of ceramic (Zirconia) is much 
bigger than other ceramics. Therefore the deflections of coated 
beam in case two under similar loading is significantly different. 

 

 
Fig. 20: Deflection the center of three models coated beam with three 

different couples’ material under thermo-mechanical load  

4. Conclusion  

In this paper, the thermo-mechanical loading with variable tem-
perature-dependent material properties is discussed in the context 
of a comparative study between a conventional coated beam and a 

FGM coated & FGM under coated beam. The models consider the 
linearity in Euler-Bernoulli based on the power-law function ap-
plied. From the transverse displacement and the resultant stress 
along the beam with fully clamped boundary conditions by utiliz-
ing superposition method, there is a drastic reduction stress con-
centration at critical locations, demonstrating the superiority of 
FGM. As stated previously, in conventional coated beam, there is 
a stress concentration at interface of composite layers. But in 

FGM coated and FGM under coated beams, this stress concentra-
tion drastically decreased. In FGM coated model beam the trans-
verse displacement is being much bigger than other models. In 
other words, the transverse displacement on the FGM under 
coated beam is very close to the conventional coated beam. As a 
result, in the FGM under coated beam, not only is the stress con-
centration problem less than the conventional coated beam, but 
also the transverse displacement in the FGM under coated beam 
under thermal and mechanical loading is almost like the conven-

tional coated beam. Clearly, the superiority of FGM under coated 
composite against conventional coated and FGM coated compos-
ite has been demonstrated. 
The other result is that the material properties of the couple mate-
rials which is used in composite have vital role on results. An 
example application of FGM is between Zirconia, Aluminum 
oxide and Silicon nitride. The difference in coefficient of thermal 
expansion generates transverse displacement much differ to other 

pairs of materials. Therefore, the transverse displacement of Zir-
conia / Ti-6Al-4V is much differ compared with other pairs of 
materials. 
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