

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.24) (2018) 662-665

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

High Densely Connected Convolutional Networks for Denoising

Monte Carlo Rendering

1
Mincheol Kim,

*2
Kwangyeob Lee

1Department of Computer Engineering, SeokyeongUniversity, 124, Seogyeong-ro, Seongbuk-gu, Seoul, 02713, Republic of Korea
*2Department of Computer Engineering, SeokyeongUniversity, 124, Seogyeong-ro, Seongbuk-gu, Seoul, 02713, Republic of Korea

*Corresponding author Email:kylee@skuniv.ac.kr

Abstract

Background/Objectives: Monte Carlo renderings, which are recently used in animation and visual effects, produce realistic images but
noise occurs during the ray tracing process.
Methods: In this paper, the learning is performed with only RGB channel without an auxiliary buffer such as normal, albedo, and diffuse.
The performance was improved by modifying the Densely Connected Convolutional Networks, which shows excellent performance. The
transition layer which has the pooling layer is removed, and the last convolution layer is used to produce a denoised image because the
final layer is intended for denoising rather than classification.

Findings: It is difficult to distinguish the detail from the noise without special information during the denoising process, thus the learning
convergence speed is slowed down. However, in this paper, we found that it is possible to preserve detail while removing noise by using
the Densely Connected Convolutional Network to preserve the high and low features. Even if the feature map is increased, batch
normalization and bottleneck layers can resolves this problem and even increases the speed of learning. As a result, our method denoised
better than state-of-the-art base-filter denoiser with only the RGB channel.
Improvements: It was implemented by Tensor flow with Python on CPU i5 6600, and GTX 1080 Ti. After approximately 24 hours, it
showed similar performance than the filter-based algorithm.

Keywords: Convolutional Neural Network, Ray Tracing, Monte Carlo Renderings, Monte Carlo Denoising, Densely Convolutional Network

1. Introduction

Multi-dimensional computation of each pixel of the image is
required to render realistic images. Monte Carlo(MC) rendering
technology can produce high-quality images using methods to
estimate and approximate the scene function through tracing light
rays for these complex computations.[1] However, when the

number of samples(rays) is too small, an unacceptable noise will
occur and an immense computational cost are required for noise-
free images, as shown Figure 1. This eventually leads to a very
long rendering time. Recently, many denoising algorithms have
been researched to address this problem by rendering at a low
sampling rate and removing noise through post processing.

Figure 1:.The amount of noise according to the number of samples

One of these methods is denoising with the use of filters, which
removes the noise by using various auxiliary buffers(normal,
depth, albedo, etc.).A number of filter-based methods have been

proposed, including the joint bilateral filtering method[2], the

method to estimate filter error by SURE metric[3], and the
asymptotic bias analysis method[4], and these methods have
shown good performances as they filter with information about the
scene. However, the parameter setting requires manual
configuration due to the use of fixed filters, which limits the
ability to find optimal parameters. Thus, the failure to obtain
optimal parameters resulted in overblurring or underblurring.

Recently, a learning-based method was proposed to obtain the

parameters through machine learning, which not only produces
good quality results but also quickly finds a filter to obtain the
denoised image, once the learning process is over. However, it
uses the multi-layer perceptron rather than the convolutional
network for image processing and uses a very small amount of
dataset. Hence, it still had the existing problems due to the partial
use of fixed filters such as cross non-local means filter.[5]

The deep learning method, which can learn the complex

relationship between input and output, can certainly obtain more
optimal parameters over other methods, and most of all is fast
during runtime. Therefore, a method was proposed to apply this to
the Convolutional Neural Network(CNN), which is recently
showing high performance in image processing and is highly
capable of extracting image features. After learning in two
different networks of diffuse and specular, the results are
combined. Instead of using raw inputs, the diffuse is divided by

albedo, logarithmic transformations for specular, and the gradient
of each auxiliary buffer is obtained and entered as input. As a
result, although it showed a good performance, it uses the naïve

http://www.sciencepubco.com/index.php/IJET

663 International Journal of Engineering & Technology

convolutional network, and overblurring occurs when attempts are
made to output the denoised image as it is, and it takes about a
week to get a good result.[6]

In this paper, our proposed model learns only by RGB channel for

various noise applications. However, unlike the conventional RGB
channel, which has a specific range of values between 0 and 255,
the learning process is unstable and color artifacts or overblurring
occurs because of the high dynamic range of values, which
declines the learning convergence speed. To solve this problem,
the image patch size was set to a suitable small size, and used the
Densely Connected Convolutional Network to preserve the high
and low features of the RGB image as much as possible. As a

result, it was possible to obtain results with faster learning speed
while preserving more detail and removing noise than the naïve
Convolutional Neural Network.

2. Deep learning Architectures and Techniques

We focuses on the deep learning model and its techniques, as the

area of rendering technology and auxiliary buffer(normal, depth,
albedo, etc.) for preprocessing is too large to cover in this paper.
The model in this paper is based on the Convolutional Neural
Network(CNN) and uses batch normalization as a way to improve
learning speed and accuracy. And also modified the Densely
Connected Convolutional Network(DenseNet), which recently
shows excellent performance in classification, for denoising and
describes how the modification is constructed.

2.1. Convolutional Neural Network and Technic

Deep learning algorithms are already used in many fields and the
technique is still under study. Especially in image processing
fields such as classification, detection, and segmentation, deep
learning can perform similar or better than humans and the model
used to do such work is the Convolutional Neural Network. It
consists of basic elements such as the convolution layer, the
pooling layer, and the fully connected layer.

2.1.1. Convolution Layer

The convolution layer is a key component of the CNN, a
technique which is already used in image processing and signal
processing. It operates the element-wise sum of product by sliding
the k x k size kernel to the image in a horizontal/vertical
dimension. It can extract various features from the image
according to the kernel value. Although the multi-layer, in which

the neuron of each layer is fully-connected, is likely to cause
overfitting of the image, since CNN has the characteristics of local
connectivity, it can reduce overfitting by taking advantage of the
information in the receptive field of the image. In addition, the
parameter values are much lower than that of the fully connected
layer because the kernel values are shared.

2.1.2. Pooling Layer

The pooling layer reduces the amount of computation by reducing
the size of the feature map, which is increased by the convolution
layer. In general, a 2 x 2 kernel slides in a horizontal/vertical
dimension and selects a value by a certain rule such as max
pooling which selects the maximum value, average pooling which
obtains the average value, and max pooling is widely used in CNN
currently.

2.1.3. Fully Connected Layer

The fully connected layer is used for classification by placing it on
the last layer of CNNs in the same form as the MLP. The three-
dimensional feature map, which is drawn through the convolution
layer and the pooling layer, is spread out into one dimension and
to obtain the sum of product, and the final predict value is
obtained after applying the activation function.

2.2. Batch Normalization

Every time the deeper model is applied to learning, the gradient
vanishing/exploding problems arise, and there were efforts to
solve this problem in various ways. For instance, there were
methods that initialized the weight or learning rate well, used
ReLU function as activation function, and regularization such as
dropout or weight decay to prevent weight values from being
concentrated on one side. However, the learning speed would slow

down or gradient vanishing/exploding would occur again since the
fundamental problem was not solved. This instability occurs
because of the internal covariance shift, and as the value is
transferred to the layer, the distribution of each activation input is
changed. This becomes more biased as the layer is transferred,
resulting in the overfitting. To resolve this problem, each layer is
normalized by calculating the moving average to remove this bias.
Eventually, it does not fall into the local minima even if the

learning rate is set to high through normalization, and it learns
well without dropout because of the self- regularization effect. [7]

2.3. Deep Residual Network

However, there was no way to get any deeper than this due to the
Vanishing/Exploding Gradient problem. Of course, this problem
was solved by various methods, but if a certain layer is passed the
learning process doesn’t work well. But it’s not overfitting

because training error increases by degradation problem. In order
to solve this problem, a shortcut connection is designed directly
from the input to the output to learn the difference between the
input and the output as shown in Figure 2, so that even small
fluctuations can be easily detected. This is called residual learning,
and deep networks can be easily optimized while performance can
be improved because the depth can be increased easily. As a result,
it became possible to increase the number of layers to more than

100 showing better performance than humans.[8]

Figure 2:.TheConnectityof Deep Residual Networks

2.4. Densely Connected Convolutional Network

Although ResNet has already shown sufficient performance, a
model has emerged that retains the performance while the size of

the model is smaller and narrower. This is called the Densely

Connected Convolutional Network(DenseNet), and DenseNet-
BC(DenseNet + Bottleneck + Compression) has only 1/3 of the
parameters compared to ResNet. Unlike ResNet, which adds the

International Journal of Engineering & Technology 664

block input values and operation result values, DenseNet
concatenates all previous blocks, as shown in Figure 3.Other than
this, bottleneck layers are used to reduce the computational
complexity for a similar channel reduction. And to make the

model more compact, convolution 1 x 1 and pooling operation are
performed to reduce the amount of feature map. Finally,
classification is performed by average pooling.[9]

Figure 3:.TheConnectity of densely connected Convoutional Network (Dense Block)

3. Proposed Method

In this paper proposes a model that performs better than the
conventional naïve CNNs by modif-ycationsDenseNet properly
for denoising and faster learning convergence speed. And we also
design loss function by using gradients of RGB channels. And
finally we describe used parameters of our mod-el.

3.1. Densenetfor Denoising

First, the transition layer has been removed to have a bottleneck
structure, while not reducing the image size and the number of

feature maps. In addition, the operation of the final layer performs
convolution, because the final output must be an image since the

purpose is for denoising rather than classification. For increasing
learning speed and reduces overfitting, we use 20bottleneck layers
in a dense block: bottleneck layer consists of Batch
Normalization(BN)-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3) in
order. In Figure 4, the important thing is that the proposed model
has only one dense block for preserving as many feature map as
possible, and the block operates as shown in Figure 3. The first
layers(Conv, BN, ReLU) is extract simple features about noisy

image by convolutioning with 7 x 7 kernel. The last layers(BN,
ReLU, Conv) outputs the result with RGB channel through 3 × 3
kernel operation.

Figure 4:.The proposed model for denoising

3.2 Training

It is also known that using loss perfo-rms better than by

reducing splotchy artifacts[10]

 (1)

In Equation (1) Where and are the ith pixel of denoised

image and reference image respectively. But if there is only

loss. There is no way for model to learn where the edge of images
is. Hence, we input additional 6 channels about gradient of RGB
channels(x, y). And then another loss is calculated by subtractin
gradients of denoised images and reference images. In Equation
(2), g(∙) is computed difference on x, y-axis.

 (2)

We use these two losses for computing final losses by weighting.

In Equation (3), we picked = 0.9/0.1. Adam Optimizer was

used as the optimization function. Learning rate starts from 0.01,

decay step 10000, and decay rate 0.9. And kernel initializer is used
He Initializer.[11]

3. Experiment

3.1. Dataset

To avoid overfitting during the learning process of a large deep
neural network, a large enough representative dataset is required
to address the general denoising problem. In this paper, the dataset
was provided by Pixar research and used about 1,300 rendering
scenes with the size of 1,280 x 720. Each scene is a rendering of 8
different scenes(bathroom, staircase, etc.) into different types of
images by changing various camera angles, textures, etc. For
instance, same scene of the bathroom was created into different

images, as shown in Figure 5. In this paper, these images are
cropped into 20 slides in a 28 x 28 format, and by excluding
images with a unique value less than 100, images with no special
edge were excluded as much as possible.

665 International Journal of Engineering & Technology

Figure 5:.The various scenes of bathroom

3.2. Environment

The learning was conducted with CPU i5 6600, Memory 16MB,

GPU 1080 Ti, and progressed with python 3.5 tensorflow version

1.6. The learning time was about 24 hours, and GPU memory of
8,558MB was used. It was compared with the learning-based
filtering experiment. All of the inputs were used as 128spp

rendered images.

3.3. Result

Figure 6:.The performances of denoisers

As shown Figure 6. The Result of ours performed better than RPF,
LBF without auxiliary buffers unlike traditional methods. In
addition, denoising time is spent only few seconds.

4. Conclusion

In this paper, among various algorithms that remove the noise of
Monte Carlo renderings, a solution that applies deep learning was
proposed to solve the issue. In particular, unlike the filter-based
and learning-based methods, sufficient performance has been
achieved with only RGB channels without special preprocessing

and the use of information such as auxiliary buffers(diffuse,
specular, depth).In addition, the slow learning convergence speed
problem of the existing naïve CNNs and the color artifacts or
overfitting problems caused by noise were solved by appropriately
optimizing DenseNet, which preserves features while using layers
for a long period, for denoising. However, since overblurring still
exists, better performance improvements are expected if learning-
based filtering is performed by preprocessing using DenseNet and
auxiliary buffers.

Acknowledgment

This research was supported by the MOTIE(Ministry of Trade,
Industry & Energy) (10080568) and KSRC(Korea Semiconductor
Research Consortium) support program for the development of the
future semiconductor device and supported by Seokyeong

University in 2017.

References

[1] Terzopoulos, D., Platt, J., Barr, A., & Fleischer, K. (1987).

Elastically deformable models. ACM SiggraphComputer

Graphics, 21(4), 205-214.

[2] Sen, P., &Darabi, S. (2012). On filtering the noise from the random

parameters in Monte Carlo rendering. ACM Trans. Graph., 31(3),

18-1.

[3] Li, T. M., Wu, Y. T., & Chuang, Y. Y. (2012). SURE-based

optimization for adaptive sampling and reconstruction. ACM

Transactions on Graphics (TOG), 31(6), 194.

[4] Moon, B., Carr, N., & Yoon, S. E. (2014). Adaptive rendering

based on weighted local regression. ACM Transactions on Graphics

(TOG), 33(5), 170.

[5] Kalantari, N. K., Bako, S., & Sen, P. (2015). A machine learning

approach for filtering Monte Carlo noise. ACM Trans.

Graph., 34(4), 122-1.

[6] Bako, S., Vogels, T., McWilliams, B., Meyer, M., Novák, J.,

Harvill, A., ...&Rousselle, F. (2017). Kernel-predicting

convolutional networks for denoising Monte Carlo

renderings. ACM Transactions on Graphics (TOG), 36(4), 97.

[7] Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data

Mining: Practical machine learning tools and techniques. Morgan

Kaufmann.

[8] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning

for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 770-778)

[9] Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017,

July). Densely connected convolutional networks. In Proceedings

of the IEEE conference on computer vision and pattern

recognition (Vol. 1, No. 2, p. 3).

[10] Zhao, H., Gallo, O., Frosio, I., &Kautz, J. (2017). Loss functions

for image restoration with neural networks. IEEE Transactions on

Computational Imaging, 3(1), 47-57.

[11] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international conference

on computer vision (pp. 1026-1034).

