
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (3.24) (2018) 575-579 
 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  

 

Research paper 
 

 
Level of Detail Parent and Dynamic Culling Scheme for Flight 

Simulator 
 

1
ChungJae Lee, 

2
KyongHoon Kim, *

3
Ki-Il Kim 

 
1LIG System Co., LTD, Seoul, Korea 

2Department of Informatics, Gyeongsang National University, Jinju 52828, Korea 
*3Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea 

*Corresponding author Email: kikim@cnu.ac.kr 
 

 

Abstract 

 
Background/Objectives: Due to huge volume of data, it is required to reduce the number of vertices in flight simulator through level of 
detail and culling. However, it is required to integrate them accordingly. 
Methods/Statistical analysis: Due to high point of view, terrain data in wide area are usually rendered in the flight simulator. So, 
conservational level of detail and culling schemes have adaptation problem in flight simulator. To defeat this problem, dynamic culling 
scheme and level of detail parent method based on line of sight are proposed.  
Findings: Experiment scenarios are built to measure and compare the frame per second and number of vertices in four separate schemes, 

that is, scheme without the proposed algorithm, applying view frustum culling and applying culling and level of detail together and 
graphic processing unit based parallel processing algorithm, respectively. The proposed scheme reveals the similar values in the case of 
small-volume of terrain data. On the other hand, frame per second is significantly improved in huge volume of terrain data by reducing 
the number of vertices through dynamic culling and level of detail parent method. Specially, when level of detail parent method is 
applied to rendering the city with large number of buildings, the proposed scheme reveals the best frame per second among the 
comparative schemes. 
Improvements/Applications: Improved rendering algorithm was proposed to handle huge volume of terrain data and thereby to prove 
the applicability of the proposed scheme in other simulator. 
 

Keywords: Flight simulator, Culling, Level of detail parent, frame per second, Real-time rendering. 

 

1. Introduction 

The major objective of flight simulator is to train the pilot in 
efficient way as well as to reduce the complexity for the aircraft 
design. The flight simulator mainly consists of aero dynamic 
model, motion system and aircraft display system. Specially, aero 
dynamic model generates aircraft state information according to 

user input as well as actual dynamic model of aircraft. Thus, 
various motion and display systems are implemented according to 
development objectives and cost. Especially, display system is to 
provide realistic scene to pilot through satellite image data and 
altitude information. This process called real-time rendering 
makes use of graphic library to compute data and pass them to 
graphic hardware. In this process, huge amount of vertices are 
rendered in the flight simulator. 

Thus, a flight simulator suffers from computational overhead to 
render the data. To solve this problem, most of flight simulator 
employs the specific method to reduce the rendering data in 
efficient way. Two famous methods, Level Of Detail (LOD)[1] 
and culling scheme[2], have been proposed but they work in 
completely different way. The former is to reduce the amount of 
data by introducing multiple levels to represent the object. So, the 
closer objective locates, more detailed description it has. By this 

way, lots of details are not processed for the object in long 
distance. On the other hand, the latter is to reduce the amount of 
rendering data which is not visible from the point of view. It just 

allows to render the visible area according to the current 
viewpoint. These two methods usually operate separately. 

Unlike the other simulators which employ LOD and culling 
scheme for real-time rendering, one of the unique properties of 
flight simulation is higher point of view than other simulators. 
This implies that wider area is usually rendered in flight simulator. 
On the other hand, line of sight is completed different from one in 
other simulators. So, it is required to improve LOD and culling 
scheme based on these properties. 

Based on above analysis and demands, in this paper, we propose a 
new scheme to improve real-time rendering which makes use of 
dynamic culling scheme with LOS information according to 
altitude and LOD parent scheme in urban area. The former is to 
optimize the rendering area as the point of view moves while the 
latter is to merge the separate objects in accordance with LOD 
scheme. Specially, many buildings in urban area is specially 
suitable for LOD parent model. Finally, we present the 

experimental results to prove the performance improvement in the 
point of Frame PerSecond (FPS) and number of vertices.  

The rest of this paper is organized as follows. Following by the 
introduction, we describe the fundamentals of LOD and culling 
scheme. The proposed scheme is explained in the following 
section. The experimental results are presented and analyzed in the 
next section. Finally, we make a conclusion and present the further 
issues.  

http://www.sciencepubco.com/index.php/IJET


576 International Journal of Engineering & Technology 

 

2. LOD and Culling 

As briefly explained before, LOD and culling are the basic 
operations to improve rendering speed in flight simulator. Thus, 
there is some research work related to LOD and culling scheme. 

First, LOD is used to represent the details of object according to 
distance between viewpoint and itself. It is categorized into static 
and dynamic LOD. In static LOD scheme, it adjusts the details of 
object according to distance which is made in advance. To be 
detailed, multiple meshes are created in advance. And then, each 

mesh is replaced by others according to distance between object 
and camera. In this scheme, there is memory overhead because 
each mesh should be loaded into memory. Therefore, static LOD 
is usually used to represent small objects rather than large ones. 
On the other hand, dynamic LOD adjusts the number of vertices in 
accordance with distance between object and camera. Based on 
this operation, its memory usage is less than static one. So, 
dynamic LOD is usually used to represent large object. In addition 

to two types of LOD scheme, there are some enhanced LOD 
algorithms to improve the performance. They includes LOD 
scheme based on distance[3] and fuzzy LOD[4].Second, culling 
scheme aims at excluding invisible area in rendering operation and 
is categorized into view-frustum[5], back-face[6] and occlusion 
culling[7]. View-frustum culling in figure 1 sets view-frustum 
with field of view (FOV) and renders this area.  Back-face culling 
excludes rendering area which locates behind mesh while 

occlusion culling is based on distance. In occlusion culling, visible 
object called occlude and invisible one called occludee is 
categized and then occludee is excluded in the rendering. Related 
to culling, culling scheme based on Z-Buffer[8] is proposed to 
reduce the time to conduct z-test. Moreover, selective z-test 
architecture is proposed to reduce the data size in pipeline between 
graphic processor and memory. Also, H/W occlusion culling[9] 
test visibility on CPU rather than CPU by creating occlusion map.  

 

Figure 1: Basic concept of view-frustum culling 

Unlike the previous works which apply LOD and culling 
separately, there is research to combine two schemes. As good 
example, C. Peng and Y. Cao[10]propose how to integrate LOD 
parallel processing based on GPU and occlusion culling. In the 
proposed scheme, two steps are taken for efficient rendering. One 

is to compute visibility and the other is to apply it to bounding 
box.  

Based on analysis above, since occlusion culling consumes 
additional resource to determine the visuality, it is not suitable for 
flight simulator. Rather, back-face culling is regarded as more 
suitable one for flight simulator. Moreover, it is required to apply 
back-face culling according to surrounding environment. The most 
important feature in flight simulator is that there is not too much 

difference two data, before visuality test and after one. So, it is not 
possible to achieve performance improvement.  

3. Proposed Scheme 

In order to integrate the proposed LOD parent and dynamic 
culling scheme, we need new flight simulator to employ these 

functions as well as host system to control the flight simulator. 
The proposed simulator architecture is shown in figure 2. As you 
can see in figure 2, two system operates and communicate to 
exchange rendering state and data. The proposed scheme is 
implemented in optimized controller in right side. Also, real-time 
rendering software is implemented over OpenSceneGraph (OSG). 

 
Figure 2: Architecture of simulator 



577 International Journal of Engineering & Technology 

 

 

3.1. Dynamic Culling and LOD Scale Algorithm 

through LOS 

Usually, various situations such as low altitude flight, approaching 
the land and take-off needs special rendering process since the 

distance between terrain and viewpoint is too close. However, 
previous simulators do not take this situation into account by 
adjusting resolution of terrain according to predetermined LOD. 
Moreover, view-frustum culling scheme is only applied while 
considering high altitude. This approach is able to maintain the 
similar FPS but hard to achieve realistic environment. To solve 
this problem, we apply different scheme according to altitude. 
Figure 3 shows the view frustum according to altitude. Since view 
frustum is affected by eye point greatly, it is very import to define 

the area according to eye point accordingly. Therefore, low and 
high altitude is determined by line of sight (LOS). 

 

Figure 3: View frustum according to altitude 

At the low attitude, the scene behind the viewpoint is not visible. 
So, it is better to apply back-face culling rather than view frustum 
one. On the other hand, back-face culling is not suitable at the 
high altitude since it cause high computational overhead. 

For the LOD scheme, dynamic LOD is employed. However, since 
most of previous work fix the LOD level, they implement LOD 
without considering altitude. To solve this problem, we propose to 

set the LOD level with LOS information. So, we compute the 
average of multiple LOS values and adjust LOD level with LOD 
scale parameter accordingly. Figure 4 shows the detail procedure 
to optimize the rendering process through culling and LOD. From 
line 1 to 14, we compute the LOD value as much as LOS_count. 
According to this value, LOD scale is adjusted accordingly. The 
latter part, culling_mode_set, is to determine the culling area in 
the zBuffer. 

 
Figure 4: Algorithm for rendering optimization 

3.2. LOD Parent Algorithm for Urban Area 

In the proposed scheme, we propose to reduce the number of 
rendering object. In order to reduce the number of object, we list 
the location information for urban area and then apply LOD parent 
algorithm if the urban area is included in the view frustum. By the 
help of this scheme, we can improve rendering procedure by 
merging multiple objects to one. This implies that multiple mesh 
information is replaced by one texture in OSG. To determine 

whether urban area is included in view frustum, LOS information 
is also computed. Figure 5 shows the detail procedure to apply 
LOD parent algorithm for urban area. 

In figure 5, we repeat the computation for distance between 
aircraft location to LOS. Since the view frustum is affected by 
heading information, it is computed by rotation-translation 
equation between two points. Based on distance between this 
endpoint of view frustum and listed urban area, we extract the root 

node by removing the child nodes in the OSG tree. In this way, the 
child node is not rendered so the number of vertices is greatly 
reduced.  

4. Performance Evaluation 

In order to evaluate the performance of the proposed flight 
simulator, we implement it through OSG. The flight simulator is 

written by C# with terrain data and control software. The 
rendering and control software exchanges data through UDP 
communication. The implemented software is evaluated in the 
following configuration as shown in table 1. 

Table 1: Experimental environment 

CPU Intel i5-3570 CPU 3.4GHz 

VGA Nvidia GeForce 6GB 

Memory 24GB 

OS Window 10 pro 

Graphic library OpenSceneGraph 3.4.0 

For the simulation scenarios, two different terrain data sets are 
tested. One is 1.78Gb with 128,657 vertices and the other does 
137Gb with 1,585,574 ones. It also includes urban area 
information which is 249Mb with 48,657 vertices. 

 
Figure 5: LOD parent algorithm for urban area 

4.1. Experimental Results 

We measure the FPS for each scenario and illustrate the result in 
figure 6. As you can see in figure 6, the proposed scheme shows 
FPS ranged from 1,300 to 1,400. Also, we can observe 52,000 

vertices in the proposed scheme.  

Eye Point View Frustum LOS



578 International Journal of Engineering & Technology 

 

 

 

Figure 6: FPS and the number of vertices for case 1 

On the other hand, GPU based parallel processing scheme shows 
the similar performance to view frustum culling. Moreover, worst 

performance is shown in the original scheme without rendering 
optimization. This implies that the proposed scheme reduces the 
number of vertices at the low altitude significantly. Moreover, our 
scheme based on LOS leads to more accurate decision for 
visibility.  

 

 

Figure 7: FPS and the number of vertices for case 2  

As compared to case 1, the proposed scheme shows the number of 
vertices around 82,000 and 1,200 FPS in figure 7. On the other 
hand, GPU based parallel processing shows lower performance 
than view frustum culling. Among the four schemes, the proposed 

scheme shows the best performance. The proposed scheme can 
reduce the number of vertices at the low altitude rather than GPU 
based parallel processing. It is resulted from the accuracy of 
visibility in the proposed scheme. Through this experimental 
result, we prove that occlusion culling is not suitable for fight 
simulator. Also, the proposed scheme shows the better 
performance than view frustum culling by applying two schemes 
according to LOS. Another factor to improve the performance is 

LOD parent algorithm for urban area. Due to drastic reduction of 
vertices for urban area, the FPS is in greatly improved. 

5. Conclusion 

This paper proposed real-time rending algorithm to employ LOD 
and culling scheme according to LOS information. Unlike the 

previous scheme, the proposed scheme can reduce the number of 
vertices based on more accuracy for rendering area and dynamic 
LOD scale. Specially, the number of vertices is significantly 
reduced due to viewpoint. The improved performance is observed 
by the experimental result for two terrain set.  

Acknowledgment 

This work was supported by Human Resources Program in Energy 
Technology of the Korea Institute of Energy Technology 
Evaluation and Planning (KETEP), granted financial resource 
from the Ministry of Trade, Industry & Energy, Republic of 
Korea. (No. 20174030201440). 

References 

[1] Heok, T., & Daman, D. (2004). A review on level of detail. Paper 

presented at the Proceedings of the International Conference on 

Computer Graphics & Imaging and Visualization, 70-75. 

[2] Zhoul, S., Yoo, I., Benes B., & Chen, G. (2014). A hybrid level-of-

detail representation for large-scale urban scenes rendering. 

International Journal of Computer Animation and Virtual Worlds, 

25(3), 243-253. 

[3] Bao, G., Li, H., Zhang, X., & Dong, W. (2012). Large-scale forest 

rendering: Real-time, realistic, and progressive. Computer & 

Graphics, 36(3), 140-151. 

[4] Schlender, D., & Peters, O. (2000). Managing levels of detail with 

fuzzy control. Journal of Computer and Graphics, 24(2), 245-251.  

[5] Shahrizal, S., Zin, A., &Sembok, T. (2008). Improved view frustum 

culling technique for real-time virtual heritage application. 

International Journal of Virtual Reality, 7(3), 43-48. 

 FPS  Vertices

74000

76000

78000

80000

82000

84000

86000

88000

90000

92000

94000

96000

ProPosed Algorithm

View Frustum Culling

GPU-based Parallel Processing Algorithm

0

200

400

600

800

1000

1200

1400

Proposed Algorithm

Without Optimization Method

View Frustum Culling

GPU-based Parallel Processing Algorithm

 FPS  Vertices

74000

76000

78000

80000

82000

84000

86000

88000

90000

92000

94000

96000

ProPosed Algorithm

View Frustum Culling

GPU-based Parallel Processing Algorithm

0

200

400

600

800

1000

1200

1400

Proposed Algorithm

Without Optimization Method

View Frustum Culling

GPU-based Parallel Processing Algorithm



579 International Journal of Engineering & Technology 

 

 

[6] Kumar, S., Manocha, D., Garrett, B., & Lin, M. (1996). 

Hierarchical back-face culling. Paper presented at the Proceedings 

of Eurographics Workshop on Rendering, 235-254. 

[7] Staneker, D., Bartz, D., &Straßer, W. (2004). Occlusion culling in 

OpenSG PLUS. International Journal of Computers & Graphics, 

28(1), 87-92. 

[8] Park, J., Kim, I., Park, W., Park, Y. & Han, T. (2013).A pixel 

pipeline architecture with selective z-test scheme for 3D graphics 

processors. Microprocessors and Microsystems, 37(3), 373-380. 

[9] Biljecki, F., Ledoux, H., Stoter, J. & Zhao, J. (2014).Formalisation 

of the level of detail in 3D city modelling. Journal of Computers 

Environment and Urban Systems. 48, 1-15. 

[10] Peng, C., & Cao, Y. (2014). Integrating occlusion culling with 

parallel LOD for rendering complex 3D environments on GPU. 

Paper presented at the Proceedings of ACM SIGGRAPH 

Symposium on Interactive 3D Graphics and Games, 187-195. 


