
 
Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Engineering & Technology, 7 (4.35) (2018) 383-387 

 

International Journal of Engineering & Technology 
 

Website: www.sciencepubco.com/index.php/IJET  

 

Research paper 
 

 

 

 

Passive Congregation Theory for Particle Swarm Optimization 

(PSO): an Application in Reservoir System Operation 
 

Md. Shabbir Hossain
1
*, Lariyah Bte Mohd Sidek

2
, Mohammad Marufuzzaman

3
, M. H. Zawawi

4
 

 
1 2 4 Civil Engineering Department, Institute of Energy Infrastructure, Universiti Tenaga Nasional (Putrajaya Campus), 

Kajang, Malaysia, 43000. 
3 Sustainable Technology & Environment Group, Institute of Energy Infrastructure, Universiti Tenaga Nasional, 43000, 

Kajang, Selangor, Malaysia 
*Corresponding author E-mail: mdshabbir@uniten.edu.my 

 

 

Abstract 
 
Particle swarm optimisation (PSO) is a very well-known method and has a strong background in optimisation filed to solve different non-

linear, complex problems especially in creating the reservoir release policies. This research modified the particle updating process of the 
standard PSO algorithm by including the passive congregation (PC) theory. The passive congregation theory of natural being’s social 
behaviour is adopted to updated the standard PSO algorithm and used to develop and optimise a reservoir release policy for monthly 
basis. The inflow data to the dam/reservoir has categorised into three different categories (High, medium and low). The problem is 
formulated on correspondence to the release and capacity constraints. Water deficit from the release is aimed to be minimised and formu-
lated as the main objective function. Monthly releases are taken as the main objective variables and are essentially control the water defi-
cit of the process. The standard form of PSO then compared with the updated version and the results is analysed by adopting different 
performance measuring indicators such as reliability, vulnerability and resilience. The results showed that the updated PSO-PC is more 

capable of the standard PSO (5% more reliable; 0.02 less vulnerable and 1.5 more resilience) in providing optimum results for a reservoir 
system. 
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1. Introduction 

The reservoir release policy is created as a decision model by 
which the amount of water release is determined and retained the 
rest for future uses in a given time. The reservoir release policy is 
to design the model of water release as well as storage over the 
period considering the variations in inflows and demand. Reser-
voir release policy thus is very crucial and difficult as the increas-
ing water demand of users and the variable natures of streamflow 
especially in tropical countries like Malaysia. Generally, the reser-

voir operations are implemented based on the current situations. 
The rules of the reservoir have instructed the operators to generate 
the policy in such a way that it fulfils the system requirements. 
However, as there are many feasible operating policies may exist, 
a mathematical optimisation technique is required. 
Particle Swarm Optimization (PSO) belonged to the swarm intel-
ligence (SI) family and known as a very popular tool in solving 
real-life optimisation problems. It can easily provide an optimal 
solution to any complex non-linear problem [1]. The simplicity 

and the applicability of PSO and the other SI techniques attract 
many researchers to use it in solving different hydrological prob-
lems (Gandomi et al. 2013).  
The algorithm of PSO mimics the intelligent behaviour of a flock 
of birds moving around in search of food. The choreography of the 
flight allows the flock to share all the information about the food 
among themselves once any individual member discovers it. The 
flight direction and the velocity change over the shared infor-

mation. This process of optimisation was first proposed by 

Eberhart et al. [1], and according to their description, the social 
behaviour of the flock reflects the phenomena of comparing two 
important decision properties named as “local best” and “global 
best”. Local best is the currently observed best decision for a par-
ticular food and the global best is the best decision found. Later, in 
2004, He et al. [3] proposed to add the passive congregation factor 
with PSO velocity update. Based on the mathematical model given 
in [4], the aggregation can be referred to as a grouping of the or-

ganisms (such as- fish schooling, bird flocking) by external physi-
cal forces. 
On the other hand, the congregation is defined as grouping by 
social forces in where the attraction source is the group itself. In 
the passive congregation theory, any individual group members 
attract the other, but they may show no social behaviour (global 
best). In these congregations, information may be transferred pas-
sively rather than actively [5]. Recent research works who consid-

ered optimisation methods in creating reservoir release policies 
showed that modified PSO would be an ideal optimisation tech-
nique for creating reservoir release policy [6-10]. Some other re-
lated works on reservoir hydrology can be found here- [11-19]. 
This research is intended to include passive congregation theory 
by updating the key properties of the particle movement (Velocity  
update) inside the standard PSO algorithm. Both, standard and the 
updated PSO is adopted and tested to optimise the release amount 
of a reservoir. The monthly releases are taken as decision varia-

bles limited by release constraints. The representation of the reser-
voir system is also taken to be subjected to the storage constraints 
and continuity through the consecutive months. The problem has 
been represented as a simple way that can be optimised by any 
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improved population-based search algorithm. Also, the representa-
tion of the release policy is generated in such a manner that the 
decision maker could have a clear understanding for decision 
making on the release amount. For verification of the model, 
simulation has been undertaken, and the simulation results have 
been analysed using the risk analysis approach to compare the 
model's efficiency in minimising water deficit. The Klang Gates 
Dam (KGD) is considered as the case study in this research, which 

contributes as a water supplier for the domestic uses to the sur-
roundings. 

2. Methodology 

Reservoir system operation: Mathematical Representation 
In any reservoir system operation, the authority usually faces two 

types of constraints in deciding on the release amount, bounds on 
release volume and keeping the water level within a safe opera-
tional zone. To maintain such configurations and requirements, the 
model is formulated in the following form –  
The Objective or Fitness function is considered as the 
minimisation of water deficit, which is given in Equation 1, 
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Here, the releases (R) for any months (t) must be within the upper 
and lower bounds as given in Equation 2, 
 

min max0 and 0t tR R R R              [2] 

 
Also, the storages (S) for any month (t) must be within the bound-
ary  as expressed in Equation 3, 
 

min max0 and 0t tS S S S              [3] 

 
The continuity equation 4 should be satisfied for all the months (t) 
as, 
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The concept of using a penalty function is based on adopting an 
extra parameter in addition to the objective function that controls 
the constraints and helps to eliminate the decision variables that 
cause a violation of any constraints. As equation (1) is represent-
ing a minimisation problem, the model always targets to obtain the 
minimum value of Z. So, if any release amount caused the reser-

voir storage to violate the upper and lower limits, given in equa-
tion 3, then the penalty term will increase the value of Z based on 
the large multiples of violation magnitude. The release variables 
that responsible for increasing the value of Z is marked as weaker 
solutions (release decision) and eliminated to reach an optimum 
state. 
Klang Gates Dam (KGD) is located at Taman Melawati, Malaysia. 
The geographical coordinates of the dam are 3° 13' 58" North 

(3.233 degrees) and 101° 45' 0" East (101.75 degrees). The stor-
age and the release constraints of the reservoir are given below. 
• Storage constraint: The storage S in a month t is kept within 
the limit of dead storage and the capacity of the reservoir; 1648.67 
≤ St ≤ 6194 MG (for t = Jan, Feb,…, Dec). 
• Release constraint: The water release amount R from the res-
ervoir to meet the water demand of the area has a lower and upper 
bound, 868 ≤ Rt ≤ 1379.50 MG (for t = Jan, Feb,…….., Dec). 
Standard PSO in reservoir release optimisation  

More likely to the other population-based algorithm, PSO starts 
with developing a random decision variable set. These random 
variables are called “particles”, and a group of the variables are 
named as “swarm” (given in Equation 5 and 6). So, in a random 

release string consisting of 12 values of water volume to be re-
leased (R) from January to December, the 12 releases are consid-
ered to be particles and the population set of these particles is 
considered to be a swarm. 
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where, 

popsize = population or swarm size 
nvar = total number of variables 
r = random number (between 0 to 1). 
Equation (7) is used in this study to generate the initial swarm for 
the PSO algorithm to execute. Equation (8) (known as the velocity 
update) controls the swarm’s movements through the searching 
pool for the optimum solutions. In each iteration, the algorithm 
records the local optima and compares it with the global (best 

solution yet) optima. However, the criteria for being chosen as an 
optimum state depend on the fitness of the objective function.  
Any solutions in the swarm (decision variables: releases) calculate 
and remember their own fitness for their position in next iteration. 
The position of any particle is accelerated towards the global best 
position by using equation (8) and (9). In any search step t, the ith 
particle uses to update its candidate solution’s current position (vij

t) 
by using local best (pij

t) and global best (pgj
t) position achieved yet.  
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where, 

1t
ijv 

  = velocity measures for the particles 

w   = inertial weight; control the velocity direction 

1  & 2 = acceleration coefficient; should be >1 (mostly taken 

as 2) 

1
tr  & 2

tr = random numbers; uniformly distributed between 0-1 

t
ijR  = position of any particle at t 

t
ijp  = best-suggested release (providing lowest Z) at t 

t
gjp  = best-suggested release (providing lowest Z) achieved yet. 

 
After generating the initial population (randomly generated 
monthly release options within the release boundary), the velocity 

update provides a new direction to the particles. A new position 
could be reached by this updated velocity parameter, as given in 
Equation 9.  The fitness Z is calculated by using the objective 
function (Equation 1) including the penalty term for constraint 
violation. The best position of the particle is saved as the local 
best and would be compared with the global best achieved yet. 
The whole population (swarm) then turns towards the current best 
position until it finds another better solution than the current one. 
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An iteration number need to be fixed at the beginning of the 
algorithm as the stopping criteria of the total iteration process.  
Updated PSO with passive congregation theory 
The passive congregation theory can be adopt in standard PSO by 
adding an extra information randomly from the previous 
population and make sure that the position is shifting accurately 
towards the global best. 

In equation 8, the third parameter 2 2 ( )t t t
gj ijr p R  is classified as 

active congregation [3]. To adopt the passive aggregation theory 
He, et al. proposed adding another term to keep the model simple 
and uniform. The modified velocity function is given in equation 

10, 
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where, 

1t
ijX 

= randomly selected particle from the swarm 

3  = passive congregation coefficient 

3
tr  = random numbers; uniformly distributed between 0-1 

3. Result and Discussion 

The release amount from the reservoir depends on the inflow cate-
gory, operational time period (monthly) and current reservoir stor-
age or water level. For each inflow category, the release policies 

have been given for every month considering the storage condition 
as input parameter. With this release curve one is able to decide on 
how much water release would be optimum for a particular month 
of the year to minimize the water deficit properly. The optimal 
release options for the month of July are given in figure 1 (a, b and 
c). 

 
(a) High Inflow condition. 

 

 
(b) Medium Inflow condition. 

 
(c) Low inflow condition. 

Fig 1: Optimum release under different inflow pattern. 

 
The release amount depends on the inflow patterns, operational 
time (in this case- monthly) and current water level of the dam. 

For each inflow category, the release decision has been suggested 
for every month considering the current storage condition as an 
input parameter. With this release policy, one should be able to 
calibrate the amount of released water that would be optimum 
with minimum water deficit for a month. The optimal release 
curves for the month of July are given in Figure 1. 
To check the model efficiency, a very classical approach is 
adopted. Three performance measuring index, Reliability [20], 

Resiliency [21] and Vulnerability [21] from the simulated results 
is computed and compared. More detailed equations for these 
indices are given in Table 1. 
 

Table 1: Performance measuring indices 

Index 
Model validation 

Equations Variables 

Volumetric (Rv) 

and Periodic (Rp) 

reliability 

( / ) 100% ;

( / ) 100%

v

p

R v V

R n N

 

 
 

v = volume of 

water releases 

(model output) 

V = volume of 

targeted de-

mand 

n = total no. of 

time period 

meeting the 

targeted de-

mand (in 

months) 

N = total no. 

considered time 

period (in 

months) 

Resilience (Rs) R  = s
NS

NT  

NS = no. of 

satisfied (zero 

deficit) time 

period followed 

an shortage 

 NT = no. of 

total shortage 

period  

Vulnerability (V) 1

1
V [max(0,  )]     

for 1,2,.....

N

t t

t

D R
m

t N



  





 

m = no. of 

model failure 

period (water 

deficit ≠ 0) 

 N = total time 

period consid-

ered for simula-

tion (in months) 

 D = targeted 

demand 

 R = water 

release (model 

output). 

The actual inflow and storage data of the KGD is fed to the release 

curves and the return release amounts from the curves are re-
corded for that month. This simulation process is done as a con-
tinuous process for 264 consecutive months (22 years of actual 
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data). Then the final storage was calculated by using the continu-
ity equation and used as an initial storage for the next consecutive 
month. The simulation steps for a total considered time period T 
are given in figure 2. 

 
Fig. 2: Simulation process by using historical data 

 
Table 2: Periodic reliability and Vulnerability for KGD 

A
lg

o
ri

th
m

s More Than 

Demand 

Meet The 

Demand 

Less than 

demand 

Vulnerability 

(V) 

P
S

O
-P

C
 

12% 

(30 times) 

62.1 % 

(164 times) 

26.31 % 

(70 times) 
0.65 

P
S

O
 

12.1% 

(32 times) 

59.47 % 

(127 times) 

28.41 % 

(75 times) 
0.67 

The vulnerability (V) of each model is calculated by using the 

vulnerability equation (reported as V in Table 1) and the results 
are reported in Table 2. From the simulation results of the both 
model, PSO-PC is less vulnerable than PSO as it achieved less 
value of V.  

Table 3: . Resiliency measures from the simulation 

Measures PSO-PC PSO 

Resilience 

(Rs) 
15.5 14 

Max. no. of 

consecutive 

shortage  

1 1 

 
The other effective performance indicator is resiliency [21], the 
recovering capability of a model from a failure. In this case the 
failure is considered as failed to release more/less water than re-
quired. The resilience equation (given in Table 1) has been used to 
compute the resilience of both optimization model from the simu-
lated release. Also, the maximum number of consecutive shortage 
period (release less than demand) has been calculated and reserved 

for resilience measures. The resilience analysis of these two mod-
els are provided in Table 3. This case PSO-PC performed slightly 
better as it shows larger Rs value (1.5 more than standard PSO). 
Also, the maximum number of consecutive shortage period 
achieved is 1, same in both optimization algorithm. 
From these analysis, it seems that PSO-PC is more capable of 
providing optimum release for a reservoir system than PSO. The 
standard PSO was also a very good optimizer but PSO-PC per-

formed better in terms of reliability, resiliency and vulnerability. 
The Resilience and the vulnerability is very important as it could 
be very crucial during any critical climatic situations. 

4. Conclusion  

To optimize the reservoir release for Klang Gate Dam The PSO-

PC was used which is the improvement of the standard PSO by 
adopting passive congregation theory in particle movement. The 
development in the algorithm was tested in optimizing the Klang 
Gates Dam release policy. The primary objective of this study was 
to use this both version of PSO to optimize the reservoir release of 
KGD and compare the simulation results by adopting performance 
measuring index. These basic performance indicators were- Reli-
ability, Resilience and vulnerability. As reported earlier in the 

paper, all three indicators are indicating that both PSO performed 
very well in handling reservoir system but PSO-PC is more 
capable (5% more reliable; 0.02 less vulnerable and 1.5 more 
resilience) in providing optimum results for a reservoir system.  
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