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Abstract 
 

Optimization is ever-growing research that cuts across all walks of life. Many popular metaheuristic algorithms have metamorphosed 

into numerous variants in search of the sophisticated kernel for optimal solution. The African Buffalo optimization (ABO) algorithm is 

one of the fastest metaheuristic algorithms. This algorithm is inspired by the alarm and alert calls of African buffaloes during their forag-

ing and defending activities. The present study investigates the strengths and weaknesses of ABO and proposes two improvement strate-

gies: Chaotic ABO (CABO) and chaotic-levy flight ABO (CLABO). The results are validated with ten benchmark optimization problems 

and compared with other metaheuristic algorithms in the literature. Further, the CABO and CLABO algorithms are ranked first and sec-

ond, respectively. This proves the superiority of the proposed improved algorithms over others under this study. Finally, the improved 

chaotic ABO would be utilized for optimizing industrial scheduling for oil and gas in our future work. 

 
Keywords: Chaotic Optimization; African Buffalo Optimization; Levy-Flight; Non-Linear Optimization; Meta-Heuristics. 

 

1. Highlights 

• Chaos and levy flight have been introduced to ABO. 

• The effectiveness of the two new variants (CABO and 

CLABO), have been tested with ten benchmark functions. 

• The result shows that both CABO and CLABO have relative-

ly high convergence speed in comparison with other metaheu-

ristic algorithms. 

• Chaos is a better improvement strategy for ABO algorithm 

than combination of chaos and levy flight. 

2. Introduction 

The increasing relevance of nature-inspired computation as a soft 

computing technique is the driving force for the seemingly endless 

search for optimal solution in various problem domains. Optimiza-

tion has been a subject of concern for research. It is a converging 

point for computer science, mathematics, operations research, 

economics, etc. In operational research, combinatorial optimiza-

tion problem refers to the determination of optimal solution to 

perform a collection of tasks by a number of agents at minimal 

cost, time and resources [1]. Conventional optimization algorithms 

such as Augmented Lagrangian methods [2], Jacobian optimiza-

tion method [3, 4] etc., incur high computational cost and are inef-

ficient for most optimization problems. Literature reveals that 

nature-inspired algorithms are better alternatives. Algorithms such 

as the ant colony optimization (ACO) [5], ABO [6] migrating bird 

optimization [7], etc. have been proven more effective than con-

ventional algorithms. Although these algorithms are more efficient 

than their conventional counterparts, there yet exist certain draw-

backs. Rather than developing new ones, it is better to improve the 

efficiency of the existing ones [8]. 

The ABO algorithm, developed by Odili and Kahar [9], belongs to 

the class of metaheuristic population-based nature-inspired algo-

rithms. ABO like Bat algorithm [10] employs the sense of sound, 

which varies from the breeding parasitism of cuckoo search [11], 

flashing and attraction of firefly [12], to flocking characteristics of 

particle swarm optimization (PSO). Odili et al. [9] claimed that 

ABO was developed to address the problem of premature conver-

gence as well balance exploration and exploitation by utilizing 

few parameters. However, this claim is not justifiable in all optimi-

zation problems. ABO details would be discussed subsequently in 

this study. In terms of application domain, ABO has been utilized 

to solve traveling salesman problem (TSP) [9]. According to that 

study, ABO outperformed genetic algorithm (GA), ant colony op-

timization (ACO), honey bee mating optimization (HBMO), simu-

lated annealing (SA), and many more [9]. The algorithm has also 

been tested on numerical functions with better result than GA and 

improved GA [13]. However, it was also found that chaotic gray-

coded GA yielded better result than ABO [13]. In fact, that was 

the motivation to improve ABO using chaotic optimization. Fur-

ther, ABO has shown better performance than randomization in-

sertion algorithm (RIA) in asymmetric TSP [14]. Additionally, it 

has outperformed PSO, GA, ACO, and bacterial foraging optimiza-

tion (BFO) in turning PID controller parameters [15]. Recently, 

ABO has been utilized to solve budget constraint maximal cover-

ing location (BCMCL) using the binary African buffalo optimiza-

tion (BABO) algorithm [16]. 

Although most metaheuristic algorithms in basic state could solve 

several optimization problems, they have some limitations.  One 

of them is premature convergence, which could result in a non- 

feasible solution [8]. To a large extent, hybridization and/or use of 

sophisticated randomization technique could improve such algo-

rithm performance in most optimization problems. Many studies 

show that modified algorithms outperform their basic counter-

parts; however, there are some exceptional cases. Rao et al. [17] 
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developed an improved hybrid (ACO and GA) algorithm for in-

dustrial production operation. Also, Wang et al. [18], designed a 

hybrid GA and DE for joint replenishment and location inventory 

problem in a three-level supply chain. Li et al. [19] formulated 

hybrid genetic-simulated annealing algorithm (HGSAA) for e-

supply chain environment. HGSAA outperformed GA in terms of 

computing time, optimal solution, and computing stability. Yu et 

al. [20] also formulated an adaptive hybrid of PSO and DE for 

global optimization in scientific and engineering fields. Further-

more, Duan et al. [21] proposed a hybrid optimization algorithm of 

finite state method and GA to solve the crude oil scheduling prob-

lem. These studies among others justify the need for algorithm 

improvement. The remaining part of this study is organized as 

follows: section 2 is the description of basic ABO, and the im-

provement strategies are discussed in section 3. Section 4 is the 

result and discussion while the study is summarized with conclu-

sion and recommendations in section 5. 

3. Basic ABO 

ABO, belonging to the class of swarm intelligence, was developed 

by Odili et al. [9]. This metaheuristic algorithm models the forag-

ing and defending behavior of African buffaloes. The unique fea-

tures of these animals include extensive memory capacity, com-

munal lifestyle, and democratic lifestyle [9]. They utilize ‘waaa’ 

and ‘maaa’ sounds to communicate danger and safety, respectively. 

Thus, their organizational lifestyle could be mapped to these 

unique characteristics [22, 9].The “waaa” sound is denoted by wi, 

the “maaa” denoted by mi, while the learning parameters are de-

noted by l1 and l2. Other parameters are global maximum (bog-

max), the personal maximum (bo pmax.b) positions.   The basic 

ABO is controlled by two equations, namely democratic Eq.1 and 

location update Eq.2 equations. Algorithm 1 shows the basic 
ABO. The algorithm sub- tracts the “waaa” value (wi) asking the 

animals to explore the search space from the maximum vector 

(bogmax and bopmax.a) which is further multiplied by the learn-

ing parameters (l1 and l2) [9]. The result is supplied by the 

“maaa” (mi) value, this indicates that they herds should remain in 

that location and continue grazing. 

 

mi+1 = mi + l1(bogmax − wi) + l2(bopmax. i − wi)              (1) 

 

w1+1 = (
wi+ mi

λ
)                                                                          (2) 

 

Algorithm 1 ABO [9] Step1. Randomly initialize buffaloes within 

the search area 

Step2. Update buffaloes’ exploitation with equation Eq. 1 

Step3. Update the location of buffaloes with Eq. 2 

Step4. If equation Eq. 1 and Eq. 2 is updating, proceed to Step 5. 

Otherwise, return to step 1 

Step5. If stopping criteria is reached, proceed to Step 6, else return 

to Step 2 

Step6. Output best solution 

3.1. Strengths and weaknesses of basic ABO 

From the foregoing, one could say that ABO has shown good 

solutions with better speed in TSP, benchmark numerical func-

tions, etc. [9], [14], [13]. Also, the strength of ABO has been 

proven by low relative percentage error obtained in multi-modal 

and unimodal functions [13]. The speed of this algorithm is due to 

the few parameters that control the algorithm [15]. 

However, since there is no best algorithm for all optimization 

problems [8], ABO like other basic metaheuristic algorithms ex-

hibit a number of weaknesses, such as inefficient for multi-

variable optimization problems [13] and non-linear constrained 

optimization problems. Besides, it would not be out of place to say 

that the kernel (mathematical model) of ABO is so simplified that 

it does not account for the comprehensive characteristics of Afri-

can Buffaloes in their foraging and defending activities. To illus-

trate, the buffaloes settle on the green pasture at the sound of ’maaa’ 

call [9] as represented in the kernel. This could be justified by the 

lack of crossover in the updating equations. The herds are intelli-

gent enough to know that there could be greener pasture based on 

their previous grazing experiences. However, the mathematical 

formulation of this algorithm does not account for this feature. 

This could result in converging at near optimum solution in most 

problems. Also, it utilizes simple randomization techniques, unlike 

CS and FA that employ levy flight and Gaussian technique, respec-

tively [8]. Strictly speaking, these weaknesses are the motivation 

for this study. Thus, the proposed study is aimed at enhancing the 

kernel of the algorithm to account for their extensive memory 

capacity feature. The summary of the related works in ABO is 

illustrated in Table 1. 

4. ABO Improvement 

ABO is basically controlled by Eqs.1 and 2 which are referred to 

as democratic and location update equations, respectively, as men-

tioned earlier. However, these two equations did not account for the 

exceptional memory capacity of African buffaloes. In other words, 

the herd identifies a grazing land and relaxes without exploring 

possible greener pastures based on previous experience. Thus, 

possible reason for pre-mature convergence observed in most 

optimization problems. Also, the λ in location update equation 

Eq.2 is a simple random number generator, this implies that the 

search is aimless within the search space resulting in relatively 

inefficient solution and/or premature convergence as the case may 

be. However, employing chaos and levy distribution properties 

could be a possible solution to these problems. 

4.1. Chaotic map 

A system is said to be chaotic if it exhibits a kind of random de-

terministic behavior in a bounded but non-converging search 

space [23]. Many stochastic optimization problems are trapped in 

local optima. However, literature show that chaotic sequence or map 

could be used to deal with local optima problem [24]. Some ex-

amples  of such algorithms are GA,                                                          

DE, PSO, FA, ACO, SA, imperialistic competitive algorithm, 

charged system search optimization, and big- bang big crunch op-

timization, etc. as referenced therein [25], [26]. Basically, chaotic 

optimization is the use of chaotic sequence instead of random varia-

bles in an optimization algorithm. 

There are variations of one-dimensional chaotic maps including, 

logistic, iterative, sinusoidal, sin, circle, chebyshev, intermittency, 

singer, sawtooth, pieceswise, tent, and liebovtch [27]. However, 

this study considers logistic map for ABO randomization. Eq. 3 

represents the logistic function [28], [26]. 

 

μm+1 = β. μm(1 − μm)                                                                (3) 

4.2. Levy flight 

Levy walk is a description of diffusion pattern of organisms such 

that searching is concentrated at the location of potential solution 

 
Table 1: ABO Related Works 

 Description Method/Ref Result Drawback 

1 Solve TSP ABO [9] 
Outperformed GA, 

HBM, SA, etc. 

Evaluation restricted 

to TSP 

2 

Evaluation of nu-

merical 

functions 

ABO [13] 
Outperformed GA 
and improved GA 

Outperformed by 

chaotic Grey coded 

GA 

3 
Evaluation of 

Asymmetric TSP 
ABO [14] Outperformed RIA 

Insufficient compar-

ative analysis 

4 
Turning PID con-
troller parameters 

ABO [15] 
Outperformed PSO, 
ACO, and BFO 

Evaluation restricted 
to PID controller 

5 
Solve (BCMCL) 

problem 
BABO [16] 

Competitive result 

with other algo-
rithms 

Only approximately 

67% success rate 
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[29]. Levy flight foraging hypothesis estimates the migration from 

less-resource to more-resource environment which in turn results 

in optimal search [30]. Animals with high memory capability em-

ploys this model to explore their search space [30]. The theory of 

optimal foraging is an extension of Levy flight foraging hypothe-

sis, which states that organism pay closer attention to the optimal 

solution location rather than aimless search within the search 

space. Levy flights are random walks whose step length is drawn 

from the Levy distribution, often in terms of a simple power-

law formula 

L (ζ ) ∼ ζ −1−α where 0 < α < 2 is an index. Levy flight could 

ben mathematically represented as 

 

𝐿(𝜁, 𝜔, 𝜓) = {√
𝜔

2𝜋
  𝑒𝑥𝑝 [−

𝜔

2(𝜁−𝜓)
]

1

(𝜁−𝜓)
3

2⁄
,    0 < 𝜓 < 𝜁 < ∞

0                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4) 

 

Where ψ > 0 is a minimum step and ωis a scale parameter. Ideally 

as ζ → ∞, then 

 

𝐿(𝜁, 𝜔, 𝜓) ≈ √
𝜔

2𝜋
 

1

𝜁
3

2⁄
.                                                                  (5) 

 

Mantegna algorithm [8] would be utilized for levy flight imple-

mentation in this study. Thus, the step length ζ would be calculat-

ed by 

 

𝜁 =
ℓ

|𝜅|
1

𝛼⁄
,                                                                                       (6) 

 

Where ℓ and 𝜅 are drawn from normal distributions (Yang, 2014). 

In other words, 

 

ℓ~𝑁(0, 𝜌ℓ
2), 𝜅 ~ 𝑁(0, 𝜌ℓ

2) ,  

 

Where 

 

𝜌ℓ =  {
𝛤(1+𝛼) 𝑠𝑖𝑛 (𝜋𝛼

2⁄ )

𝛤[1+𝛼
2⁄ ] 𝛼2

(𝛼−1)
2⁄
}

1
𝛼⁄

, 𝜌𝜅 = 1 .                                         (7) 

 

Readers are referred to [8] for details on Levy flight. 

4.3. Proposed improved ABO algorithm 

The improvement of ABO considers in two ways namely: Chaotic 

ABO (CABO) and Chaotic-Levy Flight ABO (CLABO). 

4.3.1. CABO 

In this case, the learning terms of the democratic equation Eq.(1)  

is multiplied by a suitable chaotic sequence. This is to enhance 

exploration of the algorithm and guide against premature conver-

gence. That is, given a chaotic map 

 

𝜇𝑖+1 = 𝑓(𝜇𝑖)                                                                                (8) 

 

The democratic and exploitation equation have been modified as 

shown in Eqs. 9 and 10  

 

𝑚𝑖+1 =  𝑚𝑖 + 𝑙1𝜇.∗ ((𝑏𝑜𝑔𝑚𝑎𝑥 − 𝑤𝑖) + 𝑙2𝜇.∗ (𝑏𝑜𝑝𝑚𝑎𝑥. 𝑖 − 𝑤𝑖)         (9) 

 

𝑤1+1 = (
𝑤𝑖+ 𝑚𝑖

𝜆
) +  𝜇                                                                 (10) 

 

Where.* is element-wise multiplication of vectors. The step by 

step implementation is shown in Algorithm 2 

The main property of chaos is that a slight variation in underlying 

population drastically yield unique outcome at each iteration. This 

characteristic enables the system to generate dynamic values at eve-

ry iteration (search), which consequently enhance the quality of 

the solution within a shortest possible time. In this proposed 

CABO, an initial value of 0.01 and parameter value of 4 for the 

logistic map is used, as shown in Eqs.9 and 10. This enables the 

buffaloes (solutions) generate an efficient search mechanism that 

could escape local optima entrapment. The steps are illustrated in 

Algorithm 2 .First, the Buffaloes are randomly initialized within 

the search space. Then, the chaotic sequence is generated. Next, the 

exploitation and democratic process is executed using chaotic map 

and chaotically enhanced parameters (l1, l2) respectively. These 

processes are carried out iteratively until the stopping criteria is 

reached. In other words at each iteration, the fitness value of the 

new solution is evaluated to select the best solution. The maximum 

number of iteration is set to 100. Ten non-linear benchmark prob-

lems are utilized for the performance validation of the proposed 

CABO. The flow diagram of the proposed CABO is shown in fig. 

1, the red colour highlight captures modification of the basic ABO 

to CABO. 

 

4.3.2. CLABO 

Here, the aim is to locate the “greenest pasture” based on levy 

foraging hypothesis [30]. This would result in modification of 

both the democratic and location update equations as shown in 

Eqs. 11 and 12. 

 

𝑚𝑖+1 = 𝑚𝑖 + 𝑙1𝜇.∗ ((𝑏𝑜𝑔𝑚𝑎𝑥 − 𝑤𝑖) 

 

+ 𝑙2𝜇.∗ (𝑏𝑜𝑝𝑚𝑎𝑥. 𝑖 − 𝑤𝑖)                                                          (11) 

 

𝑤𝑖+1 = (
𝑤𝑖+ 𝑚𝑖

𝜆
) +  𝜇.∗ 𝐿(𝜁)                                                      (12) 

 

where.* is element-wise multiplication of vectors, µ is the chaotic 

map and L (ζ) is the Levy flight. Algorithm 3 shows the step-wise 

implementation of the improved CLABO. 

During this process, the chaotic sequence is also generated as in 

the case of CABO. However, since the buffaloes possess the capa-

bility to recall the possibility of a “greener pasture” due to their 

exceptional memory capacity.  Therefore, Levy flight distribution 

process is incorporated into the search process. This search mech-

anism enables the buffaloes intelligently recall that there could be 

“greener pasture” based on the levy foraging hypothesis proposed 

by Gautestad et al. [30]. Thereby inducing concentrated search in 

possible location of better solution within the shortest possible 

time also. The optimization steps of the proposed CLABO is pre-

sented in Algorithm 3. First, the buffaloes are randomly initialized 

within the search region. Then, the chaotic sequence is generated, 

followed by the Levy distribution process using Mantegna’s algo-

rithm. Next, the exploitation and democratic processes are execut-

ed via chaotic and Levy flight process as seen in Eqs.11 and 12. 

The fitness of the buffaloes are evaluated using various non-linear 

benchmark functions with maximum of 100 iterations. 

 

Algorithm 2 CABO 

 
Step1. Randomly initialize buffaloes within the search area Step2. 

Generate chaotic sequence or map 

Step3. Update buffaloes’ exploitation with Eq. 10 enhanced by 

chaotic map 

Step4. Update the location of buffaloes with Eq. 9 

Step5. If Eqs. 10 and 9 is updating, proceed to Step 6. Otherwise, 

return to step 1 

Step6. If stopping criteria is reached, proceed to Step 7, else return 

to Step 3 

Step7. Output best solution 

 

Algorithm 3 CLABO 

 
Step1. Randomly initialize buffaloes within the search area Step2. 

Generate chaotic sequence 
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Step3. Update buffaloes’ exploitation with equation Eq. 11 enhanced 

by chaotic map 

Step4. Perform Levy flight via Mantegna’s algorithm 

Step5. Update the location of buffaloes with Eq. 12 enhanced by 

chaotic and Levy flight 

Step6. If equation Eqs.11 and 12 are updating, proceed to Step 7. 

Otherwise, return to step 1 

Step7. If stopping criteria is reached, proceed to Step 8, else return 

to Step 3 

Step8. Output best solution 

 

 
Fig. 1: CABO Illustration Flow Chart. 

 

 
Fig. 2: CLABO Illustration Flow Chart. 

5. Results and discussion 

5.1. Numerical experiments 

Ten benchmark functions are used to examine the performance of 

the improved algorithms. These include 

1) Sphere (F1), 

 

𝜑(𝑥) = ∑ 𝑥𝑖
2,   𝑥 𝜖 [−10,10]𝑛

𝑖=0                                                 (13) 

 

2) Matyas (F2), 

 

𝜑(𝑥) = 0.26 (𝑥1
2 +  𝑥2

2 ) − 0.48𝑥1𝑥2,  𝑥 𝜖 [−10, 10], 0           (14) 

 

3) Six Hump Camel Back (F3), 

 

𝜑(𝑥) = 4𝑥1
2 –  2.1𝑥1

4 +  1 3𝑥1
6 +⁄  𝑥1𝑥2 − 4𝑥2

2 +
4𝑥2

4, 𝑥 𝜖 [−5, 5], −1.03163                                                        (15) 

 

4) Easom (F4), 

 

𝜑(𝑥) = − 𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒𝑥𝑝(−(𝑥1 − 𝜋)2 −  (𝑥2 −
𝜋)2) , 𝑥 𝜖 [−100, 100], −1                                                         (16) 

 

5) Ackley (F5), 

 

𝜑(𝑥) =  −20 𝑒𝑥𝑝[−0.2 √0.5(𝑥1 − 𝑥2)] − 𝑒𝑥𝑝[0.5(𝑐𝑜𝑠 2𝜋𝑥1 +

𝑐𝑜𝑠 2𝜋𝑥2)] + 𝑒𝑥𝑝(1) + 20, 𝑥 𝜖 [−600, 600], 0                       (17) 

 

6) Zakharov (F6), 

 

𝜑(𝑥) =  ∑ 𝑥𝑖
2 +𝑛

𝑖=1 (∑ 0.5𝑖𝑥𝑖
𝑛
𝑖=1 )2 +  (∑ 0.5𝑖𝑥𝑖

𝑛
𝑖=1 )4,

𝑥 𝜖 [−5, 10], 0 (18) 

 

7) Schaffer (F7), 

 

𝜑(𝑥) = 0.5 + 
𝑠𝑖𝑛( 𝑥1−   𝑥2)2−0.5

[1+0.001 (𝑥1
2+𝑥2

2)]2
, 𝑥 𝜖 [−100, 100], 0               (19) 

 

8) Bochachvesky 1(F8), 

 

𝜑(𝑥) = 𝑥1
2 + 2 𝑥2

2 − 0.3 𝑐𝑜𝑠(3𝜋𝑥1) − 0.4 𝑐𝑜𝑠(4𝜋𝑥12) +
0.7 ,   𝑥 𝜖 [−100, 100], 0                                                            (20) 

 

9)  Griewank (F9), 

 

(𝑥) = 1 +  
1

4000
 ∑ 𝑥1

2 − 𝑛
𝑖=1 ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑛

𝑖=1  , 𝑥 𝜖 [−600, 600], 0            (21) 

 

10) Rastrigin (F10) functions 

 

𝜑(𝑥) = 10𝑛 +  ∑ [𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖)],    𝑛

𝑖=1  𝑥 𝜖 [−5.2, 5.2], 0          (22) 

 

The choice of these benchmark functions capture polynomials, 

transcendental, multidimensional and multi-modal functions. The 

numerical experimentation seeks to reveal the convergence of the 

improved algorithms and comparative analysis with respect to the 

existing algorithms. The existing algorithms used for comparison 

include; These algorithms include PSO [11], improved cuckoo 

search (ICS) [31], advanced cuckoo search (ACS) [31], gravita-

tional search algorithm (GSA) [32], enhanced opposition-based 

firefly algorithm (EOFA) [32], FA [32], [12], and parallel migrat-

ing genetic algorithm (PMGA) [11]. 
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Fig. 3: Illustration of Convergence of Six-Hump Camel Back Function. 

 

 
Fig. 4: Illustration of Convergence of Schaffer Function. 

5.2. Performance evaluation 

The proposed CABO and CLABO have been evaluated using ten 

benchmark functions. The performances of CABO and CLABO 

have been compared with that of the basic ABO (which serves as 

control) and other algorithms in the literature as earlier stated. 

Ideally, the efficiency and robustness of an algorithm is a function 

of its capability to converge towards global minimum with fewer 

iterations. Thus, the average number of evaluation (ANOFE) and the 

value of the objective function are selected as criteria for perfor-

mance metric in this study. 

Further, 30 independent runs were carried out on the ten bench-

mark functions with 100 maximum number of iterations. The sta-

tistical values of mean, minimum (best), maximum (worst), and 

standard deviation have also been taken, as illustrated in Tables 2 

and 3. The ranking was used to summarize the comparative per-

formance evaluation, as shown in Table 4. Also, the mean perfor-

mance was used as a comparative standard since it is the common 

statistical value available for all other algorithms in literature. The 

two parameters, l1 and l2 that control ABO algorithm are both set 

to 0.8 across both basic and proposed improved variants. 

As mentioned earlier, the performance of the algorithms on the 

benchmark functions are represented in Tables 2 and 3. The best 

algorithm is highlighted with bold for emphasis and clarity. Also, 

CABO, CLABO, and ABO ranked first, second and third, respec-

tively in comparison to other algorithms as seen in Table 4. More 

so, CABO and CLABO converged at global minimum for functions 

F7, F8, F9, and F10 with relatively fewer iterations than other algo-

rithms as shown in Table 3. Surprisingly, ABO outperformed all 

other algorithms on Six Hump Camel Back and Easom function 

whose global minimum is -1. This suggests that chaos and levy 

flight have negative impact on these test functions. Additionally, 

only two convergence graphs, Fig. 3 and Fig. 4 have been selected 

for visual perception and at the same time ensure a simplified 

report. These convergence plots illustrate the performance of the 

proposed improved variants of ABO over the basic ABO, thus re-

vealing the novelty of the proposed improvement strategies. 

6. Conclusion and recommendations 

Basic ABO, like other metaheuristic algorithms, is effective but 

with some limitations. Its efficiency could be ascribed to a few 

parameters which enable it to obtain a good solution with relatively 

few iterations. However, the limitations are the tendency of local 

minimum entrapment and inefficient search exploration. A two-

level improvement using chaos and levy flight has been done. Spe-

cifically, the exploration (democratic) and exploitation equations 

have been independently enhanced: First, with only chaos, and 

second, with a combination of chaos and levy flight. 

In the light of the foregoing, the following conclusion could be 

drawn from the proposed improved ABO variants. Firstly, CABO 

and CLABO are efficient since optimal or near optimum solutions 

were realized with relatively few ANOFA. Secondly, CABO and 

CLABO are robust not only because of the 100% success rate but 

also the high-quality objective values obtained across all the 

benchmark functions under study. Thirdly, chaos has more impact 

on the search efficiency of basic ABO than the combination of chaos 

and levy flight. Finally, the optimization problems should first be 

implemented using basic algorithms before applying the improved 

variants. 

Ultimately, chaos has been proven to be the best enhancement 

strategy to alleviate computational effort and improve solution qual-

ity of basic ABO. This study could be extended to constrained as 

well as real-world optimization problems such as process schedul-

ing, engineering design, among others. 

 

 
Table 2: Algorithms Performance Evaluation Using Benchmark Functions 

Functions Algorithms Iteration No. Best Worst Mean STD 

F1 

CLABO 100 6.7494E-56 2.6E-54 5.56E-55 5.58E-55 

CABO 100 1.60E-57 1.03E-55 2.37E-56 2.50E-56 

ABO 100 2.84E-13 3.28E-11 3.28E-12 8.49E-12 
ICS[31] 1000 N/A N/A 1.85 1.85 

ACS[31] 1000 N/A N/A 4.71 5.87 

F2 

CLABO 100 1.30E-60 6.50E-56 1.07E-56 1.48E-56 
CABO 100 2.51E-63 3.00E-56 2.12E-57 5.751E-56 

ABO 100 2.29E-14 3.73E-12 5.17E-13 8.08E-13 

GSA [32] 1000 4.73E-09 9.11E-07 1.35E-07 N/A 
EOFA [32] 1000 1.59E-40 8.06E-36 1.45E-36 N/A 

FA [32] 1000 1.30E-05 0.58 0.04 N/A 

F3 

CLABO 100 -1.0316 -1.0249 -1.0300 0.0017 
CABO 100 -1.0316 -1.0301 -1.0311 0.0004 

ABO 100 -1.0316 -1.0311 -1.0315 0.0002 

ICS[31] 1000 N/A N/A 3.3630 4.1773 
ACS[31] 1000 N/A N/A 1.3234 2.1494 

F4 CLABO 100 -0.9997 -0.9677 -0.9888 0.0095 
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CABO 100 -0.9999 -0.9839 0.9956 0.0043 

ABO 100 -0.9999 -0.9909 -0.9974 0.0024 
ICS[31] 1000 N/A N/A 1.7999 1.8598 

ACS[31] 1000 N/A N/A 1.7495 1.7534 

F5 

CLABO 100 8.88E-16 8.88E-16 8.88E-16 4.01E-31 
CABO 100 8.88E-16 8.88E-16 8.88E-16 4.01E-31 

ABO 100 1.32E-06 7.53E-06 1.80E-06 1.44E-06 

ICS[31] 1000 N/A N/A 3.6053 4.5822 
ACS[31] 1000 N/A N/A 0.0288 2.3097 

F6 

CLABO 100 3.59E-57 1.36E-13 5.24E-36 2.53E-14 

CABO 100 4.28E-55 1.51E-40 5.04E-42 2.53E-41 
ABO 100 1.68-E11 2.75E-08 2.56E-08 2.56E-09 

GSA [32] 1000 6.80E-35 73.96 56.79 N/A 

EOFA [32] 1000 5.84E-35 1.60E-29 1.92E-30 N/A 
FA [12] 1000 708.22 3.92E+09 5.47E+08 N/A 

 

Table 3: Algorithms Performance Evaluation Using Benchmark Functions Contd. 

Functions Algorithms Iteration No. Objective Value 

  Best Worst Mean Best Worst Mean 

F7 

CLABO 42 50 46 0 0 0 

CABO 41 67 44 0 0 0 
ABO 100 4.91E-11 4.37E-02 2.91E-03 

PMGA [11] 10,000 N/A 12.63 

PSO [20] 10,000 N/A 5.30E-08 
FA [12] 10,000 N/A 6.63E-15 

F8 

CLABO 42 46 44 0 0 0 

CABO 41 67 44 0 0 0 
ABO 100 1.06E-11 6.22E-08 7.38E-09 

GSA [32] 1000 1.09E-06 1.05E-04 2.06E-05 

EOFA [32] 1000 0 2.22E-16 4.88E-17 
FA [32] 1000 2.10E-04 3.35 0.55 

F9 

CLABO 38 56 43 0 0 0 

CABO 35 72 48 0 0 0 
ABO 100 1.48E-12 0.05 0.01 

GSA [32] 1000 6.8E-06 0.03 1.78E-03 

EOFA [32] 1000 0 5.55E-17 1.78E-17 
FA [32] 1000 446.74 686.12 592.46 

F10 

CLABO 42 60 50 0 0 0 

CABO 42 65 49 0 0 0 
ABO 100 1.85E-10 1.0839 4.52E-02 

GSA [32] 1000 15.99 53.79 34.5 

EOFA [32] 1000 0 3.19 0.99 
FA [32] 1000 353.45 429.4 394.46 

 
Table 4: Algorithms Performance Evaluation Ranking 

Algorithm/Function F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Sum/n*10 Ranking 

CABO 10 10 9 9 10 10 10 10 10 10 0.98 1 

CLABO 9 9 8 8 10 9 9 10 9 9 0.9 2 
ABO 8 7 10 10 8 7 8 8 6 8 0.8 3 

ICS[31] 7 - 6 6 6 - - - - - 0.625 7 

ACS[31] 6 - 7 7 7 - - - - - 0.675 6 
EOFA [32] - 8 - - - 8  7 8 7 0.76 4 

GSA [32] - 6 - - - 6  6 7 6 0.62 8 

FA [32] - 5 - - - 5  5 5 - 0.5 10 
PMGA [11] - - - - - - 5 - - - 0.5 10 

PSO [11] - - - - - - 6 - - - 0.6 9 

FA [12] - - - - - - 7 - - - 0.7 5 

n = number of benchmark functions. 
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