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Abstract 
 

Among the important environmental and ecological problems are to determine the distributions of species (e.g. endangered, native and 

invasive species) across geographical regions and to understand the determinant of species range limits (i.e. the boundaries of the loca-

tions in which a species is found). Various studies highlight that abiotic environments (e.g. temperature, climate) and biotic interactions 

(e.g. competition) can influence species distributions. To investigate this problem, two mathematical models for predicting species distri-

butions have been employed. Such models generally take the form of deterministic systems such as partial-differential equations, in 

which they aim to understand the interactions between species at the population scale. Thinking of interacting species as finite groups of 

agents, rather than continuous densities, may alter the structure of the modelling frameworks. This problem can be studied using stochas-

tic individual-based models (IBM). These two models are used to examine the outcomes of species interactions and to understand how 

these species are distributed in spatially changing environments. As such, comparing and contrasting the observations between the IBM 

and deterministic models may offer important insights in predicting species range limits and help us to develop robust predictions of 

species potential distributions in nature. 
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1. Introduction 

In general, ecological processes such as dispersal and growth can 

be described at the individual level or at the population level 

scales [1-5]. Previous studies have looked at interacting species 

from the population-level perspective and modelled them as con-

tinuous densities; in this case, species presence-absence can be 

predicted using deterministic models [3-5]. Alternatively, if the 

interacting species are represented as collections of discrete indi-

viduals and stochastic events (e.g. birth and death) are considered, 

their growth and dispersal processes can be simulated using sto-

chastic individual-based models (IBM) [5-7]. 

 

The stochastic IBMs have been employed in scientific fields to 

simulate the movement and interactions between discrete agents 

that represent individual organisms or species [8, 9]. Generally, 

the interactions between these individuals are local, in which a 

few agents can interact at a particular time and location [6, 9]. For 

instance, these agents can be placed along a spatial lattice and they 

interact with their respective neighbours according to some rules, 

which are often governed by stochastic processes, such as birth-

death process and random walks. The dynamics of individual-

based models are often investigated using simulation study, since 

this modelling framework is composed of huge numbers of dis-

crete agents and numerous variables [9].  

 

A considerable amount of IBM studies focusses on movement of 

species through space. For example, Johnson et al. [10] explored 

the models of local movement of individual species and their in-

teractions with complex landscape. Faugeras et al [11] developed 

a biased random walk model to study the movements of fish popu-

lation and derived a partial-differential equation (PDE) model 

which approximates their IBM. Other studies on birds movement 

[12, 13] discussed the model of migrating birds for overwinter 

survival. Jongejans and Schippers [14] investigated the IBM of 

seeds dispersal via wind, which is a crucial mechanism for grass-

land vegetation. Another important ecological force that often 

been incorporated in IBM is biotic interactions (i.e. interactions 

between species) such as competition and predation. In another 

study, Law et al. [6] studied the IBM of plant species with local 

movement and competitive interactions using spatial logistic equa-

tions. They discovered that the populations can grow to asymptot-

ic densities, which is substantially greater than or less than the 

carrying capacity of the non-spatial logistic model. Other studies 

using IBM of coral reef community demonstrated that alternative 

stable states may exist as a result of interspecific coral competition 

[15]. Some studies [9, 16] examined the Lotka-Volterra type prey-

predator interactions using individual-based approach and they 

discovered the oscillatory behaviour is possible in this system.  

 

Motivated by the previous deterministic models, we develop a 

comparable stochastic IBM whereby the interacting species are 

represented as collections of discrete individual agents; these 

agents are tracked explicitly over time while undergoing birth-

death process or dispersing over adjacent locations. In the next 

section, we describe the development of our stochastic IBM and 

its deterministic counterpart. Numerical simulation results will be 

shown for the stochastic IBM and deterministic model and the 

results of the two models will be compared. Finally, we discuss 

several ecological implications of our results, and some of these 

findings have qualitative implications for conservation biology. 

 

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET
mailto:mohdhafizmohd@usm.my


334 International Journal of Engineering & Technology 

 

 

2. The Models 

2.1. A Deterministic PDE Model 

We consider a multispecies deterministic model by extending the 

Lotka-Volterra competition equations along environmental gradi-

ents, x. Specifically, we employ a PDE model for the densities 

 of multiple species (with ) in a one-

dimensional domain [17-20]: 

 

 

(1) 

 

where  is the intrinsic growth rate of species i,  is the carrying 

capacity,  is the diffusion coefficient and  is the competitive 

effect of species j on species i (with ). Equation (1) is sub-

jected to the following no-flux boundary conditions: 

 

 

(2) 

 

The boundary conditions (2) are used because we assume that the 

region is closed, and no migration occurs across boundaries. The 

change in environment is modelled by incorporating a spatial de-

pendence x into the carrying capacities  i.e.  [17-20]. The 

abiotic environments can be associated with numerous factors 

such as temperature, moisture and elevation. For instance, the term 

x can be considered as a geographical region, which may vary in 

climatic conditions and thus may affect the distributions of species. 

The effects of biotic interactions on range limits may depend on 

how each species responds to the environmental gradient. To illus-

trate these effects in a multispecies community, we use a linear 

environmental gradient in a three-species model ( ): 

 

 

(3) 

 

where  is the carrying capacity of species i at spatial location 

x,  is the change in environmental suitability with respect to 

abiotic component x and  is the carrying capacity of species i 

when x = 0. 

2.2. A Stochastic IBM 

To investigate how the underlying population-level information 

relates to a smaller individual scale, we develop a stochastic IBM, 

which was motivated by the deterministic model (1). We assumed 

that we have a one-dimensional uniform lattice (i.e. a line splits 

into finitely many sites) and each individual can reproduce, die 

(due to local competitive interactions) or move to the left or to the 

right between these sites following an unbiased random walk. The 

random walk theory gives us the relationship between the proba-

bility of an individual moves, , a short distance  at each time 

step  in the stochastic IBM, with diffusion coefficient  in the 

deterministic model (1): 

 

 

(4) 

 

Now, let us define  as the number of individuals of species 

i at location x and time t, where  and . 

To model the birth-death process, we define the birth rate  and 

death rate  of this stochastic process, which is motivated by the 

reaction term of the deterministic model (1). We assume that 

competition is only local (meaning that  depends on the number 

of individuals at a particular site, not at neighbouring sites). We 

also assume that  is small such that at most one transition can 

occur per site and depend on the current state of the population at 

that site. The possible types of transition are: birth (with probabil-

ity ); death (with probability ); move left or right (with 

probability , in which  corresponds to equation (4)). So, if 

there are n sites and m species, then there can be n x m set of tran-

sition rates. At the right boundary i.e.  (respectively left 

boundary i.e. ), the individual is unable to move right 

(respectively left). Thus, we have a ‘reflecting barrier’, which is 

analogous to no-flux boundary conditions (2) [4]. Notice that the 

changes in state will not be actioned until the following time step, 

in which all sites are simultaneously updated. We constructed the 

stochastic IBM in this way to keep a close connection to the de-

terministic model; the deterministic model (1) is the mean-field 

equation to the stochastic IBM, in the limits when  and 

the population size is sufficiently large. 

3. Methodology 

Numerical simulations are conducted using MATLAB for the 

stochastic IBM and deterministic models and the results of the two 

models are compared in the next sections. For the deterministic 

model, equation (1) with zero-flux boundary conditions (2) is 

solved numerically using MATLAB pdepe solver. This solver 

computes the numerical solutions of PDE in one spatial variable x 

and time t using the method of lines. In the method of lines, the 

spatial domain is divided into a mesh with A + 1 equally spaced 

nodes xj = jh for j = 0,1,...,A, where  is the uniform mesh 

size. The spatial derivative in equation (1) is replaced by a second 

central difference approximation. This leads to a system of 3(A + 

1) ordinary-differential equations (ODE), one for the density of 

each species at a series of equally spaced x points. The pdepe 

package then solves the resulting system of ODE by a standard 

ODE solver, ode15s for t = 1000s. We used  and 

initial conditions as indicated in each figure section. The results 

are insensitive to a reduction in grid spacing h. We also deter-

mined the stability of these steady states. To do this, the time de-

rivative in equation (1) is set to zero and the spatial derivative in 

equation (1) is replaced by a second central difference approxima-

tion, with constant grid spacing h. The zero-flux boundary condi-

tions (3) are coded in the equations for the end points using a fi-

nite difference approximation. This results in a system of 3(A+1) 

non-linear equations, one for the density of each species at a series 

of uniformly spaced x points, xj = jh for j=0,1,…,A, where . 

This system is solved for steady state using MATLAB fsolve. To 

determine the stability of steady state, the Jacobian matrix is cal-

culated numerically in fsolve and then the eigenvalues are com-

puted using eig function. The steady state is stable if all eigenval-

ues have negative real parts. Unless otherwise stated, the parame-

ter values employed in this work are given by Table 1. 

 
Table 1: Parameter Values 

Parameter 
Parametrisation of the Models 

Description Value 

 
The intrinsic growth rate of species i  1 

 
The change in environmental suitability of species 

1 with respect to x 

100 

 
The change in environmental suitability of species 

2 with respect to x 

0 

 
The change in environmental suitability of species 

3 with respect to x 

90 

 
Carrying capacity of species 1 when x = 0 0 

 
Carrying capacity of species 2 when x = 0 400 

 
Carrying capacity of species 3 when x = 0 0 

 
Diffusion coefficient 0.001 

 
Space step 0.1 

 
Time step 0.0005 

 
Probability of moving left or right (calculated using 

equation (4)) 

0.00005 

 
Competition coefficient (as indicated in each figure 
section) 
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4. Results and Findings 

To illustrate the possible competitive outcomes of the IBM which 

correspond to the dynamical behaviour of the PDE model, we 

conducted the simulation studies for PDE and IBM models and, 

the results of both models are compared. As an example, Figure 1 

illustrates the possible outcome of species interactions predicted 

by the two models when the interspecific competition is relatively 

weak ( ). 

 

Fig. 1: Solution of the PDE model (solid lines) and 500 averaged realisa-
tions of the IBM (bar graphs) at final time T = 1000. Solid lines indicate 

the steady-state solution of the PDE model (1) with no-flux boundary 

conditions (2) following linear environmental gradient (3); dotted lines 

indicate carrying capacity ; circles show the range limits 

of species 1, 2 and 3. Bar graphs correspond to the average density of the 

IBM. Competition coefficient: . Initial abundances: 

, , . Other pa-

rameter values as in Table 1. The steady-state solution of the PDE is calcu-

lated using MATLAB pdepe solver. 

Figure 1 illustrates the average density of the IBM (bar graphs) 

when , in contrast to the PDE model (solid lines). Note that 

the vertical axis corresponds to the density of species i.e. the num-

ber of individuals across the sites divided by . The average 

density of the IBM appears to follow closely the steady-state solu-

tion of the PDE. The range limits of species (circles) predicted by 

the stochastic IBM resemble those observed in the PDE model. 

These range limits divide the spatial domain into several regions. 

Each one of these regions corresponds to different possible out-

comes of the two models as x changes. For instance, species 2 

(green) dominates over the left region; and species 1 (blue) and 3 

(red) coexist over the right-hand part of spatial domain. The cen-

tral region corresponds to the zone of coexistence between these 

three-competing species. 

 

 

(a) 85 realisations (out of 300 simulations) 

 
(b) Time series plot of 1 selected realisation showing species 3 can persist. 

 

(c) 215 realisations (out of 300 simulations) 

 
(d) Time series plot of 1 selected realisation showing species 1 can persist 
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Fig. 2: (a)-(c) Solution of the PDE model (solid lines) and of the IBM (bar 

graphs) at final time T = 1000 when initial abundances favour species 3. 
Solid lines indicate the steady-state solution of the PDE model (1) with no-

flux boundary conditions (2) following linear environmental gradient (3); 

dotted lines indicate carrying capacity ; circles show the 

range limits of species 1, 2 and 3. Bar graphs correspond to the average 
density of the IBM. (b)-(d) Time series plots of two selected realisations of 

the IBM. Competition coefficient: . Initial abundances: 

, , . Other pa-

rameter values as in Table 1. The steady-state solution of the PDE model is 

calculated using MATLAB pdepe solver. 

 

We also explore the behaviour of the IBM and the corresponding 

PDE model under linear environmental gradient when               

. Our observations suggest that the IBM exhibits the alterna-

tive stable states behaviour leading to competitive exclusion that 

depends on initial abundances of species. This can be illustrated 

by Figure 2 as an example, which depicts the difference between 

the possible outcomes of the IBM in the alternative stable states 

case: either species 1 or species 3 persist over the right-hand part 

of spatial domain. When initial abundances favour species 3, this 

situation sometime lead to the survival of species 3 and the extinc-

tion of species 1 (Figure 2 (a)). Given the initial head start (Figure 

2 (b)), species 3 can possibly suppress other competitors over the 

right-hand side of spatial domain and species 2 can dominate the 

left region. This is one of the possible outcomes of the IBM when 

initial abundances favour species 3. However, some stochastic 

event may tip the system into an alternative basin of attraction 

[21]; in this stochastic model, the same set of parameter and initial 

abundances sometime may also result in the extinction of species 

3 and thus species 1 can persist (Figure 2 (c)). Even though spe-

cies 3 initially have an early advantage (Figure 2 (d)), the physio-

logically similar species i.e. species 1 have the potential to in-

crease their abundances by reproducing more; as opposed to spe-

cies 3, these species may experience strong intraspecific competi-

tion because they are more abundant. Consequently, due to the 

possibility of strong competition within the same species, the 

number of individual of species 3 can decrease and in the long 

run; species 1 can exclude species 3 and dominate over the right 

side of spatial domain. 

5. Conclusion  

In this work, we investigate the dynamics of species interactions 

along environmental gradients using different modelling frame-

works. We observe that the deterministic model and stochastic 

IBM give qualitatively similar predictions on species distributions 

as the strength of competition changes. The good agreement be-

tween the PDE and IBM results seems plausible because in devel-

oping the stochastic IBM, we incorporate an unbiased random-

walk process (which can be approximated as diffusion term in the 

PDE model) and, the birth-death process (which correspond to the 

reaction term in the PDE model). Thus, the competitive outcome 

predicted by the stochastic IBM resembles those in the PDE model. 

 

Our findings also demonstrate how different ecological forces 

driving species coexistence and alternative stable states can 

strongly shape the presence-absence of multiple species. In the 

absence of biotic interactions, abiotic environments determine the 

fundamental niches of species. Biotic interactions such as compe-

tition eliminate interacting species from some locations and affect 

their range limits. Dispersal affects species ranges in the presence 

of biotic and abiotic components. We also observe that multi-

species coexistence is possible near the central region, with spe-

cies diversity peaks at this location. Ecologically, this observation 

illustrates an example of a mid-domain effect, meaning that more 

species ranges overlap near the centre of a geographical region [22, 

23].This pattern of species diversity has been observed empirical-

ly; for instance, different studies of small mammals along eleva-

tional gradients observe patterns of mid-domain effect in which 

species diversity peaks at an intermediate elevation [24, 25]. 

 

Alternative stable states are known as priority effects, where spe-

cies establishment order can determine the presence-absence of 

species [26, 27]. The initially more abundant species have the 

potential to predominate and exclude the others [28, 29]. In our 

studies, we find that initial species abundance is a critical feature 

in determining the range limits of interacting species. This critical 

feature could be employed as a bio-control strategy: our result 

suggests that we could release specified abundances of bio-control 

agents, and these agents can reduce the competitive advantage of 

certain species. The bio-control agents may tip the balance be-

tween the competitors and may induce the switch between the 

long-term distributions of species. In practice, it has been ob-

served through different studies [30-32] that initial abundances 

can affect species presence-absence in biological control strategies, 

and our finding is consistent with these observations. 

 

From a modelling point of view, our simulation results on the 

occurrence of stable coexistence and alternative stable states in a 

multispecies community can be considered as realistic phenomena 

since these common predictions are given by different modelling 

frameworks e.g. deterministic PDE and stochastic IBM. By exam-

ining a family of related models and trying to obtain similar pre-

dictions between these modelling frameworks, we establish that 

these phenomena are robust, and they are not restricted to specific 

details and assumptions of the models. Thus, comparing and con-

trasting the dynamics of different models can help in understand-

ing the generality of ecological results [9], and may offer im-

portant insights into the robustness of model-based predictions of 

species’ distributions. With this in mind, we suggest the use of 

multi-scale modelling approaches to scientists in order to predict 

the spatial distributions of species across a geographical region. 
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