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Abstract 
 

Background/Objectives: An HEVC encoder consists of an in-loop and deblocking filter. In this paper, we propose an efficient in-loop 
filter hardware architecture for high performance HEVC encoder.  
Methods/Statistical analysis: The proposed in-loop filter hardware structure is divided into deblocking filter, SAO, and in-loop filter 
scheduler. The proposed deblocking filter uses an internal line buffer to reduce the overhead of external memory access in order to 
minimize hardware footprint. SAO has a high throughput with a 4x4 block size unit operation. It uses minimal hardware area by 
simplifying the equation used to determine the offset value. 
Findings: The in-loop filter hardware structure of the HEVC encoder proposed in this paper is synthesized at 260MHz with 90nm cell 
library, and it is possible to process 262.78K gates and 8K@120Fps in real time. 

Improvements/Applications: The proposed in-loop filter hardware architecture can be applied to high-performance HEVC video codec 
hardware, and it can be used as an individual filter because of in-loop filter characteristics. 

 
Keywords: HEVC, In-Loop filter, Deblocking filter, SAO, Hardware design 

 

1. Introduction 

In recent times, user demand for high-definition video service is 
on the rise due to advancements in multimedia technology, 
communication and various multimedia contents services. As a 
result, the services for HD video are now provided not only by TV 

but also by smart phones and various portable terminal devices. 
Recently, 4K UHD (Ultra High Definition) broadcasting stations 
with resolution of 4 times or more of HD (High Definition) UHD 
broadcasting service has started in earnest. In addition, with the 
inception of self-broadcasting via internet platforms, 4K UHD 
broadcasting is possible and readily accessible by viewers on the 
internet. Recently, content demand for Virtual Reality (VR) and 
Augmented Reality (AR) is increasing, and demand for Mixed 

Reality (MR), which combines virtual reality and augmented 
reality, is also increasing. Consequently, various games and 
services to which virtual reality and augmented reality are applied 
are on the market, and a lot of research has been conducted on 
data processing methods. However, in the case of video service, 
the amount of information generated is higher than that of voice. 
As the number of users of the high-definition video service 
increases, the video service generates high traffic for the Internet 

and communication lines for transmitting the data and the data 
generated. According to Cisco, which offers networking hardware 
and security services, traffic to video among all internet traffic is 
expected to increase from 67% in 2016 to 82% in 2021 [1]. Image 
compression technology for image data processing is improving as 
HD video service evolves into UHD image service. In 2001, Video 
Coding Experts Group (VCEG) of ITU-T and Moving Picture 
Experts Group (MPEG) of ISO/IEC jointly organized Joint Video 

Team (JVT) and standardized H.264/AVC. Compared with the 
previous compression technologies MPEG-2 and MPEG-4, the 
compression technology has excellent performance, but there is a 

limitation in providing ultra-high-resolution image service of 
UHD level or higher [2]. In 2010, ITU-T VCEG and ISO/IEC 
MPEG formed a Joint Collaborative Team on Video Coding (JCT-
VC) for UHD video service and standardization of HEVC (High 
Efficiency Video Coding) [3]. HEVC shows a bit reduction of 
about 50% in the subjective image quality criterion and about 40% 
in the objective image quality criterion compared to the previous 
compression standard H.264/AVC. The HEVC standard has a 

hybrid block-based encoding/decoding structure similar to the 
existing H.264/AVC, and adopts various techniques for high-
efficiency compression in detail. The HEVC is composed of 
hierarchical encoding block unit and structure, intra prediction 
technique with 36 prediction directions, effective inter picture 
prediction technique through AMVP (Advanced Motion Vector 
Prediction) and Merge mode, DCT (Discrete Cosine Transform), a 
two-step in-loop filter technique using deblocking filter and SAO 

(Sample Adaptive Offset), and entropy technology using CABAC 
(Context-based Adaptive Binary Arithmetic Coding) [4]. In 
particular, the in-loop filter technology includes deblocking filters 
and the newly added SAO technology from the HEVC. The 
deblocking filter is a technique for eliminating the blocking 
phenomenon occurring in the block-based image compression. 
The SAO is an offset filter for improving the deterioration in the 
block. By adding a constant offset to the restored pixel, SAO is 

reduced. Since the filtered pictures are used as reference pictures 
in the inter-picture prediction technique through the in-loop filter 
technique, not only the subjective picture quality by the filtering is 
improved but also the encoding efficiency is improved in the inter 
picture prediction technique. This is because more accurate inter-
picture prediction and compensation can be performed when a 
filtered picture is used as a reference picture rather than a restored 
picture having blocking deterioration or ringing phenomenon is 

used as a reference picture. However, the in-loop filter has a 
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disadvantage of requiring an additional amount of computation in 
a portion where filtering is performed on the restored pictures of 
the encoder and the decoder, although the filtering method has an 
advantage of improving the subjective image quality and 

improving the encoding efficiency. In particular, the deblocking 
filter causes frequent memory access by loading restored pixels 
stored in the memory when performing filtering, performing 
filtering, and storing the filtered pixels in the memory again. In 
addition, the deblocking filter itself is complicated in its filtering 
operation itself, and takes up 20% to 30% of the complexity in the 
decoder due to this computational complexity and overhead for 
memory access. Because SAO performs pixel-by-pixel operation, 

it needs high computation time and a large memory in order to 
select optimal mode and offset. Due to the complexity of such an 
in-loop filter, video codecs prior to H.264/AVC used mostly post-
processing filters, and relatively recently standardized H.264/AVC 
and HEVC use in-loop filtering. In this paper, we propose an 
efficient in-loop filter hardware with low memory access count, 
computation time, and memory by internal buffer structure with 
routing function and 4x4 block-based operation for designing high 

performance HEVC encoder. 

2. Overview of HEVC In-Loop Filter 

An in-loop filter is a technique used to improve subjective image 
quality and encoding efficiency. The in-loop filter of HEVC 
consists of deblocking filter and SAO. It is used to remove the 

blocking phenomenon occurring in the block-based image 
compression standard and the ringing phenomenon inside the 
block. The reconstructed image reconstructed through the in-loop 
filter is used as a reference image when displaying an image or 
performing inter-view prediction. The deblocking filter and SAO 
of the HEVC in-loop filter have encoding efficiencies of up to 6% 
and 23.5%, respectively [5]. The in-loop filter of HEVC improves 
subjective image quality and encoding efficiency, but requires 
additional computation, resulting in overhead for computational 

complexity and memory access. The in-loop filter time of HEVC 
decoding accounts for 19% to 21% of the total decoding time [6]. 
Research has been actively carried out to reduce the computational 
complexity and sophistication of the in-loop filter of HEVC. Both 
the software algorithm and hardware structure design of efficient 
in-loop filter have been studied in these referenced researches [7-
15]. 

2.1. Deblocking Filter 

The deblocking filter of HEVC is used to remove the blocking 
deterioration that occurs in block-based image compression. The 
deblocking filter of H.264/AVC, which is the conventional image 
compression standard, performs filtering in units of 4x4 blocks. 
However, since the 4x4 block boundary unit filtering has a high 
computational complexity in the UHD class image, the deblocking 
filter of the HEVC is changed to the 8x8 block boundary unit. 

Also, for high filtering efficiency, the deblocking filter strength 
can be varied in units of 4 pixels on the 8x8 block boundary. 
Figure 1 shows the process of deblocking filter execution of 
HEVC. The deblocking filter is divided into Boundary Judgment, 
Bs Calculation, Filter Decision, and Filtering [16]. 

 

Figure 1: The process of deblocking filter 

Blocking degradation occurs only at the boundary of the block 
size for which prediction and conversion are performed, so there is 
no need to perform a deblocking filter at all 8x8 block boundaries. 
The Boundary Judgment process divides the boundaries of the 
blocks used in intra prediction, inter prediction, and conversion. 

The block types used in prediction and conversion are CU, PU, 
and TU. Block information of CU, PU, and TU can be obtained 
through Depth, puSize, and TransformIdx information. Bs 
Calculation determines the strength of the filtering. The Bs 
Calculation of the deblocking filter supports three filtering 
strengths at the block boundary determined by Boundary 
Judgment. The filter decision finally determines the presence or 
absence of the filter, and uses the threshold values β and tc 

obtained by using the pixel and QP average values of the P and Q 
blocks. In addition, we use the information determined in 
Boundary Judgment and Bs Calculation to decide whether to 
apply filtering. Filtering is classified into strong filtering, normal 
filtering, and no filtering. Information about each filtering is 
determined and input by the filter decision. 

2.2. Sao 

The HEVC's SAO technology compensates for the degradation 
caused by image compression using the original image and the 
reconstructed image through offset. In particular, when the QP 
value is large, the ringing phenomenon may occur in the edge 
region of the input image. The ringing phenomenon is a main 
cause of deterioration of the subjective image quality as well as 
the blocking phenomenon. The HEVC uses SAO to improve the 
encoding performance by improving the main picture quality by 
removing the ringing phenomenon and minimizing the error 

between the original image and the restored image. The offset 
used in SAO is divided into edge offset and band offset, and is 
performed based on CTU. SAO is independent of both the 
luminance component and the chrominance component, and is 
performed in the same manner. The edge offsets are divided into 
classes according to the angle, into four categories according to 
each class. The band offset is divided into a maximum value from 
0 to represent a pixel, and an offset value is obtained according to 

the position of the input pixel value. Since SAO performs 
operations on a pixel-by-pixel basis, it takes a long time to 
compute, demanding a large memory space as well [17]. The edge 
offset of SAO is used to effectively correct the error of the 
reconstructed pixel, considering the edge direction within the 
block to be coded. The edge direction is classified into classes, 
and the edge offset class is shown in Figure 2. The classes of edge 
offsets have four orientations, horizontal and vertical, 135° and 

45°. 
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Figure 2: Classes of edge offsets 

Table 1 shows the categories of edge offsets and the determination 

conditions. There are five categories in each of the four classes, 
and each of the categories 1 to 4 has one offset. Thus, the edge 
offsets take a total of 16 offsets, and the RDO selects an optimal 
class. 

 

Table 1: Categories of edge offsets and determination criteria 

Category Condition 

1 c<a && c<b 

2 (c<a && c==b) || (c<b && c==a) 

3 (c>a && c==b) || (c>b && c==a) 

4 c>a && c>b 

0 None of the above 

The band offset of SAO classifies the pixels in the block to be 
coded into bands having similar brightness values, and the band 
offset is composed of 32 bands. If one pixel is represented by 8 
bits, the value of the pixel has a value between 0 and 255. In this 
case, the values of 0 to 255 pixels are divided into 32-band bands, 

and one band width has a value of 8. Figure 3 shows an example 
of band offset and offset determination. 

 

Figure 3: Example of band offset interval and offset determination 

 
The band offset produces 32 offsets corresponding to 32 bands, 
and the optimal band position is determined by RDO at all 

positions. RDO determines the optimum band position, and sends 
offsets of four consecutive bands at the determined optimum band 
position. In addition, since the band offset cannot distinguish the 
positive edge offset from the negative edge offset differently from 
the edge offset, the code information must be transmitted to the 
decoder. The offset of the SAO is generated in pixel units, and has 
a value from -7 to 7. In addition, since RDO determines the 
optimal offset, consideration must be given not only to the 
filtering efficiency but also to the bit amount generated. For 

example, offset 1 and 7 have different bit sizes. The offset 1 is 
represented by 2 bits, and the offset 7 is represented by 7 bits. The 
band offset is required up to the sign information bit for each 
offset, and the sign information bit is represented by one bit. The 
optimal offset is selected in consideration of the number of bits 
generated at the offset and the image quality improved when the 
offset is applied. The distortion of the original pixel and the 
reconstructed pixel before SAO is applied can be obtained by 

equation (1). s(k) and x(k) denote the kth original pixel and the 
reconstructed pixel in the block to be coded. 
 

                                                                             (1) 

 
The distortion of the original pixel and the reconstructed pixel 
after applying SAO can be obtained by equation (2). h denotes an 
offset. 

 

                                                                       (2) 

 
When SAO is applied, the bit rate increases because additional 
bits are generated as compared with the case where the SAO is not 
applied. Therefore, in order for SAO to be selected after the RDO 
process, the distortion (Dpost) after applying the SAO should be 
less than the distortion before the SAO application (Dpre). If the 

difference between Dpost and Dpre is defined as ΔD, the equation (3) 
is obtained. N is the number of pixels in the block to be coded, and 
E is equation (4). 
 

                                         

                                                                                                   (3) 

 
                                                                                 (4) 

In equation (3), N is the number of pixels, so it has a constant 
value. E can be obtained from the original pixel and the restored 

pixel. The HEVC reference software HM encoder uses ΔD to 
define the delta RD cost as in equation (5) and to determine the 
offset h with the smallest value. The HM encoder uses the initial h 
value E/N to compute the h value at high speed. 
 
                                                                                       (5) 

3. Proposed Hardware Structure 

The proposed in-loop filter hardware structure is shown in Figure 
4. Figure 4 shows only the functional parts of the in-loop filter 
hardware architecture. The proposed in-loop filter hardware 
structure consists of DF(Deblocking Filter) module, SAO module 
and In-Loop Filter Scheduler module. 

 
Figure 4: Proposed in-loop filter hardware architecture 

The DF module performs a deblocking filter function and includes 
a vertical and horizontal filter module for deblocking filtering of 
the 8x8 block boundary. Each vertical and horizontal filter module 
performs two 4-pixel filtering. The SAO module consists of a 

Statistics Collection (SC) part for collecting information on EO 
(Edge Offset) and BO (Band Offset) and a Mode Decision (MD) 
part for determining SAO mode. The SC portion includes a Pixel 
Difference module for obtaining the difference between the 
original pixel and the restored pixel, and an EO Offset and Band 
Offset module for generating the offset information of the EO and 
the BO. The MC part carries out the distortion calculation and the 
optimal offset determination with the offset information and the 
pixel difference generated in the SC. The SAO module is also 

based on a 4x4 block. The In-Loop Filter Scheduler module uses 
the 32x32 Buffer to transfer the deblocking filtering value to the 
SAO input. 
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3.1. Deblocking Filter 

The proposed deblocking filter hardware structure is shown in 
Figure 5. It includes a DF controller module for controlling the 
deblocking filter, a data controller module for controlling pixel 
data in the external memory, and information for determining 

whether pixel data and filtering are stored in a buffer module for 
performing filtering, and a filtering module for performing 
filtering. The Buffer module consists of a Route module and a 
Line Buffer module. Because the deblocking filter reuses the 
filtering pixels, it performs the step of storing in the memory. This 
memory access degrades the performance of the hardware module. 
Therefore, the line buffer module reduces the memory access by 
storing the filtered pixel data directly in the CB without storing it 
in the memory through the common buffer (CB) which can 

simultaneously read and write. In addition, the number of line 
buffers used through the route module is minimized. The filtering 
section is divided into a vertical filter module and a horizontal 
filter module, and each filter module performs filtering on eight 
lines. In addition, the 8-line filter module is composed of 4-line 
filters in consideration of 4x4 block size. In order to design high 
performance and efficient deblocking filter hardware, the 
conditional expressions used in each module are designed as 

parallel structure and resource sharing structure. Also, the design 
has a low power hardware structure by applying clock gating 
through an information signal indicating the presence or absence 
of filtering. 

 
Figure 5: Proposed deblocking filter hardware architecture 

2.1.1. Deblocking Filtering and Routing Order 

The proposed deblocking filtering order and routing order are 

shown in Figure 6. The total block size applying the deblocking 
filter is 32x32 blocks and the internal block size is 4x4 blocks. 
The deblocking filter divides an 8x8 block line into 12x32 size 
units, and uses 5-line buffers 4x32 in size. A 32x32 block size has 
a size of 36x32 block including pixel data for a 32x32 block 
boundary, and a 36x32 block has 9x32 line buffers. Table 2 shows 
the routing procedure and operation of the proposed line buffer 
structure. 

 
Figure 6: Deblocking filtering and routing order 

 

Table 2: Routing order and behavior of line buffers 

Route 

Number 

4x32 Buffer 

Number 

Line Buffer Filtered Pixel 

1 1 LB0 Output 

2 LB1 Output 

3 CB CB Stored 

2 3 CB Output 

4 LB2 Output 

5 LB3 CB Stored 

3 5 CB Output 

6 LB0 Output 

7 LB1 CB Stored 

4 7 CB Output 

8 LB2 Output 

9 LB3 Output 

The routing order of the proposed deblocking filter is divided into 
four stages. In the case of Route 1, the third 4x32 line buffer is 
stored in CB because it is used in Route 2 after vertical filtering. 
The second 4x32 line buffer in the second route is filtered and 
stored in the CB. CB reduces the internal 4x32 line buffer in the 
deblocking filter hardware and reduces the memory access latency 
because it does not store the filtered 4x32 pixel data in external 

memory. Figure 7 shows the data flow of the proposed routing 
structure. It reads the data from the external memory and stores it 
in the line buffer. The filter module for deblocking filtering reads 
the data from the line buffer. When reading data from external 
memory, it processes 4x4 block size. When reading line buffer or 
storing CB, it processes 4x8 block size. 

 
Figure 7: Routing data flow 

2.1.2. Low-Power Hardware Structure 

The deblocking filter determines whether to filter by Boundary 
Judgment, Bs Calculation, and Filter Decision. For example, in a 
Boundary Judgment, a non-boundary part of a PU or TU does not 

perform a filtering operation thereafter. In the case of software, 
filtering is performed on the next boundary. However, since the 
same time is given to all the filtering operations in the hardware, it 
is possible to reduce the operating power by determining the 
presence or absence of filtering and then turning off the clock 
when filtering is not performed. Figure 8 shows the clock gating 
structure of the proposed deblocking filter for a low-power 
hardware architecture. 

 
Figure 8: Clock gating structure 
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2.1.3. 4-Stage Pipeline Structure of Filtering Module 

The filtering module has a unit vertical filtering and a horizontal 
filtering structure, and each filtering is performed in units of 8 
pixels. In addition, to perform the 4-pixel block boundary strength, 
vertical filtering and horizontal filtering are composed of two 4-

pixel filtering structures. Filtering module consists of Boundary 
Judgment module, Bs Calculation module, Mode Decision module 
and the 4-Line Filter module, and it is designed with a 4-stage 
pipeline structure for high throughput. Figure 9 shows the 
submodules and pipeline structure inside the Filtering module. 
The proposed deblocking filter stores the data to be filtered from 
the external memory into the line buffer for 8 cycles, and the 
stored line buffer data is input to the filtering module for 4 cycles. 
The Filtering module filters for 7 cycles except one cycle that 

takes the first data to be filtered. Therefore, the Filtering module 
adds up to the cycle of reading data from the line buffer to 
complete the filtering in 8 total cycles. 

 

Figure 9: 4-Stage Pipeline Structure of Filtering Module 

2.1.4. Parallel Structure of Bs Calculation Module 

Bs Calculation functions to select different filtering intensities in 
4-pixel units. Figure 10 shows the Bs Calculation method used in 

the HEVC standard. Bs Calculation of HEVC standard is 
determined after confirming conditions of maximum 5 steps.  
These conditions introduce delays in the hardware, which degrade 
the performance of the entire system. Therefore, it is possible to 
determine Bs in a way that all conditions are checked in a parallel 
structure and priority is given to the hardware, and a conditional 
expression requiring a maximum of 5 steps in designing in parallel 
structure can be implemented in one step. Figure 11 shows the 

parallel structure of Bs Calculation. The priority of Bs is 2 to 0. In 
the parallel structure of Bs Calculation, all conditions are used to 
determine Bs by generating 1-bit information after comparison in 
the first step. 

 

Figure 10: Bs calculation structure of HEVC 

 

 

Figure 11: Bs calculation parallel structure 

3.2. Sao 

 
The proposed SAO hardware architecture is shown in Figure12. It 
consists of the Statistics Collection part (which collects 
information to determine the offset of the edge offset (EO) and the 
band offset (BO), the optimal offset determination of EO and BO) 
and a mode decision part. Since SAO performs EO and BO on all 
pixels within a 64x64 block, the computation time is high. 

Therefore, the proposed SAO hardware architecture computes 4x4 
block size rather than one pixel, and supports a maximum 64x64 
block size. The Pixel Difference (PD) module performs the 
operation of obtaining the difference between the original pixel 
and the restored pixel. The EO module receives 6x6 block size 
restoration pixels for edge offset computation of 4x4 block size, 
generates class and category information of each pixel, 
accumulates pixel difference input from PD module using class 

and category information. The BO module receives the restored 
pixels of 4x4 block size, generates band position information of 
each pixel, and accumulates and counts the pixel difference input 
from the PD module using the band position information. The 
DIST module receives the accumulated pixel differences and 
counters from the EO and BO modules, generates the offset, and 
selects the optimal offset type and offset information considering 
the RDO. 

 

Figure 12: Proposed SAO hardware architecture 

3.2.1. Parallel Structure of EO_CATE Module 

The EO_CATE module consists of 16 EO_P_SEL submodules, 
and receives pixels corresponding to a 6x6 block size. The 
EO_P_SEL module receives pixels corresponding to a 3x3 block 
size and generates category information for each class. Figure 13 
shows the surrounding pixels needed to perform EO in 4x4 block 
size. 

 

Figure 13: Schematic pixel required to perform EO in 4x4 block size 

Figure 14 (a) shows the method of determining the existing EO 
category, and (b) shows the simplified hardware category decision 
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structure. In hardware design, hardware resources can be 
optimized by designing redundant operations as resource sharing 
structure. 

 

Figure 14:EO category decision method and hardware structure 

optimization 

3.2.5. Proposed Offset Decision Hardware Algorithm 

The DIST_EO_OFFSET module performs the function of 
determining the optimal offset of the category corresponding to 
each class. In the HEVC standard, the initial offset is obtained 
through E/N, but in the proposed hardware, it is performed in 
parallel with the offset from -7 to 7. In equation (3), Nh2-2hE is 

applied to obtain ΔD. N and E are input through the EO_CAL 
module, and h is a constant value that does not change since it is 
an offset value from -7 to 7. Table 3 shows the values of h2 and 2h 
according to the offset value. 

Table 3: Values of h2 and 2h according to the offset value 

Offset h
2
 2h Offset h

2
 2h 

-7 49 -14 1 1 2 

-6 36 -12 2 4 4 

-5 25 -10 3 9 6 

-4 16 -8 4 16 8 

-3 9 -6 5 25 10 

-2 4 -4 6 36 12 

-1 1 -2 7 49 14 

0 0 0 - - - 

As shown in Table 4, the h2 and 2h values for all offsets are 
always fixed, only N and E are variable. Therefore, it is possible 
to implement hardware structure by using shift and adder for h2 
and 2h. In hardware, multipliers have high computational 
complexity and computation time, which causes performance 
degradation of the whole system. The proposed hardware 
architecture minimizes the multiplier for high performance in-loop 

filters. Equation (6) shows the relationship between left shift and 
multiplier. Table 5 shows the values of h2 and 2h as a shift and 
adder structure using equation (6). For example, when the offset 
value h is 7, h2 has a value of 49, and 49 can be divided into N×32 
and N×16, +N. Therefore, it can be calculated as N << 5 
corresponding to N×32 and N<<4,+N corresponding to N×16. 

        

                
                                                                                      (6) 

         

         

 

Table 4: h
2
 and 2h shift and adder structures 

|h| h
2
 Shift and Adder 2h Shift and Adder 

7 49 N 5 + N 4 + N 14 E 3 + E 2 + E 1 

6 36 N 5 + N 2 12 E 3 + E 2 

5 25 N 4 + N 3 + N 10 E 3 + E 1 

4 16 N 4 8 E 3 

3 9 N 3 + N 6 E 2 + E 1 

2 4 N 2 4 E 2 

1 1 N 2 E 1 

 
The DIST_EO_OFFSET module computes the Δj value using the 
equation (5) for the number of bits of each offset after the ΔD 
operation, and determines an offset value having the minimum Δj 
value. λ is a Lagrangian function with a value of 49.2221, and R is 

the number of bits that occur when encoding the offset. Table 5 
shows the number of generated bits according to the EO offset and 
the λ value in the proposed hardware structure. Finally, the 
DIST_EO_OFFSET module outputs the optimal offset and Δj 
value for each class. 

Table 5: Number of occurrences and λ value according to EO offset 

Offset R λ 

±7 7 345 

±6 7 345 

±5 6 295 

±4 5 246 

±3 4 197 

±2 3 148 

±1 2 98 

0 1 49 

The DIST_BO_OFFSET module performs the function of 
determining the offset of each band, and its structure is similar to 
the DIST_EO_OFFSET module. Unlike the DIST_EO_OFFSET 
module, however, the DIST_BO_OFFSET module performs offset 

operations on 32 bands. In addition, the BO must transmit the 
band offset to the decoder and to the code bit and the band 
position. The additional bits generated at this time are 4 bits for 
the sign bit and 5 bits for the band position, and the 

DIST_BO_OFFSET module calculates the lambda value in 
consideration of the sign bit. Table 6 shows the number of 
generated bits according to BO offset and the value of λ in the 
proposed hardware structure. 

Table 6: Number of occurrences and λ value according to BO offset 

Offset R Sign Bit λ 

±7 7 1 394 

±6 7 1 394 

±5 6 1 345 

±4 5 1 295 

±3 4 1 246 

±2 3 1 197 

±1 2 1 148 

0 1 0 49 

 

3.3. In-Loop Filter Scheduler 

The proposed in - loop filter scheduler hardware uses a 32x32 
block size buffer considering the processing unit and operation 
cycle of deblocking filter and SAO. Figure 15 shows the 
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deblocking filter and SAO's scheduler. 
 

 

Figure 15: Scheduling of in-loop filters 

The deblocking filter performs filtering in units of 32x32 blocks, 
and takes a total of 40 cycles. On the other hand, SAO performs 
filtering in units of 64x64 block size, and takes a total of 226 

cycles. SAO operates after 32x32 blocks are filtered by the 
deblocking filter. The deblocking filter filters the next 32x32 block 
after 24th, 16th, and 9th cycles as shown in Figure 15. Because 
SAO processes in pixels, more cycles are needed than deblocking 
filters. The in-loop filter scheduler hardware applies the 
deblocking filter order as shown in Figure 16 for the deblocking 
filter and SAO processing unit. When the deblocking filter 
operates in the order of the pictures' refresh rate, SAO can be 

performed only after the first line ends and the deblocking filtering 
of the first 32x32 block of the second line is completed. Therefore, 
the deblocking filter performs filtering by the zig-zag scan method 
in consideration of the processing unit of the SAO. 

 
Figure 16: SAO processing sequence according to deblocking filtering 

order 

4. Implementation Result 

The in-loop filter hardware architecture proposed in this paper was 
designed as Verilog HDL and input data and output data were 
generated using hardware standard HM-16.9 for hardware 
verification. 

 
Figure 17: Verification method of proposed hardware structure 

Category Figure 17 shows HM-16.9 and hardware verification 
method. The input data generated by HM-16.9 is used as in-loop 
filter hardware input, and the output data generated by HM-16.9 is 

compared with the data output through hardware simulation. Table 
7 shows the verification environment and the tools used. 

Table 7: Verification environment and usage tool 

Environment/Tool Specification 

PC CPU Intel Core i7-4770 

RAM 8 GB 

SW Debugger Microsoft Visual Studio 2017 

HW Simulation Mentor Graphics ModelSim SE-64 10.1c 

ASIC Design Compiler syn_vL-2006.03-SP5-5 

PrimeTime pts_vM-2017.06 

Due to the nature of the in-loop filter of the HEVC encoder, the 
deblocking filter and the SAO are separated into independent 
modules. Therefore, we compare the performance of the proposed 
In-loop filter hardware design by separating the deblocking filter 

and SAO. Also, DE (Design Efficiency) is applied for fair 
performance evaluation, and the formula of DE is equation (7). 
Format indicates the size of a supported image, and Fps indicates 
the number of frames that can be processed per second. The gate 
count represents the total number of gates of the hardware module. 
 

   
           

          
                                                                       (7) 

 
The proposed In-loop filter hardware architecture is based on 
ASIC synthesis using 90-nm cell library. In addition, the hardware 
structure of the proposed deblocking filter and SAO is synthesized 

at 260MHz with maximum operating frequency for smooth 
performance comparison. Proposed1 and Proposed2 represent the 
hardware synthesis results of the deblocking filter, Proposed3 and 
Proposed4 represent the hardware synthesis results of the SAO. 
Proposed1 and Proposed3 are synthesized with maximum 
operating frequency, Proposed2 and Proposed4 are synthesized 
with 260MHz operating frequency. The number of gates was 
calculated by dividing the hardware area results by the Synopsys 

Design Compiler tool using a 90nm cell library divided by the 
2NAND gate area of the 90nm cell library. Previous paper [18] 
and [19] proposed a deblocking filter, and [21] and [22] proposed 
SAO. [20] also suggests both a deblocking filter and SAO 
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Table 8: Comparison of proposed deblocking filter hardware structure 

Deblocking Filter Proposed1 Proposed2 [18] [19] [20] 

Process (nm) 90 90 180 90 65 

LCU Size 32x32 32x32 32x32 64x64 32x32 

Frequency (MHz) 1000 260 322 278 200 

Cycles/LCU 40 

(64x64@160) 

40 

(64x64@160) 

31 288 558 

Resolution 7680x4320 7680x4320 7680x4320 7680x4320 7680x4320 

Fps 771 200 320 123 40 

Gate 

Count 

(K) 

Boundary judgment 0.11 0.08 No 0.04 No 

Bs calculation 2.01 1.45 - 7.70 - 

Filter 61.78 44.62 - 23.88 - 

Total 114.49 46.15 865.00 31.62 30.30 

Memory (Kbyte) 0.60 0.60 - 8.50 4.80 

DE (x10
3
) 400.37 143.78 12.17 129.06 43.80 

 
Table 8 shows the comparison of the proposed deblocking filter 
hardware structure. [18] performs a 36x36 block-based filter for a 

32x32 block boundary filter, and performs parallel vertical and 
horizontal filtering by dividing a 36x36 block into 4x36 block 
sizes. It also did not include a boundary judgment module to 
identify the boundary between PU and TU. The architecture 
proposed in [18] has high throughput because it performs 36x36 
block-based parallel filtering, and the number of gates of the 
proposed hardware structure has high results due to parallel 
filtering. The proposed Proposed2 result and [18] are compared 

with DE, and Proposed2 has a high efficiency of 1071.4%. [19] 
minimizes the number of external memory accesses using internal 
memory, and treats conditional statements used for boundary 
prediction, filtering strength, and filtering as a parallel structure. It 

also has high throughput using four filtering modules. The 
deblocking filter proposed in this paper has a structure that uses 

less memory than [19], and has a 11.4% higher efficiency 
compared to the Proposed2 result and DE [19].The hardware 
architecture of the proposed deblocking filter proposed a 32x32 
block-based memory configuration to solve the dependency 
between vertical and horizontal filtering, and has a high 
throughput with a 4-stage pipeline structure. The internal memory 
used in [20]'s hardware structure is 4.8 KB, and external memory 
is used to minimize the hardware area. However, the size of the 

external memory used was not included in the results. As a result 
of comparing the Proposed2 results [20] proposed in this paper 
with DE, Proposed2 has a high efficiency of 228.2%. 

 
Table 9: Comparison of proposed SAO hardware structure 

Deblocking Filter Proposed3 Proposed4 [20] [21] [22] 

Process (nm) 90 90 65 28 40 

LCU Size 64x64 64x64 32x32 64x64 64x64 

Frequency (MHz) 970 260 200 266 1300/217 

Cycles/LCU 266 266 558 1600 905/40 

Resolution 7680x4320 7680x4320 7680x4320 3840x2160 7680x4320 

Fps 450 120 40 82 120 

Gate 

Count 

(K) 

Statistics collection 98.43 83.71 55.90 - 30.00 

Mode decision 59.07 50.23 17.10 - 21.00 

Total 157.50 133.94 73.00 300.00 51.00 

Memory (Kbyte) - - 4.80 - 1.14 

DE (x10
3
) 94.79 29.72 18.18 2.27 78.06 

 
Table 9 shows the comparison of proposed SAO hardware 
structure. The proposed SAO hardware structure has a divided 
adder structure considering the deblocking filtering process step 
and is composed of a 2-stage pipeline. Proposed 4 results are 
compared with DE [20], and Proposed 2 shows 63.5% higher 
efficiency. [21] is designed as a 3-stage pipeline for high-
performance SAO hardware architecture and performs 4x4 block-

based processing. It also includes a parallel offset decision 
structure and a distortion calculation structure. The 4x4 block-
based processing and parallel offset and distortion operation 
architecture of [21] requires high hardware area and does not 
include memory. Compared to Proposed 4 and DE [21], Proposed 
4 has 1211.1% higher efficiency. The proposed hardware structure 
is divided into a Statistics Collection (SC) module and a Parameter 
Decision (PD) module. The SC module that requires pixel 
processing uses a 1.3 GHz operating frequency and the PD 

module uses a 217 MHz operating frequency It is a structure to 
use. SC modules require 905 cycles to process a single 64x64 
LCU, and PD modules require 40 cycles. The BO of [22] 
minimizes the hardware area by using only 8 bands instead of 32 
bands, and has an average BDrate reduction of -10.17% compared 
with HM-16.0 at 8k image size. Proposed 4 proposed in this paper 
is synthesized at operating frequency of 970MHz and the 
efficiency of DE is compared with that of [22]. 

 

5. Conclusion 

In this paper, we describe efficient in-loop filter hardware design 
for high performance HEVC encoders. The in-loop filter of HEVC 
improves subjective image quality and encoding efficiency, but 

requires additional computation, resulting in an overhead for 
computational complexity and memory access. The in-loop filter 
time of the HEVC accounts for 3.5% to 23.5%.Therefore, this 
paper proposes an efficient in-loop filter hardware architecture for 
high performance HEVC encoders. The proposed in-loop filter 
hardware structure consists of a deblocking filter to remove block 
degradation, SAO to remove ringing inside the block, deblocking 
filter and in-loop filter scheduler for SAO pipeline structure. The 

proposed deblocking filter has a line buffer structure to reduce the 
number of external memory accesses, and it can be processed with 
a minimum line buffer by applying a routing technique. In 
addition, for the low power design, the internal block of the 
deblocking filter is designed as a clock gating structure, and the 
filtering module is designed with a 4-stage pipeline structure and 
has high throughput. In order to reduce the memory usage in the 
in-loop filter, the jig-jag scanning method is used for the 
deblocking filtering order. The hardware structure of the proposed 

SAO performs 4x4 block-based operation for deblocking filter and 
parallel processing, and minimizes the hardware area by 
implementing the multiplier required for offset and RDO 
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operations with shift and adder. In addition, the redundant 
arithmetic expressions are designed in such a structure that they 
can be processed in parallel to share computation results. Finally, 
the in-loop filter scheduler uses a 32x32 block buffer for the 

pipelining structure of deblocking filter and SAO. The proposed 
in-loop filter was designed with Verilog HDL and hardware 
verification was performed by storing the information required for 
deblocking filter operation and the filtered data in a file with HM-
16.9, the HEVC standard software. SAO was also performed in 
the same manner. The software debugger was used to verify the 
hardware simulation waveforms. As a result, HM-16.9 and the 
proposed hardware show the same performance results. As a result 

of comparing the proposed in-loop filter hardware structure with 
the hardware structure proposed by the existing papers, the 
deblocking filter has a maximum efficiency of 1071.4% and a 
minimum efficiency of 11.4%, and SAO has a maximum of 
1211.1% and a minimum of 21.4% Efficiency. The proposed in - 
loop filter hardware structure was synthesized by Synopsys' 
Design Compiler using a 90nm cell library at 260MHz and 
synthesized with 262.78K gates. It also supports real-time 

processing of 8K@120Fps at an operating frequency of 260MHz. 
As a result of synthesizing the proposed in-loop filter hardware 
structure at maximum operating frequency, deblocking filter 
supports real time processing of 8K@771Fps at 1GHz and SAO 
supports real time processing of 8K@450Fps at 970MHz. 
Therefore, real-time processing of deblocking filter 16K@192FPS, 
SAO 16K@112FPS is possible in the virtual reality and 
augmented reality contents service using the image size of 16K 

(15,360x8,640), and suggestion in the image size of 32K 
(30,720x17,280) Hardware architecture, the deblocking filter can 
support real-time processing of 32K@96Fps and SAO 
32K@56Fps. Therefore, it is possible to use not only 8K image 
size but also 32K image size through the proposed in-loop filter 
hardware structure. 
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