

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.24) (2018) 176-184

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Efficient Hardware Design of In-Loop Filter for High-

Performance HEVC Encoder

SeungyongPark
1
, Kwangki Ryoo

*2

Department of Information & Communication Engineering, Hanbat National University, Daejeon, Korea

*Corresponding author E-mail: kkryoo@gmail.com*2

Abstract

Background/Objectives: An HEVC encoder consists of an in-loop and deblocking filter. In this paper, we propose an efficient in-loop
filter hardware architecture for high performance HEVC encoder.
Methods/Statistical analysis: The proposed in-loop filter hardware structure is divided into deblocking filter, SAO, and in-loop filter
scheduler. The proposed deblocking filter uses an internal line buffer to reduce the overhead of external memory access in order to
minimize hardware footprint. SAO has a high throughput with a 4x4 block size unit operation. It uses minimal hardware area by
simplifying the equation used to determine the offset value.
Findings: The in-loop filter hardware structure of the HEVC encoder proposed in this paper is synthesized at 260MHz with 90nm cell
library, and it is possible to process 262.78K gates and 8K@120Fps in real time.

Improvements/Applications: The proposed in-loop filter hardware architecture can be applied to high-performance HEVC video codec
hardware, and it can be used as an individual filter because of in-loop filter characteristics.

Keywords: HEVC, In-Loop filter, Deblocking filter, SAO, Hardware design

1. Introduction

In recent times, user demand for high-definition video service is
on the rise due to advancements in multimedia technology,
communication and various multimedia contents services. As a
result, the services for HD video are now provided not only by TV

but also by smart phones and various portable terminal devices.
Recently, 4K UHD (Ultra High Definition) broadcasting stations
with resolution of 4 times or more of HD (High Definition) UHD
broadcasting service has started in earnest. In addition, with the
inception of self-broadcasting via internet platforms, 4K UHD
broadcasting is possible and readily accessible by viewers on the
internet. Recently, content demand for Virtual Reality (VR) and
Augmented Reality (AR) is increasing, and demand for Mixed

Reality (MR), which combines virtual reality and augmented
reality, is also increasing. Consequently, various games and
services to which virtual reality and augmented reality are applied
are on the market, and a lot of research has been conducted on
data processing methods. However, in the case of video service,
the amount of information generated is higher than that of voice.
As the number of users of the high-definition video service
increases, the video service generates high traffic for the Internet

and communication lines for transmitting the data and the data
generated. According to Cisco, which offers networking hardware
and security services, traffic to video among all internet traffic is
expected to increase from 67% in 2016 to 82% in 2021 [1]. Image
compression technology for image data processing is improving as
HD video service evolves into UHD image service. In 2001, Video
Coding Experts Group (VCEG) of ITU-T and Moving Picture
Experts Group (MPEG) of ISO/IEC jointly organized Joint Video

Team (JVT) and standardized H.264/AVC. Compared with the
previous compression technologies MPEG-2 and MPEG-4, the
compression technology has excellent performance, but there is a

limitation in providing ultra-high-resolution image service of
UHD level or higher [2]. In 2010, ITU-T VCEG and ISO/IEC
MPEG formed a Joint Collaborative Team on Video Coding (JCT-
VC) for UHD video service and standardization of HEVC (High
Efficiency Video Coding) [3]. HEVC shows a bit reduction of
about 50% in the subjective image quality criterion and about 40%
in the objective image quality criterion compared to the previous
compression standard H.264/AVC. The HEVC standard has a

hybrid block-based encoding/decoding structure similar to the
existing H.264/AVC, and adopts various techniques for high-
efficiency compression in detail. The HEVC is composed of
hierarchical encoding block unit and structure, intra prediction
technique with 36 prediction directions, effective inter picture
prediction technique through AMVP (Advanced Motion Vector
Prediction) and Merge mode, DCT (Discrete Cosine Transform), a
two-step in-loop filter technique using deblocking filter and SAO

(Sample Adaptive Offset), and entropy technology using CABAC
(Context-based Adaptive Binary Arithmetic Coding) [4]. In
particular, the in-loop filter technology includes deblocking filters
and the newly added SAO technology from the HEVC. The
deblocking filter is a technique for eliminating the blocking
phenomenon occurring in the block-based image compression.
The SAO is an offset filter for improving the deterioration in the
block. By adding a constant offset to the restored pixel, SAO is

reduced. Since the filtered pictures are used as reference pictures
in the inter-picture prediction technique through the in-loop filter
technique, not only the subjective picture quality by the filtering is
improved but also the encoding efficiency is improved in the inter
picture prediction technique. This is because more accurate inter-
picture prediction and compensation can be performed when a
filtered picture is used as a reference picture rather than a restored
picture having blocking deterioration or ringing phenomenon is

used as a reference picture. However, the in-loop filter has a

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 177

disadvantage of requiring an additional amount of computation in
a portion where filtering is performed on the restored pictures of
the encoder and the decoder, although the filtering method has an
advantage of improving the subjective image quality and

improving the encoding efficiency. In particular, the deblocking
filter causes frequent memory access by loading restored pixels
stored in the memory when performing filtering, performing
filtering, and storing the filtered pixels in the memory again. In
addition, the deblocking filter itself is complicated in its filtering
operation itself, and takes up 20% to 30% of the complexity in the
decoder due to this computational complexity and overhead for
memory access. Because SAO performs pixel-by-pixel operation,

it needs high computation time and a large memory in order to
select optimal mode and offset. Due to the complexity of such an
in-loop filter, video codecs prior to H.264/AVC used mostly post-
processing filters, and relatively recently standardized H.264/AVC
and HEVC use in-loop filtering. In this paper, we propose an
efficient in-loop filter hardware with low memory access count,
computation time, and memory by internal buffer structure with
routing function and 4x4 block-based operation for designing high

performance HEVC encoder.

2. Overview of HEVC In-Loop Filter

An in-loop filter is a technique used to improve subjective image
quality and encoding efficiency. The in-loop filter of HEVC
consists of deblocking filter and SAO. It is used to remove the

blocking phenomenon occurring in the block-based image
compression standard and the ringing phenomenon inside the
block. The reconstructed image reconstructed through the in-loop
filter is used as a reference image when displaying an image or
performing inter-view prediction. The deblocking filter and SAO
of the HEVC in-loop filter have encoding efficiencies of up to 6%
and 23.5%, respectively [5]. The in-loop filter of HEVC improves
subjective image quality and encoding efficiency, but requires
additional computation, resulting in overhead for computational

complexity and memory access. The in-loop filter time of HEVC
decoding accounts for 19% to 21% of the total decoding time [6].
Research has been actively carried out to reduce the computational
complexity and sophistication of the in-loop filter of HEVC. Both
the software algorithm and hardware structure design of efficient
in-loop filter have been studied in these referenced researches [7-
15].

2.1. Deblocking Filter

The deblocking filter of HEVC is used to remove the blocking
deterioration that occurs in block-based image compression. The
deblocking filter of H.264/AVC, which is the conventional image
compression standard, performs filtering in units of 4x4 blocks.
However, since the 4x4 block boundary unit filtering has a high
computational complexity in the UHD class image, the deblocking
filter of the HEVC is changed to the 8x8 block boundary unit.

Also, for high filtering efficiency, the deblocking filter strength
can be varied in units of 4 pixels on the 8x8 block boundary.
Figure 1 shows the process of deblocking filter execution of
HEVC. The deblocking filter is divided into Boundary Judgment,
Bs Calculation, Filter Decision, and Filtering [16].

Figure 1: The process of deblocking filter

Blocking degradation occurs only at the boundary of the block
size for which prediction and conversion are performed, so there is
no need to perform a deblocking filter at all 8x8 block boundaries.
The Boundary Judgment process divides the boundaries of the
blocks used in intra prediction, inter prediction, and conversion.

The block types used in prediction and conversion are CU, PU,
and TU. Block information of CU, PU, and TU can be obtained
through Depth, puSize, and TransformIdx information. Bs
Calculation determines the strength of the filtering. The Bs
Calculation of the deblocking filter supports three filtering
strengths at the block boundary determined by Boundary
Judgment. The filter decision finally determines the presence or
absence of the filter, and uses the threshold values β and tc

obtained by using the pixel and QP average values of the P and Q
blocks. In addition, we use the information determined in
Boundary Judgment and Bs Calculation to decide whether to
apply filtering. Filtering is classified into strong filtering, normal
filtering, and no filtering. Information about each filtering is
determined and input by the filter decision.

2.2. Sao

The HEVC's SAO technology compensates for the degradation
caused by image compression using the original image and the
reconstructed image through offset. In particular, when the QP
value is large, the ringing phenomenon may occur in the edge
region of the input image. The ringing phenomenon is a main
cause of deterioration of the subjective image quality as well as
the blocking phenomenon. The HEVC uses SAO to improve the
encoding performance by improving the main picture quality by
removing the ringing phenomenon and minimizing the error

between the original image and the restored image. The offset
used in SAO is divided into edge offset and band offset, and is
performed based on CTU. SAO is independent of both the
luminance component and the chrominance component, and is
performed in the same manner. The edge offsets are divided into
classes according to the angle, into four categories according to
each class. The band offset is divided into a maximum value from
0 to represent a pixel, and an offset value is obtained according to

the position of the input pixel value. Since SAO performs
operations on a pixel-by-pixel basis, it takes a long time to
compute, demanding a large memory space as well [17]. The edge
offset of SAO is used to effectively correct the error of the
reconstructed pixel, considering the edge direction within the
block to be coded. The edge direction is classified into classes,
and the edge offset class is shown in Figure 2. The classes of edge
offsets have four orientations, horizontal and vertical, 135° and

45°.

178 International Journal of Engineering & Technology

Figure 2: Classes of edge offsets

Table 1 shows the categories of edge offsets and the determination

conditions. There are five categories in each of the four classes,
and each of the categories 1 to 4 has one offset. Thus, the edge
offsets take a total of 16 offsets, and the RDO selects an optimal
class.

Table 1: Categories of edge offsets and determination criteria

Category Condition

1 c<a && c<b

2 (c<a && c==b) || (c<b && c==a)

3 (c>a && c==b) || (c>b && c==a)

4 c>a && c>b

0 None of the above

The band offset of SAO classifies the pixels in the block to be
coded into bands having similar brightness values, and the band
offset is composed of 32 bands. If one pixel is represented by 8
bits, the value of the pixel has a value between 0 and 255. In this
case, the values of 0 to 255 pixels are divided into 32-band bands,

and one band width has a value of 8. Figure 3 shows an example
of band offset and offset determination.

Figure 3: Example of band offset interval and offset determination

The band offset produces 32 offsets corresponding to 32 bands,
and the optimal band position is determined by RDO at all

positions. RDO determines the optimum band position, and sends
offsets of four consecutive bands at the determined optimum band
position. In addition, since the band offset cannot distinguish the
positive edge offset from the negative edge offset differently from
the edge offset, the code information must be transmitted to the
decoder. The offset of the SAO is generated in pixel units, and has
a value from -7 to 7. In addition, since RDO determines the
optimal offset, consideration must be given not only to the
filtering efficiency but also to the bit amount generated. For

example, offset 1 and 7 have different bit sizes. The offset 1 is
represented by 2 bits, and the offset 7 is represented by 7 bits. The
band offset is required up to the sign information bit for each
offset, and the sign information bit is represented by one bit. The
optimal offset is selected in consideration of the number of bits
generated at the offset and the image quality improved when the
offset is applied. The distortion of the original pixel and the
reconstructed pixel before SAO is applied can be obtained by

equation (1). s(k) and x(k) denote the kth original pixel and the
reconstructed pixel in the block to be coded.

 (1)

The distortion of the original pixel and the reconstructed pixel
after applying SAO can be obtained by equation (2). h denotes an
offset.

 (2)

When SAO is applied, the bit rate increases because additional
bits are generated as compared with the case where the SAO is not
applied. Therefore, in order for SAO to be selected after the RDO
process, the distortion (Dpost) after applying the SAO should be
less than the distortion before the SAO application (Dpre). If the

difference between Dpost and Dpre is defined as ΔD, the equation (3)
is obtained. N is the number of pixels in the block to be coded, and
E is equation (4).

 (3)

 (4)

In equation (3), N is the number of pixels, so it has a constant
value. E can be obtained from the original pixel and the restored

pixel. The HEVC reference software HM encoder uses ΔD to
define the delta RD cost as in equation (5) and to determine the
offset h with the smallest value. The HM encoder uses the initial h
value E/N to compute the h value at high speed.

 (5)

3. Proposed Hardware Structure

The proposed in-loop filter hardware structure is shown in Figure
4. Figure 4 shows only the functional parts of the in-loop filter
hardware architecture. The proposed in-loop filter hardware
structure consists of DF(Deblocking Filter) module, SAO module
and In-Loop Filter Scheduler module.

Figure 4: Proposed in-loop filter hardware architecture

The DF module performs a deblocking filter function and includes
a vertical and horizontal filter module for deblocking filtering of
the 8x8 block boundary. Each vertical and horizontal filter module
performs two 4-pixel filtering. The SAO module consists of a

Statistics Collection (SC) part for collecting information on EO
(Edge Offset) and BO (Band Offset) and a Mode Decision (MD)
part for determining SAO mode. The SC portion includes a Pixel
Difference module for obtaining the difference between the
original pixel and the restored pixel, and an EO Offset and Band
Offset module for generating the offset information of the EO and
the BO. The MC part carries out the distortion calculation and the
optimal offset determination with the offset information and the
pixel difference generated in the SC. The SAO module is also

based on a 4x4 block. The In-Loop Filter Scheduler module uses
the 32x32 Buffer to transfer the deblocking filtering value to the
SAO input.

International Journal of Engineering & Technology 179

3.1. Deblocking Filter

The proposed deblocking filter hardware structure is shown in
Figure 5. It includes a DF controller module for controlling the
deblocking filter, a data controller module for controlling pixel
data in the external memory, and information for determining

whether pixel data and filtering are stored in a buffer module for
performing filtering, and a filtering module for performing
filtering. The Buffer module consists of a Route module and a
Line Buffer module. Because the deblocking filter reuses the
filtering pixels, it performs the step of storing in the memory. This
memory access degrades the performance of the hardware module.
Therefore, the line buffer module reduces the memory access by
storing the filtered pixel data directly in the CB without storing it
in the memory through the common buffer (CB) which can

simultaneously read and write. In addition, the number of line
buffers used through the route module is minimized. The filtering
section is divided into a vertical filter module and a horizontal
filter module, and each filter module performs filtering on eight
lines. In addition, the 8-line filter module is composed of 4-line
filters in consideration of 4x4 block size. In order to design high
performance and efficient deblocking filter hardware, the
conditional expressions used in each module are designed as

parallel structure and resource sharing structure. Also, the design
has a low power hardware structure by applying clock gating
through an information signal indicating the presence or absence
of filtering.

Figure 5: Proposed deblocking filter hardware architecture

2.1.1. Deblocking Filtering and Routing Order

The proposed deblocking filtering order and routing order are

shown in Figure 6. The total block size applying the deblocking
filter is 32x32 blocks and the internal block size is 4x4 blocks.
The deblocking filter divides an 8x8 block line into 12x32 size
units, and uses 5-line buffers 4x32 in size. A 32x32 block size has
a size of 36x32 block including pixel data for a 32x32 block
boundary, and a 36x32 block has 9x32 line buffers. Table 2 shows
the routing procedure and operation of the proposed line buffer
structure.

Figure 6: Deblocking filtering and routing order

Table 2: Routing order and behavior of line buffers

Route

Number

4x32 Buffer

Number

Line Buffer Filtered Pixel

1 1 LB0 Output

2 LB1 Output

3 CB CB Stored

2 3 CB Output

4 LB2 Output

5 LB3 CB Stored

3 5 CB Output

6 LB0 Output

7 LB1 CB Stored

4 7 CB Output

8 LB2 Output

9 LB3 Output

The routing order of the proposed deblocking filter is divided into
four stages. In the case of Route 1, the third 4x32 line buffer is
stored in CB because it is used in Route 2 after vertical filtering.
The second 4x32 line buffer in the second route is filtered and
stored in the CB. CB reduces the internal 4x32 line buffer in the
deblocking filter hardware and reduces the memory access latency
because it does not store the filtered 4x32 pixel data in external

memory. Figure 7 shows the data flow of the proposed routing
structure. It reads the data from the external memory and stores it
in the line buffer. The filter module for deblocking filtering reads
the data from the line buffer. When reading data from external
memory, it processes 4x4 block size. When reading line buffer or
storing CB, it processes 4x8 block size.

Figure 7: Routing data flow

2.1.2. Low-Power Hardware Structure

The deblocking filter determines whether to filter by Boundary
Judgment, Bs Calculation, and Filter Decision. For example, in a
Boundary Judgment, a non-boundary part of a PU or TU does not

perform a filtering operation thereafter. In the case of software,
filtering is performed on the next boundary. However, since the
same time is given to all the filtering operations in the hardware, it
is possible to reduce the operating power by determining the
presence or absence of filtering and then turning off the clock
when filtering is not performed. Figure 8 shows the clock gating
structure of the proposed deblocking filter for a low-power
hardware architecture.

Figure 8: Clock gating structure

180 International Journal of Engineering & Technology

2.1.3. 4-Stage Pipeline Structure of Filtering Module

The filtering module has a unit vertical filtering and a horizontal
filtering structure, and each filtering is performed in units of 8
pixels. In addition, to perform the 4-pixel block boundary strength,
vertical filtering and horizontal filtering are composed of two 4-

pixel filtering structures. Filtering module consists of Boundary
Judgment module, Bs Calculation module, Mode Decision module
and the 4-Line Filter module, and it is designed with a 4-stage
pipeline structure for high throughput. Figure 9 shows the
submodules and pipeline structure inside the Filtering module.
The proposed deblocking filter stores the data to be filtered from
the external memory into the line buffer for 8 cycles, and the
stored line buffer data is input to the filtering module for 4 cycles.
The Filtering module filters for 7 cycles except one cycle that

takes the first data to be filtered. Therefore, the Filtering module
adds up to the cycle of reading data from the line buffer to
complete the filtering in 8 total cycles.

Figure 9: 4-Stage Pipeline Structure of Filtering Module

2.1.4. Parallel Structure of Bs Calculation Module

Bs Calculation functions to select different filtering intensities in
4-pixel units. Figure 10 shows the Bs Calculation method used in

the HEVC standard. Bs Calculation of HEVC standard is
determined after confirming conditions of maximum 5 steps.
These conditions introduce delays in the hardware, which degrade
the performance of the entire system. Therefore, it is possible to
determine Bs in a way that all conditions are checked in a parallel
structure and priority is given to the hardware, and a conditional
expression requiring a maximum of 5 steps in designing in parallel
structure can be implemented in one step. Figure 11 shows the

parallel structure of Bs Calculation. The priority of Bs is 2 to 0. In
the parallel structure of Bs Calculation, all conditions are used to
determine Bs by generating 1-bit information after comparison in
the first step.

Figure 10: Bs calculation structure of HEVC

Figure 11: Bs calculation parallel structure

3.2. Sao

The proposed SAO hardware architecture is shown in Figure12. It
consists of the Statistics Collection part (which collects
information to determine the offset of the edge offset (EO) and the
band offset (BO), the optimal offset determination of EO and BO)
and a mode decision part. Since SAO performs EO and BO on all
pixels within a 64x64 block, the computation time is high.

Therefore, the proposed SAO hardware architecture computes 4x4
block size rather than one pixel, and supports a maximum 64x64
block size. The Pixel Difference (PD) module performs the
operation of obtaining the difference between the original pixel
and the restored pixel. The EO module receives 6x6 block size
restoration pixels for edge offset computation of 4x4 block size,
generates class and category information of each pixel,
accumulates pixel difference input from PD module using class

and category information. The BO module receives the restored
pixels of 4x4 block size, generates band position information of
each pixel, and accumulates and counts the pixel difference input
from the PD module using the band position information. The
DIST module receives the accumulated pixel differences and
counters from the EO and BO modules, generates the offset, and
selects the optimal offset type and offset information considering
the RDO.

Figure 12: Proposed SAO hardware architecture

3.2.1. Parallel Structure of EO_CATE Module

The EO_CATE module consists of 16 EO_P_SEL submodules,
and receives pixels corresponding to a 6x6 block size. The
EO_P_SEL module receives pixels corresponding to a 3x3 block
size and generates category information for each class. Figure 13
shows the surrounding pixels needed to perform EO in 4x4 block
size.

Figure 13: Schematic pixel required to perform EO in 4x4 block size

Figure 14 (a) shows the method of determining the existing EO
category, and (b) shows the simplified hardware category decision

International Journal of Engineering & Technology 181

structure. In hardware design, hardware resources can be
optimized by designing redundant operations as resource sharing
structure.

Figure 14:EO category decision method and hardware structure

optimization

3.2.5. Proposed Offset Decision Hardware Algorithm

The DIST_EO_OFFSET module performs the function of
determining the optimal offset of the category corresponding to
each class. In the HEVC standard, the initial offset is obtained
through E/N, but in the proposed hardware, it is performed in
parallel with the offset from -7 to 7. In equation (3), Nh2-2hE is

applied to obtain ΔD. N and E are input through the EO_CAL
module, and h is a constant value that does not change since it is
an offset value from -7 to 7. Table 3 shows the values of h2 and 2h
according to the offset value.

Table 3: Values of h2 and 2h according to the offset value

Offset h
2
 2h Offset h

2
 2h

-7 49 -14 1 1 2

-6 36 -12 2 4 4

-5 25 -10 3 9 6

-4 16 -8 4 16 8

-3 9 -6 5 25 10

-2 4 -4 6 36 12

-1 1 -2 7 49 14

0 0 0 - - -

As shown in Table 4, the h2 and 2h values for all offsets are
always fixed, only N and E are variable. Therefore, it is possible
to implement hardware structure by using shift and adder for h2
and 2h. In hardware, multipliers have high computational
complexity and computation time, which causes performance
degradation of the whole system. The proposed hardware
architecture minimizes the multiplier for high performance in-loop

filters. Equation (6) shows the relationship between left shift and
multiplier. Table 5 shows the values of h2 and 2h as a shift and
adder structure using equation (6). For example, when the offset
value h is 7, h2 has a value of 49, and 49 can be divided into N×32
and N×16, +N. Therefore, it can be calculated as N << 5
corresponding to N×32 and N<<4,+N corresponding to N×16.

 (6)

Table 4: h
2
 and 2h shift and adder structures

|h| h
2
 Shift and Adder 2h Shift and Adder

7 49 N 5 + N 4 + N 14 E 3 + E 2 + E 1

6 36 N 5 + N 2 12 E 3 + E 2

5 25 N 4 + N 3 + N 10 E 3 + E 1

4 16 N 4 8 E 3

3 9 N 3 + N 6 E 2 + E 1

2 4 N 2 4 E 2

1 1 N 2 E 1

The DIST_EO_OFFSET module computes the Δj value using the
equation (5) for the number of bits of each offset after the ΔD
operation, and determines an offset value having the minimum Δj
value. λ is a Lagrangian function with a value of 49.2221, and R is

the number of bits that occur when encoding the offset. Table 5
shows the number of generated bits according to the EO offset and
the λ value in the proposed hardware structure. Finally, the
DIST_EO_OFFSET module outputs the optimal offset and Δj
value for each class.

Table 5: Number of occurrences and λ value according to EO offset

Offset R λ

±7 7 345

±6 7 345

±5 6 295

±4 5 246

±3 4 197

±2 3 148

±1 2 98

0 1 49

The DIST_BO_OFFSET module performs the function of
determining the offset of each band, and its structure is similar to
the DIST_EO_OFFSET module. Unlike the DIST_EO_OFFSET
module, however, the DIST_BO_OFFSET module performs offset

operations on 32 bands. In addition, the BO must transmit the
band offset to the decoder and to the code bit and the band
position. The additional bits generated at this time are 4 bits for
the sign bit and 5 bits for the band position, and the

DIST_BO_OFFSET module calculates the lambda value in
consideration of the sign bit. Table 6 shows the number of
generated bits according to BO offset and the value of λ in the
proposed hardware structure.

Table 6: Number of occurrences and λ value according to BO offset

Offset R Sign Bit λ

±7 7 1 394

±6 7 1 394

±5 6 1 345

±4 5 1 295

±3 4 1 246

±2 3 1 197

±1 2 1 148

0 1 0 49

3.3. In-Loop Filter Scheduler

The proposed in - loop filter scheduler hardware uses a 32x32
block size buffer considering the processing unit and operation
cycle of deblocking filter and SAO. Figure 15 shows the

182 International Journal of Engineering & Technology

deblocking filter and SAO's scheduler.

Figure 15: Scheduling of in-loop filters

The deblocking filter performs filtering in units of 32x32 blocks,
and takes a total of 40 cycles. On the other hand, SAO performs
filtering in units of 64x64 block size, and takes a total of 226

cycles. SAO operates after 32x32 blocks are filtered by the
deblocking filter. The deblocking filter filters the next 32x32 block
after 24th, 16th, and 9th cycles as shown in Figure 15. Because
SAO processes in pixels, more cycles are needed than deblocking
filters. The in-loop filter scheduler hardware applies the
deblocking filter order as shown in Figure 16 for the deblocking
filter and SAO processing unit. When the deblocking filter
operates in the order of the pictures' refresh rate, SAO can be

performed only after the first line ends and the deblocking filtering
of the first 32x32 block of the second line is completed. Therefore,
the deblocking filter performs filtering by the zig-zag scan method
in consideration of the processing unit of the SAO.

Figure 16: SAO processing sequence according to deblocking filtering

order

4. Implementation Result

The in-loop filter hardware architecture proposed in this paper was
designed as Verilog HDL and input data and output data were
generated using hardware standard HM-16.9 for hardware
verification.

Figure 17: Verification method of proposed hardware structure

Category Figure 17 shows HM-16.9 and hardware verification
method. The input data generated by HM-16.9 is used as in-loop
filter hardware input, and the output data generated by HM-16.9 is

compared with the data output through hardware simulation. Table
7 shows the verification environment and the tools used.

Table 7: Verification environment and usage tool

Environment/Tool Specification

PC CPU Intel Core i7-4770

RAM 8 GB

SW Debugger Microsoft Visual Studio 2017

HW Simulation Mentor Graphics ModelSim SE-64 10.1c

ASIC Design Compiler syn_vL-2006.03-SP5-5

PrimeTime pts_vM-2017.06

Due to the nature of the in-loop filter of the HEVC encoder, the
deblocking filter and the SAO are separated into independent
modules. Therefore, we compare the performance of the proposed
In-loop filter hardware design by separating the deblocking filter

and SAO. Also, DE (Design Efficiency) is applied for fair
performance evaluation, and the formula of DE is equation (7).
Format indicates the size of a supported image, and Fps indicates
the number of frames that can be processed per second. The gate
count represents the total number of gates of the hardware module.

 (7)

The proposed In-loop filter hardware architecture is based on
ASIC synthesis using 90-nm cell library. In addition, the hardware
structure of the proposed deblocking filter and SAO is synthesized

at 260MHz with maximum operating frequency for smooth
performance comparison. Proposed1 and Proposed2 represent the
hardware synthesis results of the deblocking filter, Proposed3 and
Proposed4 represent the hardware synthesis results of the SAO.
Proposed1 and Proposed3 are synthesized with maximum
operating frequency, Proposed2 and Proposed4 are synthesized
with 260MHz operating frequency. The number of gates was
calculated by dividing the hardware area results by the Synopsys

Design Compiler tool using a 90nm cell library divided by the
2NAND gate area of the 90nm cell library. Previous paper [18]
and [19] proposed a deblocking filter, and [21] and [22] proposed
SAO. [20] also suggests both a deblocking filter and SAO

.

International Journal of Engineering & Technology 183

Table 8: Comparison of proposed deblocking filter hardware structure

Deblocking Filter Proposed1 Proposed2 [18] [19] [20]

Process (nm) 90 90 180 90 65

LCU Size 32x32 32x32 32x32 64x64 32x32

Frequency (MHz) 1000 260 322 278 200

Cycles/LCU 40

(64x64@160)

40

(64x64@160)

31 288 558

Resolution 7680x4320 7680x4320 7680x4320 7680x4320 7680x4320

Fps 771 200 320 123 40

Gate

Count

(K)

Boundary judgment 0.11 0.08 No 0.04 No

Bs calculation 2.01 1.45 - 7.70 -

Filter 61.78 44.62 - 23.88 -

Total 114.49 46.15 865.00 31.62 30.30

Memory (Kbyte) 0.60 0.60 - 8.50 4.80

DE (x10
3
) 400.37 143.78 12.17 129.06 43.80

Table 8 shows the comparison of the proposed deblocking filter
hardware structure. [18] performs a 36x36 block-based filter for a

32x32 block boundary filter, and performs parallel vertical and
horizontal filtering by dividing a 36x36 block into 4x36 block
sizes. It also did not include a boundary judgment module to
identify the boundary between PU and TU. The architecture
proposed in [18] has high throughput because it performs 36x36
block-based parallel filtering, and the number of gates of the
proposed hardware structure has high results due to parallel
filtering. The proposed Proposed2 result and [18] are compared

with DE, and Proposed2 has a high efficiency of 1071.4%. [19]
minimizes the number of external memory accesses using internal
memory, and treats conditional statements used for boundary
prediction, filtering strength, and filtering as a parallel structure. It

also has high throughput using four filtering modules. The
deblocking filter proposed in this paper has a structure that uses

less memory than [19], and has a 11.4% higher efficiency
compared to the Proposed2 result and DE [19].The hardware
architecture of the proposed deblocking filter proposed a 32x32
block-based memory configuration to solve the dependency
between vertical and horizontal filtering, and has a high
throughput with a 4-stage pipeline structure. The internal memory
used in [20]'s hardware structure is 4.8 KB, and external memory
is used to minimize the hardware area. However, the size of the

external memory used was not included in the results. As a result
of comparing the Proposed2 results [20] proposed in this paper
with DE, Proposed2 has a high efficiency of 228.2%.

Table 9: Comparison of proposed SAO hardware structure

Deblocking Filter Proposed3 Proposed4 [20] [21] [22]

Process (nm) 90 90 65 28 40

LCU Size 64x64 64x64 32x32 64x64 64x64

Frequency (MHz) 970 260 200 266 1300/217

Cycles/LCU 266 266 558 1600 905/40

Resolution 7680x4320 7680x4320 7680x4320 3840x2160 7680x4320

Fps 450 120 40 82 120

Gate

Count

(K)

Statistics collection 98.43 83.71 55.90 - 30.00

Mode decision 59.07 50.23 17.10 - 21.00

Total 157.50 133.94 73.00 300.00 51.00

Memory (Kbyte) - - 4.80 - 1.14

DE (x10
3
) 94.79 29.72 18.18 2.27 78.06

Table 9 shows the comparison of proposed SAO hardware
structure. The proposed SAO hardware structure has a divided
adder structure considering the deblocking filtering process step
and is composed of a 2-stage pipeline. Proposed 4 results are
compared with DE [20], and Proposed 2 shows 63.5% higher
efficiency. [21] is designed as a 3-stage pipeline for high-
performance SAO hardware architecture and performs 4x4 block-

based processing. It also includes a parallel offset decision
structure and a distortion calculation structure. The 4x4 block-
based processing and parallel offset and distortion operation
architecture of [21] requires high hardware area and does not
include memory. Compared to Proposed 4 and DE [21], Proposed
4 has 1211.1% higher efficiency. The proposed hardware structure
is divided into a Statistics Collection (SC) module and a Parameter
Decision (PD) module. The SC module that requires pixel
processing uses a 1.3 GHz operating frequency and the PD

module uses a 217 MHz operating frequency It is a structure to
use. SC modules require 905 cycles to process a single 64x64
LCU, and PD modules require 40 cycles. The BO of [22]
minimizes the hardware area by using only 8 bands instead of 32
bands, and has an average BDrate reduction of -10.17% compared
with HM-16.0 at 8k image size. Proposed 4 proposed in this paper
is synthesized at operating frequency of 970MHz and the
efficiency of DE is compared with that of [22].

5. Conclusion

In this paper, we describe efficient in-loop filter hardware design
for high performance HEVC encoders. The in-loop filter of HEVC
improves subjective image quality and encoding efficiency, but

requires additional computation, resulting in an overhead for
computational complexity and memory access. The in-loop filter
time of the HEVC accounts for 3.5% to 23.5%.Therefore, this
paper proposes an efficient in-loop filter hardware architecture for
high performance HEVC encoders. The proposed in-loop filter
hardware structure consists of a deblocking filter to remove block
degradation, SAO to remove ringing inside the block, deblocking
filter and in-loop filter scheduler for SAO pipeline structure. The

proposed deblocking filter has a line buffer structure to reduce the
number of external memory accesses, and it can be processed with
a minimum line buffer by applying a routing technique. In
addition, for the low power design, the internal block of the
deblocking filter is designed as a clock gating structure, and the
filtering module is designed with a 4-stage pipeline structure and
has high throughput. In order to reduce the memory usage in the
in-loop filter, the jig-jag scanning method is used for the
deblocking filtering order. The hardware structure of the proposed

SAO performs 4x4 block-based operation for deblocking filter and
parallel processing, and minimizes the hardware area by
implementing the multiplier required for offset and RDO

184 International Journal of Engineering & Technology

operations with shift and adder. In addition, the redundant
arithmetic expressions are designed in such a structure that they
can be processed in parallel to share computation results. Finally,
the in-loop filter scheduler uses a 32x32 block buffer for the

pipelining structure of deblocking filter and SAO. The proposed
in-loop filter was designed with Verilog HDL and hardware
verification was performed by storing the information required for
deblocking filter operation and the filtered data in a file with HM-
16.9, the HEVC standard software. SAO was also performed in
the same manner. The software debugger was used to verify the
hardware simulation waveforms. As a result, HM-16.9 and the
proposed hardware show the same performance results. As a result

of comparing the proposed in-loop filter hardware structure with
the hardware structure proposed by the existing papers, the
deblocking filter has a maximum efficiency of 1071.4% and a
minimum efficiency of 11.4%, and SAO has a maximum of
1211.1% and a minimum of 21.4% Efficiency. The proposed in -
loop filter hardware structure was synthesized by Synopsys'
Design Compiler using a 90nm cell library at 260MHz and
synthesized with 262.78K gates. It also supports real-time

processing of 8K@120Fps at an operating frequency of 260MHz.
As a result of synthesizing the proposed in-loop filter hardware
structure at maximum operating frequency, deblocking filter
supports real time processing of 8K@771Fps at 1GHz and SAO
supports real time processing of 8K@450Fps at 970MHz.
Therefore, real-time processing of deblocking filter 16K@192FPS,
SAO 16K@112FPS is possible in the virtual reality and
augmented reality contents service using the image size of 16K

(15,360x8,640), and suggestion in the image size of 32K
(30,720x17,280) Hardware architecture, the deblocking filter can
support real-time processing of 32K@96Fps and SAO
32K@56Fps. Therefore, it is possible to use not only 8K image
size but also 32K image size through the proposed in-loop filter
hardware structure.

Acknowledgment

This research was supported by the MSI (Ministry of Science, ICT
and Future Planning), Korea, under the Global IT Talent support
program (IITP-2017-0-01681) supervised by the IITP (Institute for
Information and Communication Technology Promotion)

References

[1] The Zettabyte Era: Trends and Analysis, Trend 4: Applications

traffic growth [Internet]. CISCO; 2017 [updated 2017 Jun 7; cited

2018 Aug 27]. Available from:

https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/vni-hyperconnectivity-

wp.html#_Toc484556821

[2] Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A. Overview of the

H.264/AVC Video Coding Standard. IEEE Transactions on Circuits

and Systems for Video Technology. 2003 Jul;13(7):560-576.

[3] ITU- SG16WP3, ISO/IEC JCT1/SC29/WG11. High Efficiency

Video Coding (HEVC) Text Specification Draft 10 (for FDIS &

Content). JCTVC document L1003. Geneva; 2013. Available from:

http://phenix.it-

sudparis.eu/jct/doc_end_user/current_document.php?id=7243

[4] Sullivan GJ, Ohm J, Han W. Overview of the High Efficiency

Video Coding (HEVC) Standard. IEEE Transactions on Circuits

and Systems for Video Technology. 2012 Dec;22(12):1649-68.

[5] Souza DF, Ilic A, Roma N, Sousa L. HEVC In-Loop Filters GPU

Parallelization in Embedded Systems. In: Proceedings of the 2015

International Conference on Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS XV); 2015 Jul

19-23; Samos, Greece. IEEE; 2015 [cited 2018 Aug 27]; p. 123-30.

Available from: IEEE Xplore.

[6] Bossen F, Bross B, Suhring K, Flynn D. HEVC Complexity and

Implementation Analysis. IEEE Transactions on Circuits and

Systems for Video Technology. 2012 Dec;22(12):1685-96.

[7] Ozcan E, Adibelli Y, Hamzaoglu I. A High Performance Deblocking

Filter Hardware for High Efficiency Video Coding. IEEE

Transactions on Consumer Electronics. 2013 Aug;59(3):714-20.

[8] Choi Y, Joo J. Exploration of Practical HEVC/H.265 Sample

Adaptive Offset Encoding Policies. IEEE Signal Processing Letters.

2015 Apr;22(4):465-8.

[9] Hautala I, Boutellier J, Hannuksela J, Silven O. Programmable

Low-Power Multicore Coprocessor Architecture for HEVC/H.265

In-Loop Filtering. IEEE Transactions on Circuits and Systems for

Video Technology. 2015 Jul;25(7) 1217-30.

[10] Srinivasarao BKN, Chakrabarty I, Ahmad MN. High-Speed Low-

Power Very-Large-Scale Integration Architecture for Dual-Standard

Deblocking Filter. IET Circuits, Devices & Systems. 2015

Sept;9(5):377-83.

[11] Abeydeera M, Karunaratne M, Karunaratne G, Silva KD, Pasqual

A. 4K Real-Time HEVC Decoder on an FPGA. IEEE Transactions

on Circuits and Systems for Video Technology. 2016 Jan;26(1):236-

49.

[12] Hsu P, Shen C. The VLSI Architecture of a Highly Efficient

Deblocking Filter for HEVC Systems. IEEE Transactions on

Circuits and Systems for Video Technology. 2017 May;27(5):1091-

103.

[13] Baldev S, Shukla K, Gogoi S, Rathore PK, Peesapati R. Design and

Implementation of Efficient Streaming Deblocking and SAO Filter

for HEVC Decoder. IEEE Transactions on Consumer Electronics.

2018 Feb;64(1):127-135.

[14] Kim H, Ko J, Park S. An Efficient Architecture of In-Loop Filters

for Multicore Scalable HEVC Hardware Decoders. IEEE

Transactions on Multimedia. 2018 Apr;20(4):810-24.

[15] Zhang Y, Shen T, Ji X, Zhang Y, Xiong R. Residual Highway

Convolutional Neural Networks for In-Loop Filtering in HEVC.

IEEE Transactions on Image Processing. 2018 Aug;27(8):3827-41.

[16] Norkin A, Bjontegaard G, Fuldseth A, Narroschke M, Ikeda M,

Andersson K, et al. HEVC Deblocking Filter,” IEEE Transactions

on Circuits and Systems for Video Technology. 2012

Dec;22(12):1746-54.

[17] Fu C, Alshina E, Alshin A, Huang Y, Chen C, Tsai C, et al. Sample

Adaptive Offset in the HEVC Standard. EEE Transactions on

Circuits and Systems for Video Technology. 2012 Dec;22(12):1755-

64.

[18] Peesapati R, Das S, Baldev S, Ahamed SR. Design of Streaming

Deblocking Filter for HEVC Decoder. IEEE Transactions on

Consumer Electronics. 2017 Aug;63(3):1-9.

[19] Zhou W, Zhang J, Zhou X, Liu Z, Liu X. A High-Throughput and

Multi-Parallel VLSI Architecture for HEVC Deblocking Filter.

IEEE Transactions on Multimedia. 2016 Jun;18(6):1034-47.

[20] Shen W, Fan Y, Bai Y, Huang L, Shang Q, Liu C, et al. A Combined

Deblocking Filter and SAO Hardware Architecture for HEVC.

IEEE Transactions on Multimedia. 2016 Jun;18(6):1022-33.

[21] Mody M, Garud H, Nagori S, Mandal DK. High throughput VLSI

Architecture for HEVC SAO Encoding for Ultra HDTV. In: 2014

IEEE International Symposium on Circuits and Systems (ISCAS);

2014 Jun 1-5; Melbourne VIC, Australia. IEEE; 2014 [cited 2018

Aug 27]; p. 2620-3. Available from: IEEE Xplore.

[22] Zhou J, Zhou D, Wang S, Zhang S, Yoshimura T, Goto S. A Dual-

Clock VLSI Design of H.265 Sample Adaptive Offset Estimation

for 8k Ultra-HD TV Encoding. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems. 2017 Feb;25(2):714-24

.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html#_Toc484556821
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html#_Toc484556821
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html#_Toc484556821
http://phenix.it-sudparis.eu/jct/doc_end_user/current_document.php?id=7243
http://phenix.it-sudparis.eu/jct/doc_end_user/current_document.php?id=7243

