

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.27) (2018) 57-62

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Mobile Robot Path Planning using Q-Learning with Guided

Distance

Ee Soong Low
1
, Pauline Ong

2
*, Cheng Yee Low

3

1 2 3 Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

*Corresponding author E-mail: ongp@uthm.edu.my

Abstract

In path planning for mobile robot, classical Q-learning algorithm requires high iteration counts and longer time taken to achieve conver-
gence. This is due to the beginning stage of classical Q-learning for path planning consists of mostly exploration, involving random di-
rection decision making. This paper proposed the addition of distance aspect into direction decision making in Q-learning. This feature is
used to reduce the time taken for the Q-learning to fully converge. In the meanwhile, random direction decision making is added and

activated when mobile robot gets trapped in local optima. This strategy enables the mobile robot to escape from local optimal trap. The
results show that the time taken for the improved Q-learning with distance guiding to converge is longer than the classical Q-learning.
However, the total number of steps used is lower than the classical Q-learning.

Keywords: Guided distance, Mobile robot, Path planning, Q-learning, Reinforcement learning.

1. Introduction

Mobile robots are used in many fields and applications such as
cleaning robots [1, 2], logistics automation robots (automated
guided vehicles - AGVs) in factory [3, 4] and self-driving vehicles
[5-7]. In order for these robots to operate well, paths are created
for these robots to track. A well designed path enables mobile
robot to reach the destination point faster and safer. This increases
the overall efficiency of mobile robots in transporting goods or
items. Therefore, path planning has become an essential study for

researchers to discover.
Path planning is a complex task in mobile robot field. It provides a
path for mobile robot to move from one point to another point
without colliding with any obstacles [8]. Recently, many studies
have been done for applying Q-learning in path planning and nav-
igation for mobile robots [9-17]. Q-learning is a simple and basic
reinforcement learning used to learn the strategy in obtaining bet-
ter result through repetitive procedure and iterations. Q-learning
works based on penalty and rewards for every action the robots

made. All these three parameters (rewards, penalty and actions)
will affect the Q-value. As the iterations continue, the Q-value will
improve and lean to better results. As an offset of its simplicity, it
suffers from several limitations and weaknesses. The time taken to
determine the optimal path using Q-learning increases when it is
applied in real world path planning [12]. The incompatibility of Q-
learning is due to the increase of search space. Moreover, envi-
ronment with moving obstacles will lead to higher computational

complexity and longer reset time.
In this regard, various improved Q-learning models were intro-
duced, in which improving the performance of Q-learning by ap-
plying the optimization algorithm as modifier [14, 18-22] was one
of the proposed solutions. Das applied the improved particle
swarm optimization (IPSO) with perturbed velocity in Q-learning
algorithm in order to improve its global search ability and conver-
gence rate [19]. The results showed that the robots were able to

perform well even several obstacles were considered in the work-
ing environment. Artificial bee colony (ABC) optimization algo-
rithm has been used to do the global search in Q-learning [23]. As
a result, the improved Q-learning model was able to solve multi
robot navigation problem effectively. On the other hand, adaptive
memetic algorithm (AMA) using ABC optimization algorithm
was used to improve the Q-learning model, in terms of runtime
and accuracy [23]. The same AMA concept was applied to Q-

learning, but by using differential evolution (DE) algorithm [14].
The results showed that the combination of DE with Q-learning
outperformed particle swarm optimization (PSO) and genetic al-
gorithm (GA) for all three evaluation metrics. Metropolis criterion
from simulated annealing (SA) algorithm was used to control the
exploration and exploitation of Q-learning algorithm [18]. Then
SA-Q-learning algorithm was able to converge faster while pre-
venting degradation in performance caused by excessive explora-
tion.

In addition to optimization algorithm, artificial neural network
(ANN) has been used to improve the performance of Q-learning in
mobile robot path planning in numerous studies [17, 24]. In [25],
Pos-Net neural network was used to determine the next state or
direction of mobile robot based on the obstacle detection, current
state and current time as input. The mobile robot was able to navi-
gate through environment full with static and dynamic obstacles,
while providing good convergence ratio and avoiding local mini-

ma. Besides that, back-propagation neural network was used to
calculate Q-values for every action in the current state [26]. The
learning rate was improved significantly as compared to classical
Q-learning, while at the same time, providing ability to avoid ob-
stacle in path planning.
Other than artificial intelligence algorithms, adding distance or
global information as consideration factor is crucial step in en-
hancing performance of Q-learning algorithm. In [27, 28], along

with implementation of adaptive Q-learning for [27] and modular
Q-learning for [28] in robot soccer system, distance between ball
with each robot will be computed in order to select the robot with

58 International Journal of Engineering & Technology

the minimum distance with the ball. The selected robot will be
chosen as attacker while other robots will be defenders or side
kickers. This enable role switching among soccer robots in order
to achieve better cooperation and coordination in the soccer sys-
tem. As a result, the tendency of scores of the implemented algo-
rithm is rising as opposed to opponent team which is dropping.
While in path planning, Euclidean distance between robots’ cur-
rent position and target position and Euclidean distance among

robot with other robots had been used to form the overall fitness
function [19]. In this case study, dynamic obstacles are consid-
ered, as robots act as dynamic obstacles among each other. The
fitness function is optimized by improved particle swarm optimi-
zation with differentially perturbed velocity (IPSO-DV) and fur-
ther synergized with improved Q-learning to form QIPSO-DV
path planning algorithm. The proposed algorithm was able to re-
duce space complexity and time consumed as compared to classi-

cal Q-learning (CQL). The statement is proven through perfor-
mance of QIPSO-DV in achieving smallest average total trajectory
path traveled (ATTPT) which contributes to smoother path with
lower deviation in direction and fastest ending time relative to
other algorithms (IPSO-DV, PSO and CQL).
In this paper, Q-learning model is improved by including the met-
ric of distance into the direction decision making during the explo-
ration and exploitation. This improvement enables Q-learning

model to determine the direction that is closest to the target point,
contributing to faster convergence rate.
The outline of the paper is as follows. The introduction of Q-
learning is first presented. Subsequently, formulation and imple-
mentation of metric of distance, are discussed. Simulation and
discussion of the proposed Q-learning with guided distance (QL-
GD) are presented and lastly, the findings of this study are con-
cluded.

1.1. Classical Q-Learning

Classical Q-learning (CQL) is a type of model-free reinforcement
learning developed by Watkins [10]. CQL is performed through an
agent executes an action in an environment. The action is evaluat-
ed and presented in the form of reward or penalty as the feedback
to CQL. The reward or penalty is stored in the form of Q-value in
Q-table. These processes are repeated until the goal is achieved.
The CQL learns consistently in order to provide optimal results by

gaining experience from time to time when the agent moves
through the same environment multiple times.
The formula used to update the Q-value in the Q-table is given in
(1), while the pseudocode of Q-learning algorithm is summarized
in Algorithm 1.

1 1(,) (,) max (,) (,)i i i i i i i i i
a

Q s a Q s a r Q s a Q s a   
    
 

 (1)

Definition 1.1: (,)i iQ s a is the Q-value at the state, is that per-

formed an action, ia at the time i .  is the learning rate,  is the

discount factor and ir is the reward or penalty applied after the

action
ia is performed.

1 1max (,)i i
a

Q s a 
 is the maximum value of

Q-values among the all the available actions at time instance 1i  .

For CQL, the directional decision making criteria is based on the
maximum value of Q-values among all the available actions in the
next state. If more than one action in the next state have the same
highest Q-value, the CQL just randomly pick one among those
actions with the highest Q-value. In this strategy, it is difficult for
the Q-learning algorithm to converge to the solution or targeted
position. This is due to in the beginning stage, all the Q-values are
initially zero. Such selection strategy causes a random action or

movement of mobile robot in the beginning. To improve the con-
vergence rate, metric of distance is added into the directional deci-

sion making criteria during the exploration and exploitation of the
CQL algorithm in this study.

Algorithm 1 Classical Q-Learning Algorithm

1. Initiate all q-values, (,)Q s a in q-table which is zero

2. Select a starting state,
1 1(,)Q s a

3. while (iteration < max iteration or goal is not achieved)

4. Select an action, a within the available actions in the current state

according to the highest q-value in the next state (randomly choose

one if more than 1 state is having q-values which is highest)

5. Perform the selected action, a and reward or penalty, r will be

given

6. Update the q-value using (1)

7. Move the state to new state, s

8. end while

2. Methodology

In this section, Q-learning with guided distance (QL-GD) is intro-
duced. QL-GD takes distance between robot and target position as
consideration in order to achieve faster convergence rate. On the
other hand, an escape mechanism is added as an effort to enable
the robot to escape from local minima.

2.1. Formulation of Metric of Distance

Several assumptions and principles are made during the formula-

tion of metric of distance as follows:

1. The information of current coordinate and target position are
known.
2. When moving to the next state, the robot has eight available
actions to be selected, specifically: (i) North, (ii) South, (iii) East,
(iv) West, (v) North-east, (vi) North-west, (vii) South-east and
(viii) South-west

3. The movement and position of the mobile robot are grid-based
motion. The robot can only move grid by grid in a Cartesian plane.
For each action, the robot is able to move one unit in x-axis and
one unit in y-axis in either direction.

The total distance is the summation of distance between the cur-
rent position with next state position, and distance between next
state position with target position. The formula of total distance is

expressed as:

argdistance distance distancetotal curr next next t   (2)

Definition 2.1: distancetotal is total distance, distancecurr next is the

distance between the current position with next state position, and

argdistancenext t is the distance between next state position with

target position.

The distancecurr next and argdistancenext t are expressed as:

   
2 2

distancecurr next next curr next currx x y y     (3)

   
2 2

arg arg argdistancenext t t next t nextx x y y     (4)

Definition 2.2: x and y represent the x-axis and y-axis positions,

next represents next position and argt represents target position.

The concept of distance is presented graphically in Fig. 1.

International Journal of Engineering & Technology 59

Fig. 1: The concept of distance

2.2. Implementation of the Metric of Distance into Clas-

sical Q-Learning

For the proposed QL-GD, the selection of the next state will not
be based on the maximum Q-value among all the action-states as
in CQL. There are two modes for the QL-GD, which are:
1. Default mode: distance aspect will take into consideration

2. Stuck mode: escape mechanism will be triggered.
For default mode, the selection for the next action will be based on
the minimum total distance among all the action-states. Thus, total
distance of all possible action-states for the current state will be
calculated, and the action-states with the lowest total distance will
be selected.
However, with the implementation of distance aspect, the algo-
rithm tends to converge to local minima easily when a dead end is

detected. Therefore, a mechanism is added to escape from local
minima. In order to detect the occurrence of dead end, all calculat-
ed total distance for all states are compared and the lowest total
distance is stored. Intuitively, as the iteration continues, the robot
is getting nearer to the target position and hence, lower total dis-
tance is obtained. Thus, if the total distance of the next state is
higher than the lowest total distance stored previously, the robot is
considered in a dead end. In this study, if the robot does not obtain
a lower total distance than the stored lowest total distance within

four iterations, an escape mechanism is triggered. In this case, if
the Q-values of all available action-states are zero, the next action
is selected randomly. Otherwise, direction selection method of the
CQL will be used. Once the improvement in the total distance is
observed, the QL-GD resumes.
The pseudocode of the proposed QL-GD is summarized in Algo-
rithm 2.

2.3. Experiment Setup

To evaluate the performance of the proposed QL-GD, the compar-
ison with CQL in mobile robot path planning was conducted. The
experiment was carried out in simulated environment with various
obstacle patterns in four different maps in MATLAB software by
referring [29]. Size of all maps were 20 x 20 unit grid. The starting
point of mobile robot is set at (1,20) and target point is set at
(20,1).

For both algorithm, the  constant is 0.1 while the  constant is

0.7. The maximum iteration for each run is 300 iterations. Total of
30 runs were simulated for each map for both algorithms. The
performance of algorithms was evaluated based on:

1. The time taken to complete each run
2. Total number of steps used to complete each run
3. The lowest number of steps used in 30 runs
The number of steps is calculated including rotational motion and
displacement. Each rotation of 90° is considered one step. For
displacement, every transition of state is considered one step.

Algorithm 2 Q-learning with Guided Distance

1. Initiate all q-values, (,)Q s a in q-table which is zero

2. Select a starting state,
1 1(,)Q s a

3. while (iteration < Max iteration or goal is not achieved)

4. Calculate next all action-states total distance

5. if (total distance < previous lowest distance)

6. Replace previous lowest distance with total distance

7. Reset stuck status

8. else

9. stuck status = stuck status + 1

10. end if

11. if (stuck status >= 4)

12. if (one of the q-value of possible next states > 0)

13. Select an action, a within the available actions in the current state

according to the highest q-value in the next state (randomly choose

one if more than 1 state is having q-values which is highest)

14. else

15. Select an action, a randomly within the available actions in the

current state

16. end if

17. else

18. Select an action, a within the available actions in the current state

according to the lowest total distance

19. end if

20. Perform the selected action, a and reward or penalty, r will be

given

21. Update the q-value using (1)

22. Move the state to new state, s

23. end while

3. Results and discussions

3.1. Graphical Illustration of Path Planned

Fig. 2 to Fig. 5 and Fig 6 to Fig. 9 represent the optimal paths

obtained by CQL and QL-GD, which have the lowest number of
steps taken for map 1 to map 4, respectively.
Fig 6 shows that the QL-GD was able to find the optimum path by
passing through various obstacles in the middle of map, while for

the CQL, some curvy path are observed in Fig. 2, leading to long-

er travelled distance. From Fig. 3 to Fig. 5, it can be observed that

paths planned by the CQL were constantly changing in direction,

whereas Fig. 7 to Fig. 9 show that the paths planned by the QL-

GD were less likely to change direction and hence, forming multi-
ple straight lines. The curvy characteristic can be clearly detected

by comparing QL-GD and CQL in map 3, as shown in Fig. 8 and

Fig. 4, respectively. For the QL-GD, the path is made up of sever-

al long straight lines with few short lines in order to steer the robot
towards the target position. While for the CQL, the path is made
up of many short lines connecting starting point to target. The QL-
GD outperformed CQL in this case, since constantly steering di-
rection will lead to higher number of steps and cause real world
application of robot to waste more energy and time. Besides that,

QL-GD fails to handle the dead end properly, which can be ob-
served in Figure 7 and Figure 9, at the position of (15,6) and
(9,10), respectively. A right angle is formed at this point, leading
to longer travelled distance since length of hypotenuse is shorter
than total length of both sides on a triangle.
Table 1 shows the total time taken for 30 runs, minimum and max-
imum time taken among 30 runs, average and standard deviation
of time taken for 30 runs for both algorithms in all maps. Table 2

presents the total number of steps used by both algorithms and
Table 3 shows the lowest number of steps used by both algorithms
among 30 runs.

60 International Journal of Engineering & Technology

Fig. 2: Path planned by classical q-learning for map 1

Fig. 3: Path planned by classical q-learning for map 2

Fig. 4: Path planned by classical q-learning for map 3

Fig. 5: Path planned by classical q-learning for map 4

Fig 6: Path planned by q-learning with guided distance for map 1

Fig. 7: Path planned by q-learning with guided distance for map 2

Fig. 8: Path planned by q-learning with guided distance for map 3

Fig. 9: Path planned by q-learning with guided distance for map 4

International Journal of Engineering & Technology 61

As shown in Table 1, for map 1, the QL-GD was able to reach the
target position within shorter period, where an improvement of 65%
was observed for the average time taken. However, the proposed
QL-GD took longer time than the CQL to complete 30 runs for all
evaluations (except SD) for maps 2, 3 and 4. It can be observed
that the performance of QL-GD is the worst for map 3, which in
average, the time taken to complete the path planning is 122%
slower than the CQL, followed by map 2 (92%) and map 4 (83%).

This is due to the QL-GD needs to calculate the total distance for
all possible action-states at each instance of time, in addition to
computing the Q-values as in the CQL. For the CQL, only the
latter is required and then the maximum Q-value is identified.
However, the QL-GD shows lower standard deviation than the
CQL, which leads to better consistency in performance. The high-
est improvement made on standard deviation is on map 1 (75%)
while no improvement is observed for map 4. Also, it is pertinent

to note that the time taken for CQL in real world application may
be longer, since curvy paths are generated. The rotation of robot
body and movement of robot from one point to another point in
actual world may spend longer time than simulation.
In Table 2, the total number of steps of taken by the QL-GD is
lower than the CQL for all maps with significant improvement
ranging from 27% (map 3) to as much as 91% (map1). CQL was
suffered from high total number of steps due to random motion of

mobile robot in the initial stage, due to lack of global knowledge
of environment. On the other hand, the QL-GD was able to navi-
gate better in the initial stage due to guidance from distance.
Based on improvements from minimum, average and maximum
evaluations, it can be observed that generally QL-GD made better
improvements on maximum total number of steps instead of im-
provement on average and minimum total number of steps. This
can be clearly observed for map 2, where the improvement made
for minimum number of total steps was merely 7%, while 34%

and 52% improvements were made for average and maximum
number of total steps, respectively. This indicates that the QL-GD
is able to guide the robot properly and reduce large amount of
unnecessary number of steps when the robot is not heading to the
target. While marginal improvement in terms of minimum number
of total steps showed that the QL-GD is still able to use lower
number of steps when the robot is heading to the target, but with
trivial improvement. Besides that, QL-GD also made improve-

ments from standard deviation (SD) evaluation. These enhance-

ments were generally high, from the lowest is 49% for map 4 to
the highest is 100% for map 1. The zero standard deviation of the
QL-GD in map 1 shows that the QL-GD works effectively in envi-
ronment without local minima or dead end. Improvement on SD
indicates that QL-GD has more stable performance than CQL.
Table 3 shows that the QL-GD generally outperformed the CQL in
all evaluations for the lowest number of steps taken for map 1 and
map 4, except for minimum evaluation for map 1. The statement is

supported by minor improvements made by QL-GD in map 4 for
all evaluations (total, minimum, average, maximum and SD) rang-
ing from 9% to 15%. On the other hand, for map 1, the major
improvements were made on maximum and SD which are 41%
and 100%, respectively, while for total and average were 17% for
both. These are due to in these maps, the number of dead end is
lower or does not exist. While in map 2, the QL-GD failed to find
the shortest path which is hypotenuse around area of (7,12) and

(12,9), while CQL was able to pass through those areas is a shorter
path manner. This causes the poorer performance of QL-GD for
all evaluations. In map 3, slight improvements were made by QL-
GD which is 4% on total and average, 1% on maximum and 11%
on SD, while for minimum is -2%. This is due to QL-GD picked a
longer path (path below), leading to higher lowest number of steps
while the CQL was able to pick a shorter path (path above).

4. Conclusion

In this study, the QL-GD was proposed in order to improve the
performance of the CQL in time taken and number of steps used to
complete and navigate through various obstacles in various simu-
lated environment. The results showed that the time taken for the
QL-GD was longer in the simulated environment in most of the

maps. On the other hand, the QL-GD was able to outperform the
CQL in terms of total number of steps used in all maps. The im-
provement can be clearly observed in Table 2 where QL-GD had
average improvement for total number of steps used in term of
percentage from 27% to 91% for all tested maps. Moreover, there
were also slight improvement for lowest number of steps used
from 4% to 17% for all maps, except map 2.
In future, real world experiments will be conducted in order to
obtain empirical results to justify the proposed approach

Table 1: Comparison of Time Taken Used for Both Algorithms

 Time taken (s)

Map 1 2 3 4

Algo-

rithm
CQL

QL-

GD

Improve-

ment (%)
CQL

QL-

GD

Improve-

ment (%)
CQL

QL-

GD

Improve-

ment (%)
CQL

QL-

GD

Improve-

ment (%)

Total

(30)

13.060

3
4.6326

65% 25.499

2

49.027

6

-92% 23.622

6

52.453

1

-122% 21.503

0

39.325

3

-83%

Mini-

mum
0.3033 0.1399

54%
0.5438 1.4629

-169%
0.4785 1.5084

-215%
0.4230 0.7323

-73%

Average 0.4353 0.1544 65% 0.8500 1.6343 -92% 0.7874 1.7484 -122% 0.7168 1.3108 -83%

Maxi-

mum
0.5973 0.2335

61%
1.2886 1.8484

-43%
1.4279 2.2422

-57%
1.0953 1.7723

-62%

SD 0.0859 0.0212 75% 0.1891 0.0963 49% 0.1760 0.1492 15% 0.1485 0.2294 -54%

Table 2: Comparison of Total Number of Steps Used for Both Algorithms

 Total number of steps used (steps)

Map 1 2

Algorithm CQL QL-GD Improvement (%) CQL QL-GD Improvement (%)

Total (30) 4982390 468000 91% 8962914 5898930 34%

Minimum 119628 15600 87% 190317 176948 7%

Average 166080 15600 91% 298764 196631 34%

Maximum 201943 15600 92% 462513 222314 52%

SD 22262 0 100% 67132 11420 83%

Map 3 4

Algorithm CQL QL-GD Improvement (%) CQL QL-GD Improvement (%)

Total (30) 8476490 6152486 27% 7797882 4649417 40%

Minimum 170282 178668 -5% 152741 84212 45%

Average 282550 205083 27% 259929 154981 40%

Maximum 521176 229747 56% 398791 213822 46%

62 International Journal of Engineering & Technology

SD 64282 13571 79% 55934 28788 49%

Table 3: Comparison of Lowest Number of Steps Used for Both Algorithms

 Lowest number of steps used (steps)

Map 1 2

Algorithm CQL QL-GD Improvement (%) CQL QL-GD Improvement (%)

Total (30) 1875 1560 17% 1875 2982 -59%

Minimum 45 52 -16% 45 78 -73%

Average 63 52 17% 63 99 -59%

Maximum 88 52 41% 88 125 -42%

SD 10.5430 0.0000 100% 10.5430 12.4197 -18%

Map 3 4

Algorithm CQL QL-GD Improvement (%) CQL QL-GD Improvement (%)

Total (30) 2219 2139 4% 2200 1946 12%

Minimum 57 58 -2% 56 51 9%

Average 74 71 4% 73 65 12%

Maximum 95 94 1% 99 84 15%

SD 10.5421 9.4290 11% 9.9458 8.4394 15%

Acknowledgement

Financial support from Universiti Tun Hussein Onn Malaysia
(UTHM) in the form of IGSP Grant Vot U671, RMC, UTHM and
GPPS Vot H034 are gratefully acknowledged.

References

[1] Hofner C, & Schmidt G, "Path planning and guidance techniques

for an autonomous mobile cleaning robot." pp.610-617.

[2] Aasen T, "Mobile cleaning robot for floors," Google Patents, 2005.

[3] Sabattini L, Digani V, & Secchi C (2013), "Technological roadmap

to boost the introduction of agvs in industrial applications." pp.203-

208.

[4] Song-hua Y (2008), “Trajectory tracking and control of logistics

AGV [J],” Modular Machine Tool & Automatic Manufacturing

Technique, vol. 6, pp. 022.

[5] Bojarski M, Del Testa D & Dworakowski D (2010), “End to end

learning for self-driving cars,” arXiv preprint arXiv:1604.07316,

2016.

[6] S. Thrun, “Toward robotic cars,” Communications of the ACM, vol.

53, no. 4, pp. 99-106.

[7] Häne C, Sattler T, & Pollefeys M, "Obstacle detection for self-

driving cars using only monocular cameras and wheel odometry."

pp. 5101-5108.

[8] Liu X & Gong D (1992), "A comparative study of a-star algorithms

for search and rescue in perfect maze." pp. 24-27.

[9] Dean T, Basye K, & Shewchuk J (1992), “Reinforcement learning

for planning and control,” Machine learning methods for planning,

pp. 67-92.

[10] Watkins CJ & Dayan P (1992), “Q-learning,” Machine learning,

vol. 8, no. 3-4, pp. 279-292.

[11] Xiao J, Michalewicz Z & Zhang L (1997), “Adaptive evolutionary

planner/navigator for mobile robots,” IEEE transactions on

evolutionary computation, vol. 1, no. 1, pp. 18-28.

[12] Konar A, Chakraborty IG & Singh SJ (2013), “A deterministic

improved Q-learning for path planning of a mobile robot,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 43,

no. 5, pp. 1141-1153.

[13] Konar A, Goswami I & Singh SJ (2013), “A deterministic

improved q-learning for path planning of a mobile robot,” IEEE

Trans. Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp.

1141-1153.

[14] Rakshit P, Konar K, Bhowmik P (2013), “Realization of an adaptive

memetic algorithm using differential evolution and q-learning: a

case study in multirobot path planning,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 43, no. 4, pp. 814-

831.

[15] Kim DH, Kim YJ & Kim KC (2000), “Vector field based path

planning and petri-net based role selection mechanism with q-

learning for the soccer robot system,” Intelligent Automation & Soft

Computing, vol. 6, no. 1, pp. 75-87.

[16] Chen C, Li HX, & Dong D (2008), “Hybrid control for robot

navigation-a hierarchical q-learning algorithm,” IEEE Robotics &

Automation Magazine, vol. 15, no. 2.

[17] Xiao H, Liao L, & Zhou F, "Mobile robot path planning based on

q-ann." pp. 2650-2654.

[18] Guo M, Liu Y, and Malec J (2004), “A new Q-Learning algorithm

based on the metropolis criterion,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 5, pp.

2140-2143.

[19] Das P, Behera H, & Panigrahi B (2016), “Intelligent-based multi-

robot path planning inspired by improved classical q-learning and

improved particle swarm optimization with perturbed Velocity,”

Engineering Science and Technology, an International Journal, vol.

19, no. 1, pp. 651-669.

[20] Juang CF, & Lu CM (2009), “Ant colony optimization incorporated

with fuzzy q-learning for reinforcement fuzzy control,” IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems

and Humans, vol. 39, no. 3, pp. 597-608.

[21] Muñoz P, Barco R, & de la Bandera I (2013), “Optimization of load

balancing using fuzzy q-learning for next generation wireless

networks,” Expert systems with applications, vol. 40, no. 4, pp.

984-994.

[22] Khajenejad M, Afshinmanesh F, Marandi A, "Intelligent particle

swarm optimization using Q-learning." pp. 7-12.

[23] Rakshit P, Konar A & S. Das S, "ABC-TDQL: An adaptive

memetic algorithm." pp. 35-42.

[24] Li C, Zhang J, & Li Y, "Application of artificial neural network

based on q-learning for mobile robot path planning." pp. 978-982.

[25] Duguleana M, & Mogan G (2016), “Neural networks based

reinforcement learning for mobile robots obstacle avoidance,”

Expert Systems with Applications, vol. 62, pp. 104-115.

[26] Huang BQ, Cao GY, & Guo M, "Reinforcement learning neural

network to the problem of autonomous mobile robot obstacle

avoidance." pp. 85-89.

[27] Hwang KS, Tan SW, & Chen CC (2004), “Cooperative strategy

based on adaptive q-learning for robot soccer systems,” IEEE

Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 569-576.

[28] Park KH, Kim YJ & Kim JH (2001), “Modular Q-learning based

multi-agent cooperation for robot soccer,” Robotics and

Autonomous Systems, vol. 35, no. 2, pp. 109-122.

[29] Yijing Z, Zheng Z & Xiaoyi Z, "Q learning algorithm based uav

path learning and obstacle avoidence approach." pp. 3397-3402.

