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Abstract 
 
Single-agent Finite Impulse Response Optimizer (SAFIRO) is a recently proposed metaheuristic optimization algorithm which adopted 

the procedure of the ultimate unbiased finite impulse response filter (UFIR) in state estimation. In SAFIRO, a random mutation with 
shrinking local neighborhood method is employed during measurement phase to balance the exploration and the exploitation process. 
Beta, β, is one of the parameters used in the local neighborhood to control the step size. In this study, the effect of β towards the perform-
ance of SAFIRO is observed by assigning the value of 1, 5, 10, 15, and 20. The best setting of β for SAFIRO is also determined. The 
CEC2014 Benchmark Test Suite is used to evaluate the SAFIRO performance with different β values. Results show that the performance 
of β is depending on the problems to be optimized. 17 out of 30 functions show the best performance of SAFIRO by setting β = 10. Sta-
tistical analysis using Friedman test and Holm post hoc test were performed to rank the performance. β = 10 has the highest rank where 
its performance is significantly better than other values, but equivalent to β = 5 and β = 15. Hence, it is recommended to tune the β for 

best performance, however, β = 10 is a good value to be used in SAFIRO for solving optimization problems. 
 
Keywords: Finite Impulse Response; Local Search Neighborhood; Metaheuristic; Optimization. 

 

1. Introduction 

Single-agent metaheuristic algorithm is a single-solution based 
algorithm that used only one agent to find the optimal or the best 
near-optimal solution for a given optimization problem. A single-
agent algorithm produces only one solution and improves the solu-
tion based on its current solution until the stopping criterion is 
reached. The entire optimization process of the single-agent algo-
rithm is simpler and require a lesser number of function evaluation 
compared to multi-agent metaheuristic algorithm.  
Among the classical single-agent metaheuristic algorithms are the 

Simulated Annealing (SA) [1], Tabu Search (TS) [2], Random 
Search (RS) [3], Pattern Search (PS) [4], Greedy Randomized 
Adaptive Search Procedures (GRASP) [5], Variable Neighbor-
hood Search (VNS) [6], Guided Local Search (GLS) [7], and Iter-
ated Local Search (ILS) [8].  
Boussaid [9] stated that a basic single-agent algorithm tends to 
focus on exploitation, meanwhile, multi-agent algorithm biased 
towards exploration. Normally, a single-agent metaheuristic algo-

rithm consists of local search-based metaheuristic [10]. Unlike 
global search that explores the search space, local search concen-
trates on finding a new solution among a neighborhood of its cur-
rent solution or the best solution found so far [9]. The capability to 
balance of global search (diversification) and local search (intensi-
fication) is essential to ensure the efficiency of metaheuristic algo-
rithm [11].  
A local search is claimed as one of the successful approach for 

approximate algorithms [12]. The descent method is among the 
earliest and simplest method for local search [13] where the solu-
tion is chosen from the agent’s neighbour. This simple method 
anyhow causes the agent to be easily trapped in a local optimal 
[14].  
As single-agent metaheuristic algorithm has higher possibility to 
trap to the local optima [15], many researchers came out with 
strategies for local optimal avoidance. SA algorithm is among the 
first algorithms that proposed a strategy to escape from local op-

timal [16], which was introduced by Kirkpatrick et al. in 1983. SA 
was inspired by an analogy from thermodynamic systems whereby 
the material is heated with high temperature until its molten state 
is reached and then the temperature is gradually reduced until no 
further change is observed [1][17]. In this method, a random 
neighbour of the current candidate solution is compared at every 
iteration and replaced if it improves the current solution [18]. Oth-
erwise, the current solution is accepted according to the probabil-

ity where the probability is higher if the temperature is high and 
slowly lower as the temperature is getting lower [19][20]. The 
possibility to escape from local optima in SA is good due to the 
stochastic cooling factor [21]. However, there is still a possibility 
for SA to find the same local optimal again throughout the optimi-
zation process [14].  
TS algorithm was developed by Glover in 1986 considering the 
use of local memory where the recent history of the search is 

memorized and stored in Tabu list, and prohibited to be revisited 
[19][22]. TS is biased to exploration if the size of Tabu list is in-
creased, whereas it is biased to exploitation if the size of Tabu list 
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is reduced [14]. A local search is applied to move from the current 
solution to the improved solution in the neighborhood of the cur-
rent solution. This process continues until the stopping criterion is 
met [20]. 
The algorithms such as the GRASP method, VNS, GLS, and ILS 
had been introduced with its respective local search strategies. 
Vortex Search (VS) [23], Mean-Variance Mapping Optimization 
(MVMO) [24], Simulated Raindrop (SRD) [17], and Single-

solution Simulated Kalman Filter (SSKF) [25],  are examples of 
modern single-agent metaheuristic algorithm which associated a 
local search approach in the respective algorithm. 
Vortex Search (VS) algorithm was developed by Dogan and Ol-
mez in 2013 [23]. It adopted the vortex flow of stirred fluids. The 
exploration and exploitation phases are balanced by using a vor-
tex-like search method. For each iteration, radius decrement is 
done through a new adaptive step-size adjustment scheme using 

the inverse incomplete gamma function to improve the perfor-
mance of the search process.  
Single-solution Simulated Kalman Filter (SSKF) algorithm [25], 
developed by Aziz et.al in 2016 as another version of Simulated 
Kalman Filter (SKF) algorithm [26][27]. SSKF also employed a 
local search method in its search strategy, which mimics the pre-
diction-measurement-estimation phases in Kalman filter to seek 
for the solution. An adaptive neighborhood mechanism is applied 

during prediction phase to predict the location of the candidate 
solution which is somewhere near the best-so-far solution. 
Single-agent Finite Impulse Response Optimizer (SAFIRO), is a 
recently developed method for numerical optimization problems 
[28]. The search strategy of SAFIRO is inspired by the cycle of 
estimation procedure in ultimate unbiased finite impulse response 
(UFIR) filter. In state space model, besides Kalman filter, the 
UFIR filter is increasingly preferable to be used as an estimator 
for state estimation. In SAFIRO, the state estimation is considered 

as a solution to the optimization problem. The estimation in 
SAFIRO’s sub-iteration is depending on the previous estimation, 
measurement and Kalman-like gain. SAFIRO employs a random 
mutation of X_best_so_far and shrinking local neighborhood 
method to balance the exploration and exploitation process. The 
adaptive coefficient, β is one of the parameters used in shrinking 
local neighborhood method. This parameter is used in exponential 
decay equation to control the reduction of step-size, δ. 

The aim of this paper is twofold. First, to observe the effect of β 
value towards the performance of SAFIRO. β = 1, 5, 10, 15, and 
20; are selected to be used in the experiments and the comparison 
is based on the mean fitness value over 51 runs with 500,000 itera-
tions of 50 problem dimension in CEC2014 Benchmark Test 
Suite. Second, to determine the best parameter setting of β for 
SAFIRO. Friedman and Holm post hoc tests show that β = 10 has 
highest ranking where its performance is significantly better than 

other values and on par with β = 5 and β = 15. Since 17 out of 30 
functions show the best performance is achieved with β = 10, 
hence this setting is considered as the best set of β for SAFIRO. 
The rest of this paper is organized as follows: Section 2 briefly 
introduces the SAFIRO. Section 3 presents the experimental set-
up. In section 4, the experimental results and discussion are pre-
sented. Finally, in Section 5, conclusions and future work are giv-
en. 

2. The SAFIRO  

SAFIRO is a newly developed metaheuristic algorithm for a nu-
merical optimization problem. SAFIRO makes use of only one 
agent to solve an optimization problem by mimicking standard 
UFIR filter procedures; measurement and estimation. Only two 

parameters need to be initialized in SAFIRO; the horizon length, 
N, and the adaptive coefficient, β. The agent in SAFIRO makes an 
estimation of the optimal based on N recent measurements. Unlike 
a real UFIR filter that takes measurement values from the sensor, 
measurement in SAFIRO must be simulated by its own. The esti-

mated position in the search space represents the solution of 
SAFIRO. The fitness of the estimated position is then evaluated 
based on an objective function. Figure 1 visualized the flow of 
SAFIRO. SAFIRO requires N initial measurements to begin the 
optimization process. Therefore, the value of N is defined during 
the initialization phase. In the original work, N is equal to 4. Four 
initial measurements, Y(t), Y(t-1), Y(t-2), and Y(t-3) are randomly 
generated and evaluated by using the fitness function of the prob-

lem to determine the initial X_best_so_far. X_best_so_far is the 
best-so-far solution. For a minimization problem, the value of 
initial X_best_so_far is taken from the initial measurement that 
has the smallest fitness value. For a maximization problem, in 
contrast, the value of initial X_best_so_far is taken from the initial 
measurement that has the largest fitness value. 
After N random initial measurements are generated and the initial 
X_best_so_far is determined during the initialization phase, 

SAFIRO’s agent makes the next step, which is the measurement 
phase. For each iiteration, a new measurement is produced by 
using random mutation of X_best_so_far and shrinking local 
neighborhood method. This approach encourages the exploration 
through mutation, and at the same time making a balance between 
the exploration and exploitation through shrinking local 
neighborhood. Every dimension of the problem to be optimized is 
associated to a random value between 0 to 1. Dimension, d, that 

has a random value ≤ 0.5 will assume the X_best_so_far value as 
their measurement value as follows:  
 

_ _( _)d dbesY t t so far X                                                        (1) 

 
Meanwhile, dimensions with a random value > 0.5, will undergo 
the mutation process to produce a new candidate solution, which 
is conducted in a local neighborhood of X_best_so_far. The 

measurement values for these respective dimensions is shown in 
(2), 
 

_( ) ( [ , ]_ )_d dbest so faY t rand Ur    X                        (2) 

 
where 

2

t
-β× X - X

max minTe ×                                                         (3) 

 
The local neighborhood radius is determined by the step size, δ, as 
in (3), where β is an adaptive coefficient value; t is the number of 

current iteration; T is the number of maximum iteration;
maxX is 

the upper limit of search space, and 
minX is the lower limit of 

search space. The exponential decay equation, 
t

Te
 

is used to 

scale down the local neighborhood radius, while max min( ) / 2X X

ensure the maximum coverage of the search space. The adaptive 
step-size adjustment process allows the exploration behavior oc-
curred at the beginning of steps and subsequently transform to the 
exploitation behavior towards the end of the steps [23]. As the 
iteration increases, the δ is reduced. Figure 2 shows plots of 

t

Te
 

 for different values of β. The value of β helps to control the 

reduction speed of neighborhood’s size.  A small β value causes a 
linear reduction, whereas a higher β value causes a faster conver-
gence speed [25]. The convergence speed reflects the transition 

process from exploration to exploitation. Theoretically, β = 1 has a 
slower convergence speed, β = 10, 15, and 20 in contrast, have a 
faster convergence speed, whereas β = 5 has a moderate conver-
gence speed.  
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Fig. 1: SAFIRO algorithm [28]. 

 

 
Fig. 2: The plot of δ with different β values. 

 

 
Fig. 3: Estimation stage in SAFIRO algorithm (N=4) [28]. 
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Table 1: The CEC2014 benchmark test suite [29] 

Types N

o. 

Functions Ideal 

Fitness 

Unimodal 

functions 

1 Rotated High Conditioned Elliptic func-

tion 

100 

2 Rotated Bent Cigar function 200 

3 Rotated Discus function 300 

Simple  

multimodal 

functions 

4 Shifted and Rotated Rosenbrock’s func-

tion 

400 

5 Shifted and Rotated Ackley’s function 500 

6 Shifted and Rotated Weierstrass function 600 

7 Shifted and Rotated Griewank’s function 700 

8 Shifted Rastrigin’s function 800 

9 Shifted and Rotated Rastrigin’s function 900 

1

0 

Shifted Schwefel’s function 1000 

1

1 

Shifted and Rotated Schwefel’s function 1100 

1

2 

Shifted and Rotated Katsura  

function 

1200 

1

3 

Shifted and Rotated HappyCat function 1300 

1

4 

Shifted and Rotated HGBat  

function 

1400 

1

5 

Shifted and Rotated Expanded 

Griewank’s plus Rosenbrock’s function 

1500 

1

6 

Shifted and Rotated Expanded Scaffer’s 

F6 function 

1600 

Hybrid  

functions 

1

7 

Hybrid function 1 (N=3) 1700 

1

8 

Hybrid function 2 (N=3) 1800 

1

9 

Hybrid function 3 (N=4) 1900 

2

0 

Hybrid function 4 (N=4) 2000 

2

1 

Hybrid function 5 (N=5) 2100 

2

2 

Hybrid function 6 (N=5) 2200 

Composition 

functions 

2

3 

Composition function 1 (N=5) 2300 

2

4 

Composition function 2 (N=3) 2400 

2

5 

Composition function 3 (N=3) 2500 

2

6 

Composition function 4 (N=5) 2600 

2

7 

Composition function 5 (N=5) 2700 

2

8 

Composition function 6 (N=5) 2800 

2

9 

Composition function 7 (N=3) 2900 

3

0 

Composition function 8 (N=3) 3000 

 
After producing measurement values during the measurement 
phase, SAFIRO’s agent conducts the next step, which is the esti-
mation phase. During this stage, SAFIRO’s solution is updated 

using four recent measurements correspond to its horizon length.  
As depicted in Figure 3, the first two measurements (Y(t-3) and 
Y(t-2)) are used for initial estimation whereas the other two meas-
urements are used for iterative estimation (Y(t-1) and Y(t)). Each 

iteration, t, consists of sub-iteration, k. The initial estimation, X

(k=2), is generated randomly between [lower limit, upper limit] of 
the first and the second point of the horizon. The iterative estima-

tion, X (k=3) until X (k=N) are used to improve the solution by 

using (4) and (5), 
 

( ) ( 1) ( )( ( ) ( 1)k k K k t N k k      X X Y X                        (4) 
 

1
( )K k

k
                                                                        (5) 

 

where X (k) is the estimated solution for current sub-iteration. 
The estimated solution is depending on the differences between 
current measurement, Y (t – N + k) and the previously estimated 

solution, X (k - 1). The Kalman-like gain, K(k), helps to improve 
the estimated solution. As the sub-iteration, k increases, the value 

of K(k) is decreases. The sub-iteration process continues until the 
k=N. At the end of the sub-iteration, a better estimation is pro-

duced. The final updated solution of X (k) is then assigned as 
X(t). Therefore, X(t) represents the estimated value for the corre-
sponding iteration. 
After finding the estimated solution, X(t), the evaluation phase is 
carried out to assess its fitness. The fitness of X(t) is then com-
pared to the fitness of X_best_so_far. The X_best_so_far is updat-

ed when a better solution is found. For minimization problem, 
X_best_so_far is updated if fit(X(t)) < fit(X_best_so_far), where-
as for maximization problem, X_best_so_far is updated if fit(X(t)) 
> fit(X_best_so_far). Measurement and estimation phases contin-
ue until the stopping condition, which is the maximum iteration, T, 
is met. Then, the X_best_so_far returns as the solution, to the 
given optimization problem.  

3. Experimental Setup 

The CEC2014 Benchmark Test Suite for single-objective optimi-
zation is employed to observe the performance of SAFIRO with 
different β values. This test suite comprises of 30 functions, which 
represent 30 real optimization problems. Every function has their 
own ideal fitness to represent the optimal or the global solution.  

As shown in Table 1, the functions are categorized into 4 major 
groups; unimodal test suite, simple multimodal test suite, hybrid 
test suite, and composition test suite. The capability of exploita-
tion process of an algorithm can be evaluated by solving unimodal 
functions, whereas, exploration capability can be evaluated by 
solving multimodal functions [30]. The capability for both explo-
ration and exploitation, on the other hand, can be evaluated in 
parallel by solving the composition functions. 
In this study, the value of β = 1, β = 5, β = 10, β =15, and β = 20 

are chosen to be used in (3). β = 1 is assigned to allow a slower 
size reduction which represents slower transition between explora-
tion phase to exploitation phase, β = 5, on the other hand, allows a 
moderate transition from the exploration phase to the exploitation 
phase, whereas β = 10, 15, and 20 allow a faster speed of the tran-
sition process from exploration phase to exploitation phase. The 
aims are to observe the effect of using different values of β to-
wards SAFIRO performance and to determine which setting is the 

best for SAFIRO. Therefore, by using these values, SAFIRO need 
to solve 30 optimization problems in CEC2014 Benchmark Test 
Suite. 
To provide a fair comparison, the problem dimension is set as 50 
for all variants of SAFIRO, while the maximum iteration is set as 
500,000. The stopping condition is set to be the maximum itera-
tion. Each variant of SAFIRO is run 51 times on each of the func-
tion. The observation is based on the mean performance of this 

setting.  
The Friedman test for the non-parametric test is then performed to 
rank these variants of SAFIRO with 5% significant level. The null 
hypothesis for Friedman test stated that the performances of all 
tested algorithms are equal, with no significant differences [31]. 
The performances are ranked statistically according to its mean 
fitness. The significant differences are then observed.  
The Holm post hoc test with tolerance, α=0.05 is then performed 

to analyze the significant differences of SAFIRO with variants of 
β values. The null hypothesis of Holm is rejected if the statistical 
value is smaller than the p-value. In Holm test, the p-value corre-
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sponds to their own null hypothesis, 

1 2 3, , ,.., ,.., ,l kH H H H H where 

the null hypothesis stated that the performance of algorithms are 
statistically equal [31]. All tests are performed by using the KEEL 
Software Tool, which can be downloaded through 
http://www.keel.es. 

4. Result and Discussion 

Table 2 shows the mean fitness and the mean error values ob-
tained by SAFIRO in solving CEC2014 Benchmark Test Suite, 
with various values of β. The reading of β=10 is as presented in 
the original paper of SAFIRO [28]. As the problems in CEC2014 
are minimization problems, the smaller reading indicates the better 
result.  
The unimodal test suite is the first group of problems need to be 

solved by SAFIRO. This test suite consists of three optimization 
problems (Fn1, Fn2, Fn3) which is related to rotation problems. 
Fn1 and Fn2 are more difficult to handle because it involved a 
quadratic ill-conditioned property and a smooth but narrow ridge 
property, respectively [29]. The one sensitive direction property in 
Fn3, on the other hand, make it easier to be solved compared to 
Fn1 and Fn2. Results in Table 2 on the whole, shows that β = 10, 
is the best setting for solving all unimodal test suite of CEC’14. 

For Fn3, SAFIRO with β = 10 and β = 15 managed to produce the 
optimal solution of 300 with 0 mean error. These results indicate 
that SAFIRO needs a faster speed of the exploration phase com-
pared to the exploitation phase in solving the Rotated Discus func-
tion. The graph of mean fitness for Fn3 can be shown in Figure 4. 
The lower reading indicates the better result.  
Subsequently, the second group of problems need to be handled 
by SAFIRO is a simple multimodal test suite which has 13 func-

tions (Fn4 until Fn16). These functions mostly consist of shifting 
and rotation problems. As tabulated in Table 2, β = 10 is the best 
setting value for the majority of functions in the simple multimo-
dal test suite. The functions are Fn4, Fn6, Fn10, Fn12, Fn13, 
Fn15, and Fn16. On the other hand, β = 5 is the best setting for 
Fn8, Fn9, and Fn11. The readings show that SAFIRO needs mod-
erate transition speed between exploration phase and exploitation 
phase in solving these three functions which comprise a huge 
number of local optima.  

On the contrary, although Fn5 also has many local optima, 
SAFIRO requires a larger β value (β = 20) to obtain the best per-
formance. As shown in Figure 5, the larger value of β shows better 
performance of SAFIRO in solving the Shifted and Rotated Ack-
ley’s function. Fn7 and Fn14, on the other hand, suite-well with β 
= 15 to produce the best solution. On top of that, with a suitable 
value of beta, SAFIRO shows a superior performance in solving 
this test suite with a very small value of mean error especially for 

Fn7, Fn12, Fn14, Fn13, Fn15, Fn6, Fn5, and Fn16. A very small 
value of the mean error indicates SAFIRO able to provide a near-
optimal solution. 
Next, the hybrid test suite (Fn17 until Fn22) which consist of ei-
ther combination of several multimodal functions (Fn19, Fn21, 
and Fn22), or combination of unimodal functions with simple 
multimodal functions (Fn17, Fn18, and Fn20), make it more chal-
lenging to be handled. Table 3 shows the same trend with the sim-

ple multimodal test suite where in most functions, the best per-
formances are obtained when β = 10. The functions are Fn17, 
Fn19, Fn21, and Fn22. The SAFIRO shows a very near-optimal 
solution for Fn19 with only 20.6 mean error. For Fn18, the best 
performance is recorded when a higher value of β (β = 20), ap-
plied. The graph of mean fitness for Fn18 is depicted in Figure 6. 
For Fn20, in contrast, the SAFIRO needs a lower value of β (β = 
5), to give the best performance.  

 
Fig. 4: Mean fitness of SAFIRO for Fn3. 

 

 
Fig. 5: Mean fitness of SAFIRO for Fn5. 

 

 
Fig. 6: Mean fitness of SAFIRO for Fn18. 

 

 
Fig. 7: Mean fitness of SAFIRO for Fn28. 

http://www.keel.es/
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Table 2: Mean fitness and mean error with different β values for unimodal and multimodal functions 

Fn Ideal Fitness 

 

β = 1 β = 5 β = 10 β = 15 β = 20 The best β 

1 100 
Mean Fitness 9.71E+07 3.41E+06 7.98E+05 1.06E+06 1.26E+06 10 

Mean Error 9.71E+07 3.41E+06 7.98E+05 1.06E+06 1.26E+06 

 
2 200 

Mean Fitness 4.23E+09 1.88E+06 7695.60 8461.01 1.04E+04 10 

Mean Error 4.23E+09 1.88E+06 7495.60 8261.01 1.02E+04 

 
3 300 

Mean Fitness 1.55E+04 312.82 300.00 300.00 300.0097 10 & 15 

Mean Error 1.52E+04 12.82 0.00 0.00 0.01 

 
4 400 

Mean Fitness 924.62 502.89 488.72 504.45 495.15 10 

Mean Error 524.62 102.89 88.72 104.45 95.15 

 
5 500 

Mean Fitness 521.14 520.93 520.00 520.00003 519.999997 20 

Mean Error 21.14 20.93 20.00 20.00 20.00 

 
6 600 

Mean Fitness 643.39 619.32 619.03 620.43 621.17 10 

Mean Error 43.39 19.32 19.03 20.43 21.17 

 
7 700 

Mean Fitness 742.33 700.96 700.01 700.0065 700.008 15 

Mean Error 42.33 0.96 0.01 0.01 0.01 

 
8 800 

Mean Fitness 1241.49 973.34 994.29 1006.09 1004.84 5 

Mean Error 441.49 173.34 194.29 206.09 204.84 

 
9 900 

Mean Fitness 1361.21 1079.78 1095.90 1111.61 1114.57 5 

Mean Error 461.21 179.78 195.90 211.61 214.57 

 
10 1000 

Mean Fitness 12804.77 5805.68 5785.20 6004.76 6060.21 10 

Mean Error 11804.77 4805.68 4785.20 5004.76 5060.21 

 
11 1100 

Mean Fitness 13839.28 6172.98 6462.40 6497.61 6638.93 5 

Mean Error 12739.28 5072.98 5362.40 5397.61 5538.93 

 
12 1200 

Mean Fitness 1203.36 1200.45 1200.10 1200.13 1200.16 10 

Mean Error 3.36 0.45 0.10 0.13 0.16 

 
13 1300 

Mean Fitness 1300.78 1300.63 1300.60 1300.67 1300.68 10 

Mean Error 0.78 0.63 0.60 0.67 0.68 

 
14 1400 

Mean Fitness 1402.93 1400.47 1400.50 1400.45 1400.54 15 

Mean Error 2.93 0.47 0.50 0.45 0.54 

 
15 1500 

Mean Fitness 1607.99 1524.41 1511.20 1512.08 1511.82 10 

Mean Error 107.99 24.41 11.20 12.08 11.82 

 
16 1600 

Mean Fitness 1621.63 1620.603 1620.600 1621.12 1620.86 10 

Mean Error 21.63 20.60 20.60 21.12 20.86 

  
The composition test suite (Fn23 until Fn30) is the last group of 
problems completed by SAFIRO in these simulation experiments. 
Compared to the other test suites, β = 5 is the best setting for the 
majority of the functions, where Fn24 until Fn28 show the best 

results with this setting. Figure 7 shows the graph of mean fitness 
for Fn28. For the rest functions which are Fn23, Fn29, and Fn30, 
the best results obtained when β = 10. 
Overall, there are 17 out of 30 functions which show the best re-
sults with β = 10. Majority of the functions in the unimodal test 
suite, simple unimodal test suite, and hybrid test suite provides the 
best performance with these setting. It can be confirmed that none 
of the CEC2014 functions provided the best performance with β = 

1. This means that the SAFIRO needs more exploitation in the 
search space in solving all functions in CEC2014 Benchmark Test 
Suite.  
The performances of SAFIRO with different β values are then 
ranked by using the Friedman 1×4 statistical test. The average 
Friedman ranking of SAFIRO’s performance with β = 1, β = 5, β 
= 10, β = 15, and β = 20 is tabulated in Table 4. According to the 
table, Friedman test ranks the SAFIRO with β = 10 the highest, 

followed by β = 15, β = 5, β = 20, and lastly β = 1.  
Based on the Friedman test statistic of 75.353, distributed accord-
ing to a chi-square distribution with 4 degrees of freedom, a sig-
nificant difference exists between the compared values. To test 
which values is significantly better than the other, Holm post hoc 
test is performed. The results are shown in Table 5. From the ta-
ble, Holm’s procedure rejects those hypotheses that have unad-
justed p-value equal or less than 0.01. Hence, SAFIRO with β=10 

performs significantly better than β = 1 and β = 20 but has an 
equivalent performance with β = 5 and β = 15 in solving the 
CEC2014 Benchmark Test Suite. 
 
 
 
 

5. Conclusion  

It can be concluded that the effect of beta towards SAFIRO per-
formance depends on the given function. Increasing the value of β 
helps to improve the performance of SAFIRO for Fn5 and Fn18. 
On the contrary, SAFIRO shows a better performance with a 
smaller value of β for Fn9, Fn11, Fn20, Fn24, Fn25, Fn27, and 
Fn28. The statistical tests show that β = 10 has the highest rank 
where this setting has outperformed β = 1 and β = 20 and has an 
equivalent performance with β = 5 and β = 15. As a conclusion, 

the user is recommended to tune the β for best performance. How-
ever, β = 10 is a good value to be used in SAFIRO for solving 
most optimization problems. This is based on the result of the 
mean fitness (17 out of 30 functions show the best results with β = 
10) as well as the statistical tests. Hence, the initial setting in 
SAFIRO’s original paper is considered as a robust value setting 
for SAFIRO.  As a future work, an auto-tuning of parameters in 
SAFIRO is considered. 
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Table 3: Mean fitness and mean error with different β values for hybrid and composition functions 

 Fn 

Ideal  

Fitness   β = 1 β = 5 β = 10 β = 15 β = 20 The best β 

17 1700 
Mean Fitness 4.78E+06 2.23E+05 4.60E+04 5.79E+04 7.83E+04 10 

Mean Error 4.77E+06 2.21E+05 4.43E+04 5.62E+04 7.66E+04 

 
18 1800 

Mean Fitness 1.15E+08 5.48E+04 3.98E+03 3.70E+03 3.58E+03 20 

Mean Error 1.15E+08 5.30E+04 2.18E+03 1.90E+03 1.78E+03 

 
19 1900 

Mean Fitness 1968.02 1922.74 1920.60 1924.70 1925.85 10 

Mean Error 68.02 22.74 20.60 24.70 25.85 

 
20 2000 

Mean Fitness 4041.59 2467.45 2476.10 2499.59 2561.37 5 

Mean Error 2041.59 467.45 476.10 499.59 561.37 

 
21 2100 

Mean Fitness 1.76E+06 2.07E+05 6.11E+04 6.75E+04 7.93E+04 10 

Mean Error 1.76E+06 2.04E+05 5.90E+04 6.54E+04 7.72E+04 

 
22 2200 

Mean Fitness 3617.39 2993.56 2920.90 3007.73 3024.94 10 

Mean Error 1417.39 793.56 720.90 807.73 824.94 

 
23 2300 

Mean Fitness 2709.71 2646.13 2645.00 2645.44 2646.12 10 

Mean Error 409.71 346.13 345.00 345.44 346.12 

 
24 2400 

Mean Fitness 2722.67 2676.81 2678.70 2678.80 2679.70 5 

Mean Error 322.67 276.81 278.70 278.80 279.70 

 
25 2500 

Mean Fitness 2733.23 2711.88 2712.50 2714.34 2714.89 5 

Mean Error 233.23 211.88 212.50 214.34 214.89 

 
26 2600 

Mean Fitness 2782.51 2757.37 2778.70 2772.47 2790.16 5 

Mean Error 182.51 157.37 178.70 172.47 190.16 

 
27 2700 

Mean Fitness 4090.92 3496.66 3519.20 3544.06 3587.06 5 

Mean Error 1390.92 796.66 819.20 844.06 887.06 

 
28 2800 

Mean Fitness 6059.83 4954.57 5252.50 5421.25 5449.55 5 

Mean Error 3259.83 2154.57 2452.50 2621.25 2649.55 

 
29 2900 

Mean Fitness 1.40E+07 3.78E+04 2.89E+04 3.03E+04 3.06E+04 10 

Mean Error 1.40E+07 3.49E+04 2.60E+04 2.74E+04 2.77E+04 

 
30 3000 

Mean Fitness 2.21E+05 4.72E+04 3.87E+04 4.21E+04 4.34E+04 10 

Mean Error 2.18E+05 4.42E+04 3.57E+04 3.91E+04 4.04E+04 

  
Table 4: Average Friedman ranking of β 

Algorithm Ranking 

β = 10 1.5833 

β = 15 2.5833 

β = 5 2.6 

β = 20 3.2667 

β = 1 4.9667 

 

Table 5: Holm post Hoc result of β value for α = 0.05 

β p Holm 

β = 1 vs β = 10 0 0.005 

β = 1 vs β = 15 0 0.005556 

β = 1 vs β = 5 0 0.00625 

β = 1 vs β = 20 0.000031 0.007143 

β = 10 vs β = 20 0.000037 0.008333 

β = 5 vs β = 10 0.012763 0.01 

β = 10 vs β = 15 0.014306 0.0125 

β = 15 vs β = 20 0.094166 0.016667 

β = 5 vs β= 20 0.10247 0.025 

β = 5 vs β= 15 0.967436 0.05 
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