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Abstract 
 
Wave equation is often solved independently without involving Continuity and momentum equations and this implies that the numerical 
simulation is restricted to wave phenomenon in static fluid. Meanwhile the available wave models are more suitable for the case in which 

the convective effect outweighs the local wave fluctuation. However, there are many fluid dynamics phenomena which involves equally 
significant effect of convective flow and wave disturbance, such as mountain waves, strong aeroacoustics wave and strong ocean waves. 
These flows need to be simulated by computational coupling. We have developed a solver using fractional step method for the construc-
tion of convective wave coupling algorithm. In our implementation, we model a flow across the wave-excited lid driven cavity as our 
case study, in which the model is to imitate the aerodynamic mountain wave. We found that the convective wave ratio plays a great role 
in affecting the velocity field of the fluid domain. 
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1. Introduction 

Conventional wave equation is analysed and applied in engineer-
ing fields even until today, such as in ultrasonic evaluation [1], 
magneto-electro-elastic engineering [2] and quantum mechanics 
[3]. However, such analysis will be confined to a problem domain 

in which the wave transporting medium only experiences diffusion 
of scalar variables. Convective wave takes place indeed in many 
natural phenomenon and engineering applications indeed, such as 
urban acoustics [4], coastal wave prediction [5], biomedical inves-
tigation [6], bubble dynamics [7] and aeroacoustics [8-11]. There-
fore, the conventional wave equation is not appropriate for con-
vection wave propagation. 
To solve the issue, conventional continuity equation and momen-

tum equations [12] are modified with various ways to fit with the 
convective nature. Sang [13], Willatzen and Voon [14], Chen et al. 
[15] and Liu et al. [16] imitated the large eddy simulation (LES) 
concept to create the vector’s fluctuation, producing a “wave-like” 
domain solved using Fourier theory. Another way of simulating 
the convective wave is by linearizing the Euler’s equations and 
formulating wave-based models [4]. The examples of such analy-
sis are FVCOM model [15], FVCOM-SWAVE model [17] and 

convective vector wave analysis [18]. 
Unfortunately, we found that these available methods are not able 
to directly represent the convective wave in an explicit manner, as 
shown in Fig. 1. This is because the perturbation speed refers to 
the fluid particle speed of fluctuation within a range of distance, 
while convective speed refers to the fluid particle speed of moving 
forward [19]. The perturbation speed is not clearly differentiated 
with the convective speed in the previous numerical schemes.  
Moreover, these methods are more suitable for the cases in which 

the convection speed is much more significant than perturbation 

speed. In other words, the available numerical schemes are robust 
only in solving highly convective wave phenomenon especially 
the general ocean waves, by obtaining a general wave-influenced 
flow description for the problem domain. They are not applicable 

for the phenomena which involve equally dominant convective 
and wave effect, such as aerodynamic mountain waves, strong 
aeroacoustics waves and strong ocean waves. 
With this regard, we formulated our numerical modelling by cou-
pling the continuity equation, momentums equation and wave 
equation. Our numerical solver is able to simulate the convective 
wave for the case in which the perturbation effect is as significant 
as convection effect. 

 
 
 
 
 
 
 
 

Fig. 1: Perturbation speed and convective speed for wave 

2. Physical Modeling 

In this paper, we imitate the aviation mountain wave, which is a 
phenomenon which contains wave fluctuation when the air flows 

across mountains. Mountain wave could result in atmospheric 
turbulent and the damage of aircraft [20]. Due to the equally 
strong convective current and wave undulation, the velocity vector 
will be altered in both its direction and magnitude, as shown in Fig. 
2. 
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Fig. 2: Velocity vector due to mountain wave near Southern Andes [21] 

 
With this, we take the wave-stimulated lid driven cavity [22] as 
our case study. The Reynolds number at the top side of the cavity 
is controlled within laminar region of 5, 50 and 500, while the 
wave excitation source is located either at the top or bottom part of 

the cavity. The purpose of low Reynolds number selection is to 
minimise the difference of velocity vector between the convective 
velocity and particle perturbation velocity. The physical model 
can be illustrated as in Fig. 3. 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
Fig. 3: Physical model for numerical simulation of convective wave in lid 

driven cavity 

 

We introduce a new parameter of convection-wave ratio which 
represent the ratio between the strength of convection and wave 

effect. Mathematically, the convection-wave ratio,   is shown as 

in Equation (1). 
 

U

u
               (1) 

 
where U is the freestream convective velocity while uΨ is the fluid 

particle perturbation speed.  

3. Mathematical Modelling of Convective-

Wave Coupling Scheme 

Our mathematical modelling involves continuity equation, mo-
mentum equations and wave equation which can be shown respec-
tively from Equation (2) – (5). 
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From Equation (1) – (3), ux and uy represents the x- and y- compo-
nent convective velocity vector respectively, P is the pressure 
scalar, ρ is the fluid density while ν is the fluid kinematic viscosity. 

In Equation (4), again, uψ represents the fluid particle perturbation 
velocity with c2 is the ratio between the fluctuation tension and 
fluid density. In our study, the fluid is regarded as Newtonian fluid 

3.1. Fractional Step Method 

In our solver, fractional-step method [23] is applied to couple the 
continuity and momentum equations. The method requires the 
formation of pressure Poisson equation such that the first deriva-

tive of momentum equations is combined with the continuity 
equation. In fractional step method, the pressure term is temporar-
ily removed from the discretisation. This will form Equation (6) 
and (7). The superscript n+1/2 and n represents the intermediate 
time step and current time step respectively. 
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In Equation (6) and (7), the convective terms are discretised via 
first order upwind scheme while the diffusive terms are discretised 
via central finite difference scheme, both using finite volume 
method. With this the intermediate velocity field, un+1/2 = {ux

n+1/2 

uy
n+1/2} could be obtained. The intermediate velocity field is then 

applied into the Poisson equation in order to obtain the pressure 
field. The Poisson equation is developed by removing the convec-
tive and diffusive term from both the momentum equations, taking 

the first derivative of the respective dimension, and summating 
them all together. The Poisson equation is demonstrated as in 
Equation (8). 
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Note that the Continuity term in Equation (8) shall not diverge due 
to mass conservation principle. Upon obtaining the pressure field 
of the next time step, Pn, the momentum equations which negate 
the convective and diffusive term are revisited to form the velocity 

field of the next time step. 
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Several local iterations between Equation (8) – (10) may be 
needed for convergence, to obtain the velocity, un and pressure, Pn 
of the next time step. Upon this local convergence, the process 
will be repeated back to find again the next intermediate velocity 
field. 

L 

L 

U 

Source of wake 
excitation with 

speed of uΨ 



International Journal of Engineering & Technology 101 

 
The global iterations from Equation (6) – (10) is repeated until 
convergence, or the required time domain. With this, both the 
continuity and momentum equations can be satisfied. In our solver, 
we used staggered grid [24] for the computation. 

3.2. Discretisation of Wave Equation 

We applied central difference finite volume method to discretise 
the wave equation. Upon modification, the resulting discretised 

wave equation can be shown as in Equation (11). 
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The subscript nb represents the neighbouring nodes of the node of 
interest with coordinate of (i,j). Note that due to the second order 
time derivative, the computation of the discretised equation re-
quires the storage of two sets of particle velocity field, which are 

the current field, uΨ
n and previous field, uΨ

n+1. 
Upon obtaining both the convective speed and perturbation speed, 
the resultant velocity vector will be in Equation (12). 
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3.3. Complete Convective-Wave Coupling Algorithm 

The complete convective-wave coupling algorithm is construed by 
combining Equation (6) – (11), in which the step-by-step method-
ology can be illustrated in Fig. 4. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

Fig. 4: Perturbation convective-wave coupling algorithm 

4. Numerical Analysis 

In the implementation of the numerical scheme, the top side of the 
cavity is set to be Dirichlet boundary condition while the rest of 
the walls are set as the Neumann boundary condition. The 
freestream velocity is set as 1 m/s. The Courant number [25] cho-

sen is 0.5 after some trial and error run to reach a balance between 
the numerical stability and computation effort. The formula of 
Courant number is shown in Equation (13). 
 

Courant number = 
c t

x

Δ

Δ
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The grid size applied is 32 × 32. Since the wave is naturally un-
steady, we do not set a global convergence criterion to stop the 
time-stepping coupling. The simulation can be executed to any 

prescribed time-stepping according to the requirement of the time 
of result observation. In our work, we set to have 1000 iterations 
of time stepping for result computation. The source of wave exci-
tation is located at the top left and bottom left of the cavity.   

4.1. Effect of Location of Wave Excitation 

When the wave excitation is located at the bottom left of the cav-
ity, the velocity vector is altered the most from the bottom left too, 
with attenuating effect passing to the top-right. Meanwhile if the 

wave excitation is located at the top left of the cavity, the velocity 
of the flow recirculation region will have some undulation. These 
can be shown at Fig. 5 and Fig. 6. The value of convection-wave 
ratio set is 1, which implies the equivalent effect between the con-
vection and wave fluctuation. 
Fig. 5(a) – 5(c) illustrated the effect of the wave excitation from 
the bottom left of the cavity to the velocity vector at different 
Reynolds number, Re, which can be defined in Equation (14). 

 

 

 

 
Fig. 5: Velocity vector when the source of wave excitation is located at the 

bottom left for the case of (a) Re = 5; (b) Re = 50; (c) Re = 500 
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Re
UL


  (14) 

µ is the dynamic viscosity of the fluid. Meanwhile from Fig. 6(a) 
– (c), the location of source of wave excitation is located at the top 
left of the cavity. 
 

 

 

 
Fig. 6: Velocity vector when the source of wave excitation is located at the 

top left for the case of (a) Re = 5; (b) Re = 50; (c) Re = 500 

 

Generally, the flow pattern follows the convectional lid driven 
cavity flow, with just a difference in the resultant velocity vector 

due to the wave disturbance. In some of the region, especially at 
the low Reynolds number, the alternating high-low velocity ampli-
fication across the dimension is so apparent. 

4.2. Effect of Convection-Wave Ratio 

To observe the fluid dynamic effect due to different convection-
wave ratio, we fix the wave excitation source at the bottom of the 
cavity while the Re as 5. From our investigation, the resultant 

velocity fluctuation is the strongest at low convection-wave ratio. 
The results can be demonstrated from Fig. 7(a) – (c). 

4.3. Numerical Convergence on Continuity Requirement 

The numerical convergence of our solver is also tested. At higher 
Re, the error overshoot is smaller yet with a slower convergence 
speed. This may due to the larger pressure fluctuation inside the 
cavity which may drag the time for the scheme to converge. While 
at lower Re, the error overshoot is much larger but with a faster 

convergence speed. These can be revealed as from Fig. 8(a) – (c). 
The convergence studies shown here refer to the case at convec-
tion-wave ratio of 1.4. The Continuity convergence requirement is 
set as 1 × 10-4. 
In general, the results converge and this implies that our solver is 
numerically consistent and stable [26]. Since the fractional step 

method is applied, the under-relaxation index as used in SIMPLE 
algorithm is not required.  
 

 

 
Fig. 7: Velocity vector when the source of wave excitation is located at the 

bottom left at Re = 5 for the case of (a)   = 0.8; (b)   = 1.0; (c)  = 1.4 

 

  
 

 

 
Fig. 8: Convergence study for the case of  = 1.4 at (a) Re = 5; (b) Re = 

50; (c) Re = 500 
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5. Conclusion 

In conclusion, convective wave coupling numerical scheme has 
been developed using fractional step method. The convergence of 
the scheme has been proven, and it is applicable for numerical 
modelling when the convection wave ratio is small. The smaller 

the convection wave ratio, the higher alternating high-low velocity 
amplification. 
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