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Abstract 
 

House price prediction is important for the government, finance company, real estate sector and also the house owner.  The data of the 

house price at Ames, Iowa in United State which from the year 2006 to 2010 is used for multivariate analysis. However, multicollinearity 

is commonly occurred in the multivariate analysis and gives a serious effect to the model. Therefore, in this study investigates the per-

formance of the Ridge regression model and Lasso regression model as both regressions can deal with multicollinearity. Ridge regression 

model and Lasso regression model are constructed and compared. The root mean square error (RMSE) and adjusted R-squared are used 

to evaluate the performance of the models. This comparative study found that the Lasso regression model is performing better compared 

to the Ridge regression model. Based on this analysis, the selected variables includes the aspect of  house size, age of house, condition of 

house and also the location of the house. 
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1. Introduction 

In the year of 1990s, the house price in United State has increased 

sharply and from the year onward the price has been increasing for 

seven percent at the nation level annually [1]. The bubble of house 

price has brought up a negative growth of the economy in United 

State since the people do not afford to buy a house. Therefore, it is 

significant to study the growth of the house price as the pattern 

and the fluctuation of the data of house price which will provide 

the important information to the people who related [2].  

The house price often can be given a great impact by the factors. It 

is a multidimensional study in factors that contribute a great im-

pact on the house pricing [3]. Since there are numerous factors 

affect the prices of the house, the relationship between those fac-

tors is complex and a mathematical model can be seen to summa-

rize the relationship of the influential factors and the house price. 

With the house price model, it will contribute important infor-

mation to the real estate market which will indirectly influence the 

economic growth of the country [4].  

Multicollinearity is commonly occur in the high dimensional data 

where it will give a serious problem whenever analysis using mul-

tiple regression [5, 6, 7]. Therefore, Ridge regression and Lasso 

regression can be used to cope the multicollinearity problem [8, 9]. 

In this study, Ridge regression model and Lasso regression model 

are constructed to predict the house price in the United State. This 

will provide the important information to government, financial 

firm such as bank, or even a houseowner. Besides that, the con-

structed house price model can improve the growth of the real 

estate market [10]. There are quite considerable studies were car-

ried out to study the application of statistics [11, 12, 13]. 

2. Material and Method 

Two methods are used to construct the house price model which 

are Ridge regression and Lasso regression. Before constructing the 

model, data pre-processing is necessary to be carried out. Data 

pre-processing is used to clean up the outliers and handle the miss-

ing value in the data. The outliers will be removed from the obser-

vations and the missing value for the numeric variables will be 

replaced by zero while for the missing value of categorical varia-

bles will be replaced by none. Then the data has been split into 

two part which train data set for constructing the models and test 

data set is used for the model validation. The performance of the 

Ridge regression and Lasso regression are evaluated based on the 

root mean square error and adjusted R-squared.  

2.1. Ridge Regression 

Ridge regression is modifying the least squares method which to 

allow to have biased estimators of the regression coefficients in 

the regression model. Ridge regression put a particular form of 

constraints on parameters. 
ridge̂  which to be used in minimizing 

the penalized sum of squares in the equation 3.1 [14]. 
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where 
iy is the value of the response variable in the ith trial, 

0  is 

the intercept coefficient, 
j  is the regression coefficient for j = 

1,…,k, ijx  is the jth component of ix  which ix  is a known con-
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stant namely the value of the predictor variable in the ith trial,   is 

the constant value which shows the degree of bias in the estima-

tors.  

2.2. Lasso Regression 

Least absolute shrinkage and selection operator which the short 

form name as Lasso. Lasso can be useful in estimating the regres-

sion coefficient and performing variable selection. This similar 

with the Ridge regression. However, there is an important charac-

teristic which the coefficient of the Lasso regression can set to 

zero that this phenomenon will not happen in Ridge regression. 

The Lasso estimate minimizes the penalized sum of squares in the 

Equation 3.2 [14]. 
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2.3. K-fold cross-validation 

K-fold cross-validation is a method that use in estimating predic-

tion error and smoothing parameters. The initial data will divide 

randomly into k  mutually exclusive subsets which must be in an 

equal size. The prediction error of cross validation gives in the 

Equation 3.3 and Equation 3.4 [15]. 
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From the equation,  Kyyy ,...,1=  represents one of a K-fold 

split of the 1n  data vector y . ( )kJ  is the set of element of 

 n,...,2,1  that correspond to the indices of data points within 

split k . ( )kJnk =  representing the number of element within split 

k  with portion ky  removed. ( )( )ik xf 
−

ˆ  represents the ith fitted val-

ue which computed from the fitting a model using ky− . 

2.4. Root Mean Square Error 

Root mean square error (RMSE) is also known as root mean 

square error (MSE) which use to measure the different between 

the value of the actual observed value and the predicted value by 

the selected model. It is a useful method to determine whether the 

model is fit or not. The lower the value of RMSE meaning that the 

better fit of the model. The important feature of RMSE is the er-

rors are weighted by means of squaring them. Therefore, the bene-

fit of RMSE is penalizing the large errors which more strictly than 

any close by errors. The equation of the RMSE is shown in Equa-

tion 3.5 [16, 17, 18]. 
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where
iy  is the observed response in ith trial,

iŷ is the predicted 

response value in the ith trial. 

 

2.5. Lasso Regression 

Adjusted R-squared is used to measure the proportionate the re-

duction of total variation in response variable associated the pre-

dictor variables. Adjusted R-squared may decrease or increase 

when another predictor variables is added in the model. The for-

mula of adjusted R-squared is shown in Equation 3.8 [19]. 
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where SSE is the error sum of squares, SSTO is total sum of 

squares, iy  is the observed response in the ith trial, iy is the mean 

of the response value in ith trial. 

3. Results and Discussion 

Based on the Figure 1, the plot shows that many lines are converg-

ing to zero as the lambda increases. Each line in the plot repre-

sents the coefficient of the variable for the model and this has 

showed the function of the lambda as the regularization parameter. 

From the graph on the right, the different is the coefficients of the 

variables can exactly lie on the zero at horizontal axis. Therefore, 

Lasso regression can perform the variables selection. 

 

Fig. 1: Coefficient estimates for Ridge regression (on the left) and the 

Lasso regression (on the right) versus log  . 

 

Based on Figure 2, the graph on left shows log   equal to 6, the 

value of lambda is big and the mean squared error is high. When 

the log    value is approaching to -2 the mean squared error be-

come small and stay flat. The optimal value of   for Ridge regres-

sion is 0.03200447. The graph on the right shows log   equal to -1, 

the value of lambda is big and the mean squared error is high. 

When the log   value is approaching to -7, the mean squared error 

become small and stay flat. The optimal value of   for Lasso re-

gression is 0.0006282607. 
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Fig. 2:  Cross-validated estimate of the mean squared prediction error for 

Ridge (on the left) and Lasso (on the right), as a function of log   

 
Table 1: Comparison for Ridge regression model and Lasso regression 

model 

 Ridge regression Lasso regression 

 

Root Mean Square 

Error 

0.1333643 

 

0.1225798 

Adjusted R-

squared 

0.8897418 
 

0.9010351 

 

Based on the Table 1, Lasso regression model is way better than 

the Ridge regression model which has low root mean square error 

and high adjusted R-squared value. Therefore, Lasso regression is 

the best method in determining the house price for this data set. 

The model of the Lasso regression is shown as below. For X1 is 

commercial zone, X2 is medium residential zone, X3 is lot frontage 

area, X4 is lot area, X5 is overall quality, X6 is overall condition, X7 

is year built, X8 is masonry veneer area, X9 is external quality, X10 

is basement quality, X11 is heating quality, X12 is central air, X13 is 

first floor area, X14  is ground living area, X15 number of bathroom 

at basement, X16  is number of bedroom, X17 is kitchen quality, X18 

is capacity of garage car and X19 is the garage quality.  

 

Sale Price = – 25.8295 – 0.10196X1 – 0003838X2 +   

       + 0.01632X3  +   0.067783X4 + 0.031172X5 +     

       + 0.045468X6  + 4.191984X7 + 0.000009X8  + 0.069361X9  

       + 0.056703X10 + 0.009522X11  + 0.054173X12 + 0.14296X13  + 

       + 0.418605X14  + 0.048372X15 – 0.00219X16  + 0.04629X17 +    

       + 0.04426X18  + 0.004597X19  

 

Since Lasso regression can perform variables selection, thus only 

the importance variables are included. Location of the house is a 

significant factor that affecting the house price which the zoning 

classification in the model that is related with the location. The 

house at the zone of commercial or residential with low medium 

density has a negatively related to the house price, meaning that 

the house price will be lower at these area. Commercial housing 

area is a place for the business purpose which supposed to have a 

good price for the house. However, not all the properties of the 

commercial housing area are expensive which the commercial 

area housing in Iowa, Ames, United States has cheaper price as 

Iowa is a rural area. 

There are some variables which are positively related to the house 

prices, indicating that the house price will be higher. Lot frontage 

area, lot area, masonry veneer area, first floor area and garage car 

capacity and ground living area. Variables that closely related to 

size the house. Lot frontage is very costly as it requires money to 

pave the road or maybe to plant some grass or trees. The bigger 

the size of the house, the higher the price of the house. The bigger 

area of the house, the more land is occupied by the house, that is 

why the house price will high too. For the house with more space 

that consists of more than one floor, meaning that more materials 

are need to build the house, indirectly higher the house price.  

For the variables year built, meaning that the age of the house, the 

latest brand new house will sell a better price compared to the old 

house as the old house has stood for a decades which more 

maintenance is need. Other characteristics of the house which are 

the number of the basement full bathroom show that the higher the 

number of the room, the more expensive for the house. Therefore, 

a house which is brand new, bigger in space and more rooms will 

have a high value of house price. 

As United States is a four season country, central air conditioning 

and heating are necessary in a house. With central air conditioning 

is positively related to the house price. Houses with central air 

conditioning can make the temperature consistent and filter the air 

in the houses all year long, thus it will be a factor for higher house 

price. Heating quality is important as people can bath during win-

ter or when is in a cold weather. 

4. Conclusion 

This comparative study found that the Lasso regression model is 

performing better compare to the Ridge regression model. Lasso 

regression has a lower root mean square error and higher adjusted 

R-squared compared to Ridge regression. The adjusted R-squared 

value of the Lasso regression is 0.90. This means that the sale 

price of a house is reduced by 90% when all the 18 predictor vari-

ables are considered. A high value of adjusted R-squared indicates 

the Lasso regression model is a better model.  

In the Lasso regression model, the significant variables are select-

ed which are mainly about the size of the house, the condition of 

the house, age of the house and also the location. Size of house, 

condition of house and age of house have positively related to the 

house price. Meaning that, the bigger the size of house either in 

space or area, the more expensive the house. The better the condi-

tion of the house, the higher the price of the house. For a new 

house that will be definitely with a high price compared to the old 

one. Location also play an important aspects for affecting the 

house price. The houses which are located at the commercial zone 

and medium density residual has cheaper price for the houses. 

United States is a four season country which the houses at Iowa, 

Ames would like to have the central air conditioning to maintain 

the temperature at house all year long. Least but not less, heating 

quality has to be good which uses to within to cold weather in 

United States.  
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