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Abstract 
 

Tourism industry in Malaysia is crucial and has contributes a huge part in Malaysia’s economic growth. The capability of forecasting 

field in tourism industry can assist people who work in tourism-related-business to make a correct judgment and plan future strategy by 

providing the accurate forecast values of the future tourism demand. Therefore, this research paper was focusing on tourism demand 

forecasting by applying Box-Jenkins approach on tourists arrival data in Malaysia from 1998 until 2017. This research paper also was 

aiming to produce the accurate forecast values. In order to achieve that, the error of forecast for each model from Box-Jenkins approach 

was measured and compared by using Akaike Information Criterion (AIC), Mean Absolute Deviation (MAD), Mean Square Error (MSE) 

and Mean Absolute Percentage Error (MAPE). Model that produced the lowest error was chosen to forecast Malaysia tourism demand 

data. Several candidate models have been proposed during analysis but the final model selected was SARIMA (1,1,1)(1,1,4)12. It is 

hoped that this research will be useful in forecasting field and tourism industry. 

 
Keywords: Accuracy comparison, Box-Jenkins, Malaysia tourism, SARIMA, Tourism demand forecasting.  

 

1. Introduction 

In the past few decades, tourism industry has become crucial es-

pecially to the growth of countries’ economy which is always 

related to the development of new jobs, the rising of money ex-

change rate, the increasing of Gross Domestic Product (GDP), and 

many more. Naturally, tourism means the activities of people vis-

iting or traveling to other places of their interest besides their liv-

ing area for a few days [1, 2, 3]. According to The Oxford English 

Dictionary, the synonym of tourist can also be called as visitor, 

traveler, sightseer, backpacker, tripper, and others. 

With the rising of tourism industry, this field has become popular 

among academia for study purpose and analysis in various topics 

and methods [4]. It also involved data of tourist arrivals to various 

countries around the globe and other related data that influenced 

the tourist arrivals. However, this article generally aims to do 

modelling and forecasting by using Box-Jenkins approach, and 

also to compare the accuracy of each model in order to find a bet-

ter model to forecast tourist arrival in Malaysia. 

Malaysia is known as one of the popular destinations for traveling 

because of its attractions. For example, historical places like 

A’Famosa, skyscrapers like Petronas Twin Tower, islands, beauti-

ful natures and Malaysian different cultural [5, 6]. Instead of trav-

elling for holidays, international tourists come to Malaysia for 

medical treatment, business trip, sports trip and others [7, 2, 8]. 

Since tourism industry is crucial to boost Malaysia’s economy, 

accurate forecasting of the future tourism demand may help peo-

ple who work in tourism-related-business to make a correct judg-

ment, plan strategy and minimize the side effect if the prediction is 

decreasing for the next year. They might lose capital if they pre-

pare services excessive than the number of target tourists. Other-

wise, if the prediction for the next year is increasing, then the 

forecasting analysis may help in optimizing the services enough 

for every tourist such as hotels, airplane tickets, transporters, foods, 

and others. 

This paper provides the latest forecast research on Malaysia tour-

ism demand by using international tourist arrival to Malaysia as 

data set. Box-Jenkins approach has been chosen to analyse tourism 

demand because it is a complex and a flexible method that able to 

handle time series data with several patterns. 

2. Literature Review 

Literatures related to this research were reviewed especially to the 

past researchers that were focusing on tourism demand forecasting 

and Box-Jenkins method. 

2.1. Tourism demand forecasting 

Several literatures about tourism demand forecasting were re-

viewed to study different methods used by past researchers. Since 

tourism industry is important for any country’s economic growth, 

it has attracted a lot of attention from researchers to do forecasting 

on the tourism demand. For comparison, [9] and [10] used Malay-

sia tourism demand data but with different forecasting methods 

and different data of tourist arrival origin countries. The research 

by [9] was focusing more on the tourists from Singapore and In-

donesia for periods of 2000 until 2013, while research in [10] were 

focusing on Singapore tourist dataset started from January 2010 to 

December 2014. In addition, research [9] applied artificial neural 

network (ANN) model, hybrid empirical mode decomposition 

with artificial neural network (EDM-ANN) model, and modified 
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EDM-ANN model. Otherwise, research [10] applied artificial 

neural network (ANN) and support vector machine (SVM) meth-

ods. By using RMSE and MAPE, the result from [9] shows modi-

fied EDM-ANN model produced the lowest value of error where-

as research [10] find out ANN produced less error than SVM. 

Other than that, a few research papers that used combined model 

to forecast tourism demand have been found, such as the research-

es from [11] and [12]. Taiwan tourism data in [11] research were 

forecasted by using neural network model, SARIMA model and 

the combined model which consist of autocorrelation function 

(ACF) model, neural network model and genetic algorithms model. 

Otherwise, research [12] used Japan tourism demand data to do 

forecasting by using neuron model with dendritic nonlinearity 

(DNN) and the combined model that consist of SARIMA and 

DNN (SA-D) models. To compare forecasting accuracy, research 

[11] applied RMSE and MAD. The result shows the combined 

model is better than neural network and SARIMA models. While, 

for research in [12] the research used NMSE, APE, R and program 

running time (PRT) to compare the performance of forecasting. 

The result shows that SA-D model produce less error than DNN 

model. 

Furthermore, another two researches that focusing on artificial 

neural network (ANN) for forecasting are [13] and [14], which 

used Mozambique tourism demand data and China tourism de-

mand data, respectively. Researcher in [13] computed candidate 

models by using ANN method with different input of independent 

variables. The forth model contains GDP-MOZ, ER-EURO-MT, 

ER-RAND-MT, ER-DOLLAR-MT, and GDP_USA variables 

produced the lowest MAPE and the highest pearson correlation 

coefficient (r). Otherwise, research [14] applied single ANN (S-

ANN), combined k- Means and ANN method (C-ANN), com-

bined EMD and ANN methods (E-NN), ARIMA model, and com-

bination clustering ANN (C-C-ANN). As a result, the proposed C-

C-ANN model produced the lowest error for all accuracy methods. 

2.2. Box-Jenkins approach 

Autoregressive Integrated Moving Average (ARIMA) model is a 

combination of several time series models including autoregres-

sive and moving average. This model is considered as one of the 

popular time series methods because it can be used on time series 

data that has pattern like trend, seasonality and cyclic. In order to 

obtained ARIMA model, usually researcher will apply Box-

Jenkins procedure which consist of three steps such as identifica-

tion step, estimation of parameter p, d and q step, and lastly is 

diagnostic checking step [15]. This forecasting method has been 

used widely not only in tourism field. Thus, this subsection will 

provide reviews on Box-Jenkins approach in various fields in-

cludes tourism field, fisheries field and gold price field. 

A few literature reviews of Box-Jenkins modelling that used tour-

ism demand data for forecasting were studied, its include re-

searches from [16, 17,]. Based on [16], the researchers used 25 

years data of China tourist arrival in Australia. Four accuracy 

measurements were conducted to select the best model from Box-

Jenkins approach. Otherwise, the second research by [17] used 

Macedonia tourism demand from 1956 until 2013 for forecasting. 

The researcher applied RMSE, MAE, APE, MAPE and TIC to 

choose forecasting model. For result comparison, model selected 

in [16] was SARIMA (0,1,1)(0,1,1)12 while model selected in [17] 

was ARIMA (1,1,1). 

Another two researches that applied Box-Jenkins approach in 

fisheries field can be found in [18] and [19]. Researcher in [18] 

analysed ten years data of monthly Barramundi price by using 

ARIMA and Holt-Winter methods. However, researcher in [19] 

has applied ARIMA and intervention analysis to forecast total 

marine fish landings in Odisha. MSE and MAPE were used in [18] 

to compare forecast accuracy and the result found that ARIMA 

model performed better than Holt-Winter method. Otherwise, 

research [19] compared AIC and SBC values for each method and 

the result shows that ARIMA outperformed intervention analysis 

model. 

Besides, Box-Jenkins approach has also been used to forecast gold 

price by investors. Forecasting is useful and important for inves-

tors so that they can be well prepared about the fluctuation of the 

gold prices, thus they can make a correct judgement and plan 

strategy before investing. Referring to [20], the researchers used 

ten years data of gold price in India and the accuracy of forecast 

between candidate models have been made by using RMSE, 

MAPE, MAE, BIC and Lungs Box Q statistics. Another research 

is by [21], 25 years data of gold prices in India were used and the 

researcher compared forecast performance by using RMSE, 

MAPE, Max APE, Max AP, and MAE. Result in [20] shows the 

best model selected is ARIMA (1, 1, 1) while result in [21] found 

ARIMA (0, 1, 1) is better than other candidate models. 

3. Materials and methods 

This subsection will cover the study area and data used in this 

research, Box-Jenkins approach, and method used to measure 

forecast performance. 

3.1. Study area and data 

In this research, the data used to forecast is a monthly tourism data 

of tourist arrival from January 1998 until December 2017. The 

data were taken from the website of Tourism Malaysia which 

consists of approximately 240 records. The dataset was divided 

into two groups, the first group dataset (in-sample) is from 1998 

until 2016 which used to model and forecast 12 months ahead. 

The second group data (out-of-sample) is 12 months data of 2017 

used to evaluate forecast accuracy. In this article, Box-Jenkins 

approach has been chosen as a method to forecast Malaysia tour-

ism demand. All the data were generated and computed by using 

Microsoft Excel, R software and Minitab.  

3.2. Box-Jenkins procedure 

This approach uses a three steps iterative approach of model iden-

tification, parameter estimation and diagnostic checking to deter-

mine the best model from a general class of ARIMA models. This 

three steps process is repeated several times until a satisfactory 

model is finally selected. Then, this model can be used for fore-

casting future values of time series. The three steps in Box-Jenkins 

procedure are: 

Step 1: Identification step 

In the first step which is identification step, Box-Cox Transfor-

mation plot is used to stabilize the variance by transformation 

method while Autocorrelation Function (ACF) and Partial Auto-

correlation Function (PACF) plots are used to observe the station-

arity of mean, and differencing method needed to stabilize the 

mean [15].  

Step 2: Estimation of parameter 

The second step is estimation of parameter, ACF and PACF plots 

are vital in this step to estimate the value of parameter p and q. 

Parameter p represent the number of lag cut off in ACF plot while 

parameter q represent the number of lag cut off in PACF plot. The 

best model usually was picked with the p-value of parameter less 

than 0.05 and the p-value of L-Jung Box value higher than 0.05 

[23]. Equations (1), (2), and (3) were referred and proposed by 

[24]. 

The autoregressive process of order p is denoted AR (p) is gener-

ally defined as follows: 

 

Xt= ∅1 yt-1+ ∅2 yt-2+⋯+ ∅p yt-p+ εt          (1) 

 

The moving average process of order q is denoted MA (q) and 

defined by follows: 
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Xt= εt – θ1 εt-1 – θ2 εt-2 - … - θq εt-q          (2) 

 

The general ARIMA model which allocates seasonality can be 

written as follows: 

 

∅p (B) Φp (BS) ∇d ∇s
d yt= θq (B) ΘQ (BS)αt          (3) 

 

Where Xt and εt are the actual value and random error at time peri-

od t, respectively;  ∅1  (i=1, 2,…,p) and θj (j=0,1,2,…,q) are model 

parameters, p and q are integers and often referred to as orders of 

the model.  

Step 3: Diagnostic check 

The last step in Box-Jenkins procedure is diagnostic checking 

which requires an observation towards residual values of forecast. 

This will reveal if there is any autocorrelation in the residuals. 

Again, ACF and PACF plots can be used to check their stationari-

ty. 

3.3. Measuring of accuracy 

In order to evaluate the accuracy of forecast data from Box-

Jenkins method, Akaike Information Criterion (AIC), Mean Abso-

lute Deviation (MAD), Mean Square Error (MSE) and the Mean 

Absolute Percentage Error (MAPE), were computed. For all four 

measures, smaller values usually indicate a better fitting model. 

These statistics are computed as follows. 

 

AIC = −2 log(𝐿) + 2𝑘           (4) 

 

MSE = 1/n  ∑| yt - ŷt |2            (5) 

 

MAPE = 1/n  ∑|(yt - ŷt) / yt | × 100         (6) 

 

MAD = 1/n  ∑| yt - ŷt |             (7)

   

Where, k is the number of model parameters and L is the log-

likelihood to measure a model fit, yt is the actual value at end of 

period t, ŷt is the forecast value at end of period t, n is the number 

of observation.  

4. Result and Discussion 

This study applied Box-Jenkins approach to forecast Malaysia 

tourism demand for 2017. The data (in-sample) used in this study 

is a monthly tourist arrival in Malaysia from January 1998 until 

December 2016.  Meanwhile, data (out-of-sample) from January 

2017 till December 2017 were used to compare the accuracy of 

forecast. Time series plot for this dataset can be obtained from 

Figure 1. From Figure 1, the pattern of time series clearly shows 

there are trend and seasonality exist. 
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Fig. 1: Time series plot of tourist arrival from 1998 until 2017 

 

The first step in Box-Jenkins procedure is identification step 

which crucial to check the stability of variance in dataset. Box-

Cox transformation shows that the time series data is normal with 

rounded value equals to 1. Thus, there is no need to do transfor-

mation since the variance is stationary. However, ACF and PACF 

plots illustrated that the mean is not stationary and differencing is 

needed to stabilize it. Differencing for non-seasonal and seasonal 

terms were performed and several candidate models have been 

listed in Table 1. 
Table 1: Candidate models 

Candidate mod-
els 

AIC MSE MAD MAPE 

SARIMA 
(1,0,1)(1,1,1)12 

5732.48 17123354959 91199.81 6.99 

SARIMA 

(1,0,1)(0,1,2)12 
5732.04 17117682252 91272.97 7.00 

SARIMA 

(1,1,1)(1,0,1)12 
6012.58 16259133007 88657.80 7.52 

SARIMA 

(1,1,1)(0,1,1)12 
5697.69 16645635269 89587.61 6.84 

SARIMA 

(1,1,1)(1,1,4)12 
5699.14 15558714175 88516.81 6.51 

 

Based on Table 1, the candidate models were compared by us-

ing AIC, MSE, MAD and MAPE. According to [23], forecast 

value can be considered as very good if MAPE value is less than 

10%. Since MAPE value in Table 1 for all candidate models 

showed less than 10%, it means their forecast values can also be 

considered as accurate. However, in order to obtain the best model 

to forecast tourism data, the model with the lowest value of error 

will be selected. Therefore, model SARIMA (1,1,1)(1,1,4)12 has 

been chosen since it’s value of MSE, MAD and MAPE were the 

lowest. 

The second step in Box-Jenkins procedure is the estimation of 

parameters. The coefficient of parameter for the model selected 

(SARIMA (1,1,1)(1,1,4)12)  from the first step will be used for 

modelling. P-value of estimated parameters shows all values were 

less than 0.05, which means the parameters are significant to the 

model. 

Based on equation (3), the full model for SARIMA (1,1,1)(1,1,4)12 

can be written as follows (8): 

 

Φ1 (B) (1-B)1Φ1 (B12)(1-B12)1 Yt = θ1 (B)Θ1(B12)4 et        (8) 
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Fig. 2: ACF plot 
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Fig. 3: PACF plot 
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The last step in Box-Jenkins procedure is diagnostic checking. 

Diagnostic plots in Figure 2 and Figure 3 show that the residuals 

in the model are stationary and indicate no correlations exist. Thus, 

SARIMA (1,1,1)(1,1,4)12 model is fit to forecast tourism data.  

Figure 4 shows the time series plot of actual data from 1998 until 

2017 and the forecast values for 12 months in 2017. The red 

marks illustrate the upper limit and the lower limit of forecast 

values for 2017. As display, all forecast values are in the range of 

lower and upper limits and the values are not too far from the 

actual data.  
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Fig. 4: Time series plot of actual and forecast data 

 

Even though this study has provided a reliable model for forecast-

ing, this does not mean the model is the only way to analyse future 

demand. This paper only provides framework technique and fore-

cast figure in numbers, so the people who involve in tourism-

related-business should not rely hundred percent on this research 

outcome. Planner must consider economic factors and tourism 

influence other than common sense and good judgement to plan 

future strategies. 

5. Conclusion 

This article was focusing on Box-Jenkins approach to forecast 

Malaysia tourism demand data. Three steps in Box-Jenkins proce-

dure were carried out and the candidate models selected were 

SARIMA (1,0,1)(1,1,1)12, SARIMA (1,0,1)(0,1,2)12, SARIMA 

(1,1,1)(1,0,1)12,  SARIMA (1,1,1)(0,1,1)12 , and SARIMA 

(1,1,1)(1,1,4)12. The best model among candidate models was 

chosen by comparing AIC, MSE, MAD and MAPE. The result of 

this study showed SARIMA (1,1,1)(0,1,1)12 produced the lowest 

value if AIC (5697.69) and SARIMA (1,1,1)(1,1,4)12 produced the 

lowest value of MSE (15558714175), MAD (88516.81) and MAPE 

(6.51%). Thus, SARIMA (1,1,1)(1,1,4)12 model was selected. 

This paper suggest for future research to apply advance forecast-

ing method to obtain more precise prediction, and also to consider 

several other economic factors as data set.  

Acknowledgement 

We would like to express our thanks to Universiti Tun Hussein 

Onn Malaysia for providing the facilities and financial supports to 

do this research. This research is supported by TIER 1 Project 

Grant Vot. U900.  

References  

[1] Ismail N, Masron T & Ahmad A (2014), Cultural Heritage Tourism 

in Malaysia: Issues and Challenges. SHS Web of Conferences 12, 
pp. 1–8.  

[2] Kumar M & Sharma S (2016), Forecasting Tourist In-Flow in 

South East Asia: A Case of Singapore. Tourism & Management 
Studies 12(1), pp. 107–119.  

[3] Turner R & Freiermuth E (2017), Travel & Tourism Economic Im-

pact 2017 Malaysia. World Travel & Tourism Council, pp. 1–19.  
[4] Shinae C, Hui B, Beomcheol P & Chon K (2018), Review of Re-

views : A Systematic Analysis of Review Papers in the Hospitality 

and Tourism Literature. International Journal of Hospitality Man-
agement 70, pp. 49–58.  

[5] Mosbah A & Mohamed Saleh AA (2014), A Review of Tourism 

Development In Malaysia. European Journal of Business and 
Management 6(5), pp. 1–9.  

[6] Lim WM (2015), Restoring Tourist Confidence and Travel Inten-
tions after Disasters: Some Insights from a Rejoinder to a Series Of 

Unfortunate Events in Malaysian Tourism. Current Issues in Tour-

ism 20(1), pp. 38–42.  
[7] Aziz A, Md Yusof R, Abu Bakar NT, Taib SNH & Ayob M (2015), 

Travel Behavioral Intention of Choosing Malaysia as Destination 

for Medical Tourism. In Theory and Practice in Hospitality and 
Tourism Research - Proceedings of the 2nd International Hospitali-

ty and Tourism Conference, (2014), pp. 185-188.  

[8] Seow AN, Choong YO, Moorthy K & Chan LM (2017), Intention 
to Visit Malaysia for Medical Tourism Using the Antecedents of 

Theory of Planned Behaviour: A Predictive Model. International 

Journal of Tourism Research 19(3), pp. 383–393. 

[9] Yahya NA, Samsudin R & Shabri A (2017), Tourism Forecasting 

Using Hybrid Modified Empirical Mode Decomposition and Neural 

Network. International Journal of Advances in Soft Computing and 
Its Applications 9(1), pp. 14–31.  

[10] Ali R & Shabri A (2017), (Modelling Singapore Tourist Arrivals to 

Malaysia by Using SVM and ANN. SCIREA Journal of Mathemat-
ics 1(2), pp. 210–216. 

[11] Liang Y (2016), Using the Combined Model for Forecasting the 

Tourism Demand. 2016 International Conference on Machine 
Learning and Cybernetics, pp. 612–615. 

[12] Yu Y, Wang Y, Gao S & Tang Z (2017), Statistical Modeling and 

Prediction for Tourism Economy Using Dendritic Neural Network. 
Computational Intelligence and Neuroscience, pp. 1–7.  

[13] Constantino HA, Fernandes PO & Teixeira J P (2016), Tourism 

Demand Modelling and Forecasting with Artificial Neural Network 
Models: The Mozambique Case Study. Tékhne 14(2), pp. 113–124.  

[14] Jun W, Yuyan L, Lingyu T & Peng G (2018), Modeling a Com-

bined Forecast Algorithm Based On Sequence Patterns And Near 
Characteristics: An Application For Tourism Demand Forecasting. 

Chaos, Solitons and Fractals 108, pp. 136–147.  

[15] Hyndman RJ & Athanasopoulos G (2014), Forecasting Principles 
and Practice. Print edition. Otexts.com (Online, open-access text-

book). 

[16] Ma E, Liu Y, Li J & Chen S (2016), Anticipating Chinese Tourists’ 
Arrivals in Australia : A Time Series Analysis. Tourism Manage-

ment Perspectives 17, pp. 50–58.  

[17] Petrevska B (2017), Predicting Tourism Demand by A.R.I.M.A. 
Models. Economic Research-Ekonomska Istrazivanja 30(1), pp. 

939–950.  

[18] Rusiman MS, Hau OC, Abdullah AW, Sufahani SF & Azmi NA 
(2017), An Analysis of Time Series for the Prediction of Barra-

mundi (Ikan Siakap) Price in Malaysia. Far East Journal of Math-

ematical Sciences (FJMS) 102(9), pp. 2081–2093.  
[19] Raman RK, Sathianandan TV, Sharma AP & Mohanty BP (2017), 

Modelling and Forecasting Marine Fish Production in Odisha Using 

Seasonal ARIMA Model. National Academy Science Letters 40(6), 
pp. 393–397.  

[20] Guha B & Bandyopadhyay G (2016), Gold Price Forecasting Using 

ARIMA Model. Journal of Advanced Management Science 4(2), 

pp.117–121.  

[21] Gharde A (2016), Influence of Factors on Clothing Sales and Its 
Future Trend: Regression Analysis and Time Series Forecast of 

Clothing Sales. Journal of Textile and Apparel, Technology and 

Management 10(2), pp. 1-11. 
[22] Wiradinata SA, Yendra R, Danil M & Gamal H (2017), Multi-Input 

Intervention Analysis for Evaluating of the Domestic Airline Pas-

sengers in an International Airport. Science Journal of Applied 
Mathematics and Statistics 5(3), pp. 110–126.  

[23] Da Veiga CP, Da Veiga CRP, Catapan A, Tortato U & Da Silva 

WV (2014), Demand forecasting in food retail: A comparison be-
tween the Holt-Winters and ARIMA models. WSEAS Transactions 

on Business and Economics 11(1), pp. 608–614. 

[24] Box GEP & Jenkins GM (1970), Time Series Analysis: Forecasting 
and Control. Holden Day, San Francisco. 

 


