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Abstract 
 

Software defect prediction techniques applied on single project are showcasing good results because of availability voluminous data to 

train the model. But newly developed software projects may not have sufficient amount data to train the model. In cross-project defect 

prediction model (CPDP), training model is constructed by using defect dataset of one project (which contains sufficient amount of data) 

and tested on another project (which contains less amount of data). In this paper, we selected similar features from eight open source 

defect datasets from PROMISE repository and applied meta-heuristic Ant Colony Optimization (ACO) algorithm for Cross-Project de-

fect Prediction. 
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1. Introduction 

Software quality is measured by the reliability of the final product. 

Reliability is inversely proportion to the number of defects in the 

product. Deploying the poor quality software, leads to more issues 

in project maintenance. One way to improve the software reliabil-

ity is by reducing number of defects (bugs) in the software. So, the 

software testing team plays a vital role in finding the defects and 

the cost spent on testing phase takes about half of the total project 

cost. 

To reduce this cost, researchers are focusing on using of defect 

prediction techniques to predict the defects in early stages of the 

project. Defects can be detected by training the model with exist-

ing defect data and the trained model can be used to test the new 

data.  

Quality of the prediction models depends on dataset size used in 

training the model. A model trained on large volumes of data 

gives more accurate prediction [1]. In reality, for most of the pro-

jects, the training dataset size is less or may not be available. 

Building the models for prediction is not possible. Hence, engi-

neers are using the datasets available in other projects to build the 

model and use these models to test the defects in their own pro-

jects [2-4]. This method is called as cross-project defect predic-

tion. 

The major challenge in cross-project defect prediction is selecting 

relevant features (metrics) from different projects. To address 

these challenges, we used TDselector method [7] which considers 

the similarity between training instance and testing instance and 

also the number of defects of each training instance. The selected 

(relevant) features are normalized using z-score normalization. 

The normalized features are used in training and testing process. 

 The rest of the paper is organized as follows. Related work is 

given in Section II. Section III describes process used. Experimen-

tation and results are shown in Section IV and Section V gives 

conclusion and future scope. 

2. Related work 

In last few years CPDP become thrust area in the research of soft-

ware engineering. Comparison between cross-project defect pre-

diction and with-in project defect prediction is presented by He et 

al. [8]. Different techniques of feature selection are used in the 

comparison. Results shows that with-in project defect prediction 

gives high precision where as cross-project defect prediction gives 

better performance in recall and F-measure. Defect prediction 

across the companies proposed by Turhan et al. [5]. To build pre-

dictors, they used defect dataset of other company’s project to test 

the target projects. Ni et al. [6] proposed three ranking strategies 

named FeSCH to choose relevant features. By considering class-

imbalance contexts under CPDP environments, Ryu et al. [9] pro-

posed a multi objective naive Bayes learning technique. This ap-

proach achieved better performance over single objective models. 

Li et al. [10] proposed hierarchical select-based filter method by 

comparing some well known data filters to improve CPDP per-

formance. It shows that the choosing of data filter strategy im-

proves the CPDP performance. Zhang et al. [11] experimented on 

the projects collected from both SourceForge and Google Code 

and proposed a universal CPDP model. They concluded that 

CPDP is viable for different projects which have metric sets of 

heterogeneous type. Nam and Kim [12] introduced metric selec-

tion and matching technique to build a predictor and proposed a 

method HDP. They experimented on twenty eight different pro-

jects and results shows that 68% of predictions are giving better 

performance compared to WPDP. A Unified Metric Representa-

tion (UMR) is proposed by Jing et al. [24] for heterogeneous de-

fect data. They considered fourteen publicly available heterogene-

ous datasets from 4 different companies for the experimentation. 

Christian Blum [13] discussed outline and applications of Ant 

Colony Optimization (ACO) by using more techniques from oper-

ations research and artificial intelligence. Ramakanta Mohanthy, 

Venkatshwarlu Naik, Azmath Mubeen [14] used ACO for predic-
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tion of software reliability and to optimize the accuracy of soft-

ware reliability predictive models. D Martens [15] used 

AntMiner+ to identify credit risk of customers by building an 

internal rating system. Bo Liu, Hussein A. Abbass, and Bob 

McKay [16] proposed an improvement for ACO called 

Ant_Miner3 to discover the classification rules. Wei Gao [17] 

presented ant colony algorithm for clustering for improving the 

accuracy and computational efficiency. Christian Blum [18] pre-

sented a review and recent trends of using ACO. M. Dorigo et al 

[19] introduced A novel Ant Colony based classifier, PolyACO 

that utilizes ray casting to operate in two dimensional space. Da-

vid Martens et. al.[20] proposed ant miner+ for classification by 

using ACO. 

3. Process 

In CPDP, the main challenge is selection of relavant attributes 

from different defect datasets of various projects. Defect datasets 

contain different metrics pertaining to each project. For the com-

bination of these metrics, there is a class label attrinute which 

shows the presence of defect. Some datasets store YES or NO, 

some may store TRUE or FALSE and some may have 0 or 1. The 

metric values of each project depends on complexity of the pro-

ject. For example LOC metric, number of inheritance level etc. is 

different from one project to another. To address these issues the 

datasets should be preprocessed.  

3.1. Pre-processing 

The steps involved in preprocessing are given below. 

1) Choose the predictor attributes (metrics) which are common 

in all the datasets. 

2) Change the value of class label attribute to uniform value. 

3) Normalize the predictor attribute values to map in the range 

between 0 and 1. 

3.2. Ant colony optimization 

ACO is a meta-heuristic bio-inspired optimization technique mo-

tivated by the behavior of real ants in the process of finding their 

food. The ants can communicate through their environment by 

depositing a chemical called pheromone. The paths chosen by ants 

contain high volume of pheromone and the paths that are not cho-

sen having less pheromone level due to evaporation.  

ACO uses artificial agents (ants) that cooperate to find good solu-

tions for discrete optimization problems. These artificial agents 

simulate the foraging behavior of their counterparts in finding the 

shortest-path to the food source from their nest. The first algo-

rithm following the principles of the ACO meta-heuristic is the 

Ant System [21], [22], where ants repeatedly construct solutions 

and add pheromone to the paths corresponding to these solutions. 

Path selection is a random procedure based on two parameters, the 

pheromone and heuristic values. The pheromone value gives an 

indication of the number of ants that chose the trail recently, while 

the heuristic value is a problem dependent quality measure. 

An ant will move from node i to node j with probability  

 

  
 

Where  

 

 Is the amount of pheromone on edge i, j  

 is a parameter to control the influence of  

ηi,j is the desirability of edge i, j (typically 1/di,j )  

β is a parameter to control the influence of ηi,j  

Amount of pheromone is updated according to the equation  

 

i,j = (1 − ρ)τi,j + ∆τi,j  

Where  

τi,j is the amount of pheromone on a given edge i, j  

ρ is the rate of pheromone evaporation  

∆τi,j is the amount of pheromone deposited, typically given by  

 

 
 

Where Lk is the cost of the kth ant’s tour (typically length). 

4. Experimentation and results 

We considered Jureczko datasets [23] obtained from PROMISE 

repository [24] shown in Table 1 for experimentation. 

 
Table 1: Sample Datasets 

Name of the Dataset Number of attributes Number of records 

CM1 38 369 

KC1 95 145 
KC2 22 522 

KC3 40 194 

MC2 40 125 
PC1 38 705 

PC3 38 1077 

PC4 38 1458 

 

From these datasets, we selected nine common attributes as pre-

dictor attributes and one class label attribute. The class label at-

tribute in different datasets contain different values like YES or 

NO, TRUE or FALSE, 0 OR 1 etc. We replaced all YES and 

TRUE values to 1 and all NO and FALSE values to 0. The metrics 

chosen are then normalized by using the following min-max nor-

malization equation which maps each metric value in to the range 

of 0 and 1. 

 

Zi =
Xi−min⁡(X)

max(X)−min⁡(X)
  

 

This normalized dataset is used for training and testing the model. 

The dataset is tested using the models trained by different datasets. 

For example, the dataset CM1 is tested with the models trained by 

KC1, KC2, KC3, MC2, PC1, PC3, and PC4. After testing, we 

create a confusion or error matrix shown in Table 2 to know the 

values for True-Positives (TP), False-Positives (FP), True-

Negatives (TN) and False-Negatives (FN).  

 
Table 2: Confusion Matrix 

  Real Class 
  Defective Non-Defective 

Predicted Class 
Defective TP FP 

Non-Defective FN TN 

 

These values are used in the calculation of geometric mean, sensi-

tivity, specificity, precision, F-measure and accuracy by using the 

following formulas. 

 

Geometric Mean Sencitivity Specificity= 
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TP FN
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TNSpecificity
TN FP
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The results are depicted in table 3 to table 10 shows that cross 

project data can be used to predict the defects.  

 

Table 3: 

Testing:CM1 

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

KC1 0.955533 1 0.913043 0.684211 0.8125 0.926829 
KC2 0.955533 1 0.913043 0.684211 0.8125 0.926829 

KC3 0.940244 1 0.884058 0.619048 0.764706 0.902439 

MC2 0.932505 1 0.869565 0.590909 0.742857 0.890244 
PC1 0.963087 1 0.927536 0.722222 0.83871 0.939024 

PC3 0.932505 1 0.869565 0.590909 0.742857 0.890244 

PC4 0.947919 1 0.898551 0.65 0.787879 0.914634 

 
Table 4: 

Testing:KC1 
Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

CM1 0.946864 1 0.896552 0.727273 0.842105 0.918919 

KC2 0.964901 1 0.931034 0.8 0.888889 0.945946 

KC3 0.946864 1 0.896552 0.727273 0.842105 0.918919 

MC2 0.946864 1 0.896552 0.727273 0.842105 0.918919 

PC1 0.909718 1 0.827586 0.615385 0.761905 0.864865 
PC3 0.982607 1 0.965517 0.888889 0.941176 0.972973 

PC4 0.946864 1 0.896552 0.727273 0.842105 0.918919 

 
Table 5: 

Testing:KC2 

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

CM1 0.966092 1 0.933333 0.980583 0.990196 0.984733 

KC1 0.966092 1 0.933333 0.980583 0.990196 0.984733 

KC3 0.926329 0.990099 0.866667 0.961538 0.97561 0.961832 
MC2 0.930949 1 0.866667 0.961905 0.980583 0.969466 

PC1 0.912871 1 0.833333 0.95283 0.975845 0.961832 

PC3 0.926329 0.990099 0.866667 0.961538 0.97561 0.961832 
PC4 0.930949 1 0.866667 0.961905 0.980583 0.969466 

 
Table 6: 

Testing:KC3 

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

CM1 0.952353 1 0.906977 0.6 0.75 0.918367 
KC1 0.869376 0.833333 0.906977 0.555556 0.666667 0.897959 

KC2 0.880451 0.833333 0.930233 0.625 0.714286 0.918367 

MC2 0.964486 1 0.930233 0.666667 0.8 0.938776 
PC1 0.952353 1 0.906977 0.6 0.75 0.918367 

PC3 0.964486 1 0.930233 0.666667 0.8 0.938776 

PC4 0.952353 1 0.906977 0.6 0.75 0.918367 

 
Table 7: 

Testing:MC2 
Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

CM1 0.930484 0.909091 0.952381 0.909091 0.909091 0.9375 

KC1 0.9759 1 0.952381 0.916667 0.956522 0.96875 

KC2 0.95119 1 0.904762 0.846154 0.916667 0.9375 

KC3 0.95119 1 0.904762 0.846154 0.916667 0.9375 

PC1 0.930484 0.909091 0.952381 0.909091 0.909091 0.9375 
PC3 0.9759 1 0.952381 0.916667 0.956522 0.96875 

PC4 0.906924 0.909091 0.904762 0.833333 0.869565 0.90625 

 
Table 8: 

Testing:PC1 

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

CM1 0.923404 0.933333 0.91358 0.5 0.651163 0.915254 

KC1 0.907672 0.933333 0.882716 0.424242 0.583333 0.887006 

KC2 0.942809 1 0.888889 0.454545 0.625 0.898305 
KC3 0.942809 1 0.888889 0.454545 0.625 0.898305 

MC2 0.894887 0.933333 0.858025 0.378378 0.538462 0.864407 

PC3 0.904493 0.933333 0.876543 0.411765 0.571429 0.881356 
PC4 0.949334 1 0.901235 0.483871 0.652174 0.909605 

 
Table 9: 

Testing:PC3 

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

CM1 0.921266 0.964286 0.880165 0.482143 0.642857 0.888889 
KC1 0.940371 1 0.884298 0.5 0.666667 0.896296 

KC2 0.935966 1 0.876033 0.482759 0.651163 0.888889 

KC3 0.951293 1 0.904959 0.54902 0.708861 0.914815 
MC2 0.89271 0.892857 0.892562 0.490196 0.632911 0.892593 

PC1 0.944755 1 0.892562 0.518519 0.682927 0.903704 

PC4 0.964237 1 0.929752 0.622222 0.767123 0.937037 
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Table 10: 

Testing:PC4 

Training Geometric Mean Sensitivity Specificity Precision Fmeasure Accuracy 

CM1 0.953162 1 0.908517 0.623377 0.768 0.920548 

KC1 0.923322 0.958333 0.88959 0.567901 0.713178 0.89863 

KC2 0.9399 0.979167 0.902208 0.602564 0.746032 0.912329 
KC3 0.921684 0.958333 0.886435 0.560976 0.707692 0.89589 

MC2 0.943181 1 0.88959 0.578313 0.732824 0.90411 

PC1 0.926661 0.979167 0.876972 0.546512 0.701493 0.890411 
PC3 0.931401 1 0.867508 0.533333 0.695652 0.884932 

 

5. Conclusions and future work 

In this paper, we tested the each dataset against the models trained 

using different datasets. We applied novel bio-inspired meta-

heuristic Ant Colony Optimization (ACO) technique to train and 

test the models. The results show that cross project defect predic-

tion with ACO giving improved performance. In future, we im-

plement various meta-heuristic algorithms in defect prediction.  
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