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Abstract 
 
This study aims to demonstrate that a comprehensive one-dimensional model of the arterial network can be used in conjunction with the 

generalized transfer function (GTF) technique to estimate central aortic pressure using pressure waveforms obtained from peripheral sites. 
The peripheral and central pressure waveforms for a healthy subject are used to estimate transfer functions, which are then used to recon-
struct central aortic pressure waveforms for a second model that simulates arterial stiffening. The similarities between the simulated aor-
tic waveform and the waveforms estimated using the transfer function are               and         from the brachial, carotid and 

iliac arteries, respectively. The root-mean-square errors (RMSE) for the reconstructed waveforms from the brachial, carotid and iliac 
arteries are           and      mmHg, respectively. The results from this study illustrate that the proposed method provides a feasible 

alternative to higher dimensional models as well as experimental studies and can greatly enhance the accuracy of central aortic pressure 
estimation.     
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1. Introduction 

In clinical diagnoses, a very important physiological index is 

blood pressure. There has been an increased interest in measuring 
the relationship between the central aortic pressure (the blood 
pressure at the aortic root) and peripheral pressure (for instance 
brachial, radial, carotid, femoral arteries) due to systolic hyperten-
sion being recognized as a risk factor for cardiovascular diseases 
[1]–[5]. The central aortic pressure represents the systemic after 
load on the heart. However, measuring the central aortic pressure 
in routine clinical practice is tedious, expensive and invasive, 

therefore pressures measured non-invasively such as sphygmoma-
nometer, carotid artery tonometry [6]–[8] and brachial 
oscillometry [9]–[12] in peripheral locations are used as estimates 
of the central aortic pressure.  
Previous research has shown that the waveforms of peripherally 
measured pressure and central aortic pressures are significantly 
different in regards to the wave shapes as well as amplitude [13]. 
It has been shown that the peripheral systolic pressure when com-

pared to central aortic pressure is 11-22 mmHg higher [2]. It has 
also been shown that a number of blood pressure-lowering drugs 
have similar effects on the peripheral pressure but very different 
effects on the central aortic pressure [14], implying that central 
aortic pressure is a better indicator  physiologically for diagnosing 
diseases [15]–[17]. 
In view of these findings, a statistics-based technique called the 
generalized transfer function (GTF) technique was proposed [2], 

[18]. This technique allows estimation of central aortic pressure 
from peripheral pressure measured non-invasively. Multiple cen-

tral and peripheral pressures undergo a Fourier analysis and a 
generalized transfer function is calculated. The central pressures 
of individual patients can be estimated by simply multiplying this 
GTF to peripheral pressures of these patients in the frequency 
domain and converting the result back to the time domain [19]–

[24]. The patent to this technique [25] is in use of SphygmoCor® 
system (SphygmoCor®,AtCor Medical, West Ryde, NSW, Aus-
tralia), a commercially available blood pressure measurement 
equipment. However, there has been some debate  that the general 
transfer function varies from person-to-person due to a variety of 
physiological differences, making the general transfer function an 
unreliable tool of choice in such analysis as it lacks adaptability 
[26] [27], [28]. Cloud et al. [27] undertook a study with 30 pa-

tients and found that the SphygmoCor® system underestimated 
the systolic central aortic pressure and overestimated the diastolic 
central aortic pressure by 13.3mmHg and 11.5mmHg, respectively. 
To put things into perspective, a blood pressure measuring equip-
ment should not have a standard deviation greater than ±8mmHg 
[29]. Consequently, individualized transfer functions (ITF) were 
introduced to account for individual differences amongst patients 
[30]–[33], and although promising, they still lack complete per-

sonalization.   
Pressure changes in arteries can be more accurately analyzed by 
deriving and solving the mathematical equations that govern the 
pressure wave dynamics in the arteries [34]. This can serve as the 
judging tool to check the validity of the transfer function method. 
Research has already been carried out using numerical modelling 
of the pulse wave propagation to study the changes in flow as it 
goes from the heart towards the peripheral arteries. Stergiopulos et 

al.[35] used peripheral pressure and velocity to model the pulse 
wave transmission effect in a vessel segment. Based on the reflec-
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tion coefficient in the periphery and the time taken for pulse wave 
transmission, a transfer function was defined that relates the cen-
tral and peripheral pressures. Since the simulation is carried out on 
a vessel segment, it does not provide information about pressure in 
other parts of the arterial network.  Segers et al. [36] and Thore et 
al. [37] used transmission line models to simulate pulse wave 
dynamics.  These are simplified models that do not take into con-
sideration non-linearities such as inhomogeneous vessel wall elas-

ticity, vessel tapering etc. To date, a full-scale cardiovascular 
model has not been used to systematically evaluate the GTF tech-
nique.  
The aim of this paper is to demonstrate that a comprehensive car-
diovascular model, specifically a one-dimensional model of the 
arterial network can be used together with the GTF technique to 
estimate central aortic pressure from peripheral pressure wave-
forms.  One-dimensional models have been successfully used for 

various applications in the past few decades [38]–[47] and were 
covered in the preliminary analyses paper.  A one-dimensional 
model offers an independent means to assess the GTF technique 
while also being an alternative to experimental studies.   

2. Methods 

2.1. One-Dimensional Model 

The one-dimensional model used in this paper is the one devel-
oped by Olufsen [48]. The propagation of blood in the systemic 
arteries is described by the incompressible axisymmetric Navier-
Stokes equations. The equations are integrated over the cross-

sectional area of an arterial segment to produce the one-
dimensional model. The blood flow is modelled in a bifurcating 
binary tree of 29 vessels where each vessel is modelled as an im-
permeable axisymmetric compliant cylinder and the blood is as-
sumed as an incompressible, homogeneous and Newtonian fluid 
with density,   and viscosity,  . The geometry of the arterial tree 

is based on the paper by Olufsen [39] and imitates the geometry of 
physiological arteries (Table 1).  This model permits all the im-
portant aspects of physiological fluid-structure interaction to be 

captured accurately without increasing the computational load. 
Additionally, more vessels can be easily simulated but the arterial 
tree has been simplified for this study as the aim is to study the 
application of one-dimensional modelling rather than the blood 
flow itself.  
The model is divided into two parts; the large arteries and the 
small arteries. The large arteries originate at the heart and are 
truncated after a maximum of two generations. The small arteries 

and arterioles are joined at the distal ends of the large arteries and 
modelled as binary asymmetric structured trees. The small arteries 
do not imitate physiologically accurate data instead are based on 
statistical relationships estimated from literature [39]. 
Each arterial segment is assumed to taper exponentially and the 
radius,      is modelled via the following equation  
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Where,   is the position along the vessel,     is the inlet (or prox-

imal) radius,      is the outlet (or distal) radius of the vessel and   

is the length of the vessel [39]. 

It is assumed that the velocity profile of blood is parabolic across 
the cross-sectional area of the vessel, therefore a relationship be-
tween the cross-sectional area of the vessel,        and pressure, 

       exerted on the arterial wall can be defined as the following:  
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Where    is the diastolic (nominal) pressure,   is the equilibrium 

radius (the radius when the pressure is nominal) and  
             define the elasticity of the vessel walls and are the 

same for all vessels.  

 

2.1.1. Large Arteries  

 
The continuity and momentum equations that govern the one-
dimensional flow in large arteries are  
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Where,   is the kinematic viscosity  
 

 
  and   is the thickness of 

the boundary layer. Equations (1)-(4) are used to calculate the 
pressure        and flow        in each arterial segment. The 

detailed derivations of these equations can be found in [39]. 
 
Table 1: Geometrical data for the one-dimensional model. Parameters 

      and       are the length, inlet radius and outlet radius of the artery. 

      is the  truncation radius of the structured trees while R and L denote 

right and left.      is defined for only terminal arteries. 

Artery                                     
Ascending aorta 7.0 1.25 1.14 - 

Anonyma 3.5 0.7 0.7 - 

L, R Subclavian and 

Brachial 
43.0 0.44 0.28 0.01 

Right common 

carotid 
17.0 0.29 0.28 0.02 

Aortic arch I 1.8 1.14 1.11 - 

Left common carot-

id 
19.0 0.29 0.28 0.03 

Aortic arch II 1.0 1.11 1.09 - 

Thoracic aorta 18.8 1.09 0.85 - 

Celiac axis 3.0 0.33 0.30 0.02 

Abdominal aorta I 2.0 0.85 0.83 - 

Superior Mesenteric 5.0 0.33 0.33 0.02 

Abdominal aorta II 2.0 0.83 0.80 - 

L, R Renal 3.0 0.28 0.25 0.02 

Abdominal aorta III 1.0 0.80 0.79 - 

Inferior Mesenteric 4.0 0.20 0.18 0.01 

Abdominal aorta IV 6.0 0.79 0.73 - 

L, R External Iliac 6.5 0.45 0.43 - 

Abdominal aorta V 3.0 0.73 0.70 - 

L, R Femoral I 13.0 0.43 0.40 - 

L, R Internal Iliac 4.5 0.20 0.20 0.01 

L, R Deep femoral 11.0 0.20 0.20 0.01 

L, R Femoral II 44.0 0.40 0.30 0.01 

 

2.1.2. Boundary Conditions 
 
In order to extend the above equations to an entire arterial network, 
three boundary conditions are imposed. Firstly, to the inlet of the 
arterial tree (inflow condition), secondly, at each vessel bifurca-
tion in which a parent vessel bifurcates into two daughter vessels 
and lastly a boundary condition is imposed at the terminal ends of 
the tree (outflow condition).  

For the inflow condition, an ejection profile acquired through 
clinical measurement of flow in the ascending aorta [39] is im-
posed. The ejection profile as a function of time is shown in Fig. 1.  
At bifurcations, it is assumed that there is no leakage, therefore, 
the flow going out of the parent vessel     must be equal to the 

sum of the flow going into the two daughter vessels (       
 
                           (5) 
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Fig. 1: Ejection profile used as the inflow boundary condition for the one-

dimensional model. 

 

At the bifurcation points, albeit minor, some energy is lost. This 
loss of energy can be accounted for by modelling it in terms of 
loss coefficients, however, these coefficients cannot be estimated 
analytically in a one-dimensional model [39]. A viable approxima-
tion of this energy loss is assuming continuity of pressure [4] at 
the bifurcation.  
 
                           (6) 

 
For the outflow condition, small arteries are joined to the terminal 
ends of the large arteries. These small arteries and arterioles are 
modelled as a structured tree and a semi analytical approach is 

used to express the root impedance of this tree. This in turn pro-
vides the outflow condition for the large arteries [48].  

 

2.1.3. Small arteries 

 
The small arteries and arterioles attached to the ends of the large 
arteries are modelled separately as binary asymmetric structured 
trees. Each of these small arteries keep bifurcating into genera-
tions of even smaller arteries until a specified radius,     has been 

reached (Table 1). The radii of the daughter vessels,            

are linearly scaled, relative to the radius of the parent vessel,    

via constants that characterize the asymmetry of the tree,          

        

        

The values of         are taken as     and      respectively. The 

length of each vessel is determined using a length to radius ratio, 

    
 

  
     These values are a calculated result of specific 

parameters that are beyond the scope of this paper but can be 
found in these papers [39], [49]–[52]. 
Similar to large arteries, the equations that govern blood propaga-
tion in small arteries can be derived from the axisymmetric form 
of Navier-Stokes equations. However viscous effects are more 
prominent in small arteries as compared to inertial effects hence 
the Navier-stokes equations can be linearized by neglecting the 
non-linear terms [39]. Once the equations are derived, they predict 

the flow        and pressure        in the frequency domain. A 
no-slip boundary condition is used to link the equations together.  

The continuity and momentum equations that govern the one-
dimensional flow in small arteries are  
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where, 

  

 
 
 

 
   

 

   
            

 

 
    

  
  

               
  

and   is the Womersley parameter  [53], [54] and   
     

   
 is the 

compliance of the vessel in question [39] and   is the angular 

frequency. 
 
Combining equations (7) and (8) yields the wave equation as  
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 Using the solution of equation (9) with equations (7) and (8) 

yields the equation for impedance (analogous to   
 

 
 in electri-

cal circuits) 
 
 

  
 

 
  

                      

                           
 

(10) 

 

where,    
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 while         are constants of 

integration. 

Inserting the expression for 
 

 
 into equation (10) calculated at 

    the input impedance becomes 

 
 

       
                             

                           
 

(11) 

 
This can be extended to the entire tree by applying the boundary 
conditions at the small artery bifurcations similar to equations (5) 

and (6) yields  
 
  

  
 

 

   
 

 

   
 

(12) 

 
Knowledge of   and   and the impedances at the terminals of the 

distance end allows using Equation (11) and (12) to compute the 
input impedance. Zero impedance is assumed at the distal termi-

nals of the smaller arteries’ tree. For an in depth derivation of the 
equations discussed above, see [39]. 
Using the equations described above, a one-dimensional model 
was set up to simulate a healthy human subject (Fig.2), using the 
parameters detailed in Table 2. The values of these parameters 
have been taken from the paper by Olufsen [39]. 

 

  
Fig2: Simulated pressures in 
various arterial segments 
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Table 2: Values of the model parameters. 

Parameter Unit Value used 

               

                   

           

                       

               

                       

  -     

  -     

 

2.2. Transfer Function 

 
Each pressure wave comprises of harmonic waves at multiples of 
the frequency of the heart rate [23]. The generalized transfer func-
tion recreates the central aortic waveform from peripherally meas-
ured pressure waveform. Essentially, it is a ratio of the amplitudes 

and phase of the peripheral pressure waveform and the central 
pressure waveform [23]. A generalized transfer function of pres-
sure waveforms between two sites is defined [2] as 
 
 

       
     

     
 

(13) 

 
where,                 are the pressure waveforms represented 

in the frequency domain at sites   and    respectively and   is the 

angular frequency. If the moduli are denoted as 
                and phases denoted as                 , 

the pressure waveforms can be written as  

            
                   

   for sites    and  , 
respectively.  
For this study, site A is the ascending aorta while site B varies. It 

can be either the brachial artery, the common carotid artery or the 
iliac artery as will be seen in the next section.  
 

 
Fig3: Pressure waveform comparison and estimated transfer functions 

between the ascending aorta and brachial, carotid and iliac arteries. 

 

2.3. Reconstruction of the Central Aortic Pressure 

 
Once the model for a healthy human patient is simulated (Fig. 2), 

the pressure waveforms from site B (the brachial, common carotid 
and iliac arteries) are used in conjunction with the pressure wave-
form from site A (ascending aorta) to estimate a transfer function 
for each of the respective sites. This is done by first transforming 
the pressure waves into the frequency domain by using the dis-
crete Fourier transform. Once the pressure waveforms have been 
transformed, equation (13) is applied to estimate the transfer func-
tion for each of these locations.  

In order to simulate aging, the elasticity parameters of the model 
are changed to increase the stiffness of the vessels. This causes an 
increase in pressure and all the relevant changes in characteristics 
of the pressure waveforms that one would expect from aging        
(Fig. 4). 
 

 
Fig4: Aortic and brachial pressure waveforms for the model that simulates 

arterial stiffening (Model 2). 

 
The pressure waveforms of the brachial, carotid and Iliac arteries 
from the model simulating aging (Model 2) are transformed into 
the frequency domain again using DFT and then multiplied with 
their respective transfer functions (estimated using Model 1). The 
resulting complex values are transformed to the time domain using 
inverse DFT to reconstruct the aortic waveforms.   

3. Results  

It can be seen from the first simulated model (Model 1) that the 
systolic pressure increases towards the periphery while there is a 
slight decrease in the diastolic pressure. The brachial and ascend-
ing aortic pressure waves for Model 1 peak at 119.3mmHg and 

112.9mmHg, respectively (Fig. 5). Downstream the dicrotic notch 
is also delayed and much smoother as compared to the dicrotic 
notch of the waveform near the aorta. The incoming pressure 
waves are also steeper near the periphery due to the variations in 
wave propagation. These variations are more prominent towards 
the periphery hence the steepness.  
 

 
Fig5: Aortic and brachial pressure waveforms for the model that simulates 

a healthy subject (Model 1). 
 
The pressure waveforms for Model 2 show that due to increased 
stiffness of the vessels, the systolic pressures of the aorta as well 
as the periphery are heightened. The brachial and ascending aortic 
pressure waves for Model 2 peak at 135mmHg and 129.8mmHg, 
respectively. The dicrotic notch is closer to the forward propagat-

ing wave because for the second model the elasticity parameters 
are readjusted to model arterial stiffening of the vessel walls (Fig. 
4). 
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The modulus of the pressure transfer functions between the as-
cending aorta and the brachial artery, the carotid artery and the 
iliac artery all display characteristic peaking (Fig. 3). 
The pressure transfer functions between the brachial artery, the 
carotid artery and iliac artery and the ascending aorta peak at 1.91, 
1.62 and 2.196 at frequencies of 2.93Hz, 5.86Hz and 7.81Hz re-
spectively.  The phase’ for all the arteries are negative as there is a 
delay between the frequency components of the pressure waves in 

the aorta and the respective arteries. All the phase’ tend to reach 
an asymptotic values representing a constant group delay [2]. 
As mentioned before, the transfer functions estimated for all three 
arteries in Model 1 were used to reconstruct aortic waveforms in 
another model (Model 2). The aortic waveform for Model 2 was 
already simulated using the one-dimensional model and this 
known aortic waveform was compared with the aortic waveform 
reconstructed using the three transfer functions from Model 1.  

Fig. 6A, 6B, 6C show the reconstructed aortic waveforms using 
the pressure waveforms from the brachial, common carotid and 
Iliac artery, respectively. The similarity between the actual aortic 
waveform and the waveform reconstructed using the generalized 
transfer function is               and        (2-D correlation 

coefficient,                   and       ) from the respective 

peripheral locations.  
The root-mean-square errors (RMSE) for the reconstructed wave-
forms from the brachial, common carotid and iliac arteries are 
          and      mmHg, respectively. The systolic pressures 

estimated from the brachial, carotid and iliac arteries via the trans-
fer functions are 4.78, 1.44 and 1.35 mmHg lesser than the actual 

aortic waveform.  
 

 

 

Fig. 6: Comparison of the aortic waveforms simulated using Model 2 and 

the aortic waveforms reconstructed using transfer functions for (A) Bra-

chial artery, (B) Carotid artery and (C) Iliac artery. 

4. Discussion 

It has been previously shown that the waveforms in the ascending 
aorta and the waveforms in peripheral locations are markedly 
different [2], [13], [14].  The systolic pressure in the peripheral 
location is higher due to wave reflections that occur because of the 

tapering and bifurcating nature of the arteries and most important-
ly due to the impedances at the terminal ends of the arteries due to 
arterioles [55]. The reflected waves superimpose on the pressure 
waves, hence increasing the systolic pressure. The diastolic wave 
is also more prominent and due to the distance from the heart, the 
foot of the wave is delayed in peripheral locations. [56].  
It has also been observed that aging leads to increased arterial 
stiffness as well as hypertension [57], [58]  which in turn increase 

wave reflections. The reduced arterial distensibilty increases pulse 
wave velocity [13], [55], [59] which means the reflected waves 
from peripheral sites return earlier and superimpose on the systolic 
section of the pulse, increasing systolic pressure more than usual 
as well as making the diastolic wave less prominent. Additionally 
it has been observed that the difference between central and pe-
ripheral pulse is less obvious with aging [56].  
For this study, two clinical scenarios were simulated. One for a 

young and healthy subject (Model 1) and the second for a slightly 
aged subject (Model 2). Aging was incorporated by increasing the 
stiffness of the vessels thus reducing the distensibilty of the ves-
sels. Comparing the two models it is quite evident that for Model 
2      (Fig. 4), both the systolic peaks are higher due to wave re-
flections and the diastolic wave is less prominent in the peripheral 
pulse as compared to the one in Model 1 (Fig. 5). The dicrotic 
notch for the peripheral pulse in Model 2 lasts for a lesser amount 

of time as compared to Model 1. Thus, showing that non-
linearities and wave propagation effects were well captured by the 
model and the increased arterial stiffness, indeed, effected the 
waveforms as expected. 
Transfer functions between the brachial, carotid and iliac arteries 
are estimated (Fig. 3) and used in model (2) to reconstruct the 
aortic waveform of Model 2 from each of these locations (Fig.6). 
The results discussed above show that the transfer function recon-
structs the aortic waveform with good accuracy. However, the 

accuracy decreases the farther away the peripheral site is from the 
heart. The best estimation comes from the carotid artery because it 
is closest to the heart hence the waveform has not been modified 
as much as the other peripheral sites [60].  
Limitations: Although the numerical model captures blood flow 
propagation with good precision and the similarities between the 
reconstructed and actual aortic waveforms demonstrate the capa-
bility of the transfer function, this is still a pilot study. It lacks 

experimental results to validate the effectiveness of the transfer 
function. In addition, the transfer function is known to lack adapt-
ability to patient specific situations [26] [27], [28]. This study 
presents only one clinical scenario (arterial wall stiffening) which 
is a broad field of study and has various influences from multiple 
factors as opposed to just aging.  In the near future, we plan to 
take this study a step further for the inclusion of modelling various 
diseased conditions in order to systematically assess the perfor-

mance and validity of the transfer function.  

5. Conclusion  

Previous studies conducted to evaluate transfer functions have 
used transmission line or Windkessel/Windkessel-derived models, 
which do not take into consideration non-linearities of blood flow. 

Some models simulate isolated cases such as only the upper limbs. 
To our knowledge, little effort has been devoted to construct a 
comprehensive cardiovascular model that considers non-linearities 
as well as geometrical properties in conjunction with the transfer 
function technique. This study is based on a one-dimensional 
blood flow model proposed by Olufsen et al [39], [48]. This model 
is comprehensive and successfully incorporates non-linearities 
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such as vessel tapering, vessel branching as well as changes in 
vessel wall elasticity. This model is used in conjunction with the 
transfer function technique to estimate the central aortic pressure. 
Once this model is validated against experimental data and the 
validity of the transfer function is assessed, this model has the 
capability to provide an alternative to experimental studies in or-
der to enhance the accuracy of central aortic pressure estimation.     
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