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Abstract 
 

The theory of fuzzy finite switchboard automata (FFSA) is introduced by the use of general algebraic structures such as complete 

residuated lattices in order to enhance the process ability of FFSA. We established the notion of homomorphism, strong homomorphism 

and reverse homomorphism and shows some of its properties. The subsystem of FFSA is studied and the set of switchboard subsystem-

forms a complete ℒ -sublattices is shown. The algorithm of FFSA with complete residuated lattices is given and an example is provided. 
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1. Introduction 

A finite state machine is a mathematical computation model that is 

used to design the computer programs along with sequential logic 

circuits. Many researchers have studied the idea of finite automata 

since 1940. The theory of automata had investigated by Rabin and 

Scott [7]. Wee [23] is the first researcher who introduced the 

concept of the theory of automata in the fuzzy environment.  

In general fuzzy finite state machine (FFSM) or fuzzy finite 

automata (FFA) has membership grades in an interval [0,1] but 

there is a possibility to extended the membership values into more 

general algebraic structures.  Qiu studied those so-called theories 

and their characterizations where he considered its membership 

grades under the fact of complete residuated lattices [17,20]. In the 

following year, Qiu extended his research into specific type of 

automata which are pushdown automata, turning machine and 

reduction and minimization [5,9,17]. Many researchers studied on 

fuzzy finite automata with membership value in a Complete 

Residuated Lattices (CRL) [2,4,9,11,13,14,15,17,19,20,21,22]. As 

a continuation of the FFA, the concept of fuzzy finite switchboard 

state machine (FFSSM) that is made up of switching and 

commutative state machines has been studied by Sato and Kuroki 

[3,6]. This classified fuzzy finite automaton has a mechanism that 

will act as a controller during the transition between the current 

state and next. 

In this research, a complete residuated lattice is chosen because it 

offers the general algebraic structures associated with several 

important logics [1,12, 17, 18]. According to literature, the CRL 

has not been applied to FFSA. Therefore, in this research, the 

theory of FFSA is extended to a more comprehensive structure by 

considering the membership values in a complete residuated 

lattice. 

2. Preliminaries  

“An algebraic structure with strong connections to mathematical 

logic is known as a residuated lattice. 

 

Definition 2.1 [24] The algebra 𝓛 = (𝑳,∧,∨,⊗, →, 𝟎, 𝟏) should 

satisfying three conditions: 

a) (𝐿,∧,∨ ,0,1) is a lattice with the least element is 0 and the 

greatest element is 1 

b) (𝐿,⊗,∨) is a commutative monoid with the unit 1, 

c) ⊗ and → form an adjoint pair.  

For example, they satisfy the adjunction property: for all  

𝑥, 𝑦, 𝑧 ∈ 𝐿, 𝑥 ⊗ 𝑦 ⇔ 𝑥 ≤ 𝑦 → 𝑧.  
 

Let ℒ = (𝐿,∧,∨,⊗, → ,0,1) where ℒ  is called complete residuated 

lattice if (𝐿,∧,∨ ,0,1)  is a complete lattice, ⊗ is called a 

multiplication, →   is a residuum, ∧ and ∨  is supremum and 

infimum respectively. Multiplication, ⊗ and residuum, →   are 

intended for modeling the conjunction and implication of the 

corresponding logical calculus. Meanwhile, Supremum ∨ and 

infuimum ∧  are intended to model the general and existential 

quantifier. 

The notion 𝑥 ⇔ 𝑦  (biimplication) can be written as (𝑥 → 𝑦) ∧
(𝑦 → 𝑥), 𝑥 → 𝑦 = min (1 − 𝑥 + 𝑦, 1)  is a complete residuated 

lattice while 𝑥 ⊗ 𝑦 = max (𝑥 + 𝑦 − 1, 0) is Standard Lukasiewcz 

algebra. Heyting algebra is a residuated lattice that satisfies 𝑥 ⊗
𝑦 = 𝑥 ∧ 𝑦. Meanwhile, the notion of Standard Godel algebra is 

𝑥 ⊗ 𝑦 = min (𝑥, 𝑦) and 𝑥 → 𝑦 = 1 if 𝑥 ≤ 𝑦 and 𝑦 otherwise is a 

Heyting algebra [13]. There are some properties of complete 

residuated lattice in the following lemma: 

Lemma 2.2 [17, 13] Let 𝓛 be a complete residuated lattice. Then 

𝒙, 𝒚, 𝒛 ∈ 𝑳 and {𝒙𝒊}𝒊∈𝑰, {𝒚𝒊}𝒊∈𝑰 ⊆ 𝑳 the following properties hold:  

1) 𝑥 ≤ 𝑦 if and only if 𝑥 → 𝑦 = 1 
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2) 𝑦 ≤ 𝑧 ⇒ 𝑥 ⊗ 𝑦 ≤ 𝑥 ⊗ 𝑧 

3) (𝑥 ↔ 𝑦) ⊗ (𝑦 ↔ 𝑧) ≤ 𝑥 ↔ 𝑧 

4) 𝑥 ⊗ ⋁𝑖∈𝐼𝑦𝑖=⋁𝑖∈𝐼(𝑥 ⊗ 𝑦𝑖) 

5) 𝑥 ⊗ ⋀𝑖∈𝐼𝑦𝑖=⋀𝑖∈𝐼(𝑥 ⊗ 𝑦𝑖) 

6) ⋁𝑖∈𝐼𝑥𝑖 → 𝑦 = ⋀𝑖∈𝐼(𝑥𝑖 → 𝑦) 

7) 𝑥 → ⋀𝑖∈𝐼𝑦𝑖 = ⋀𝑖∈𝐼(𝑥 → 𝑦𝑖) 

8) ⋁𝑖∈𝐼 (𝑥 → 𝑦𝑖) ≤ 𝑥 → ⋁𝑖∈𝐼 𝑦𝑖 

9) ⋁𝑖∈𝐼 (𝑥𝑖 → 𝑦) ≤ ⋀𝑖∈𝐼 𝑥𝑖 → 𝑦 

10) ⋀𝑖∈𝐼 (𝑥𝑖 ↔ 𝑦𝑖) ≤ ⋀𝑖∈𝐼 𝑥𝑖 ↔ ⋀𝑖∈𝐼 𝑦𝑖 

11) ⋁𝑖∈𝐼 (𝑥𝑖 ↔ 𝑦𝑖) ≤ ⋁𝑖∈𝐼 𝑥𝑖 ↔ ⋁𝑖∈𝐼 𝑦𝑖 

12) 𝑥 ↔ 𝑦 ≤ (𝑥 ⊗ 𝑧) ↔ (𝑦 ⊗ 𝑧). 

 

Let ℳ = (𝑄, 𝑋, 𝜇) be a FFA [8], where 𝑄 and 𝑋 are finite 

non-empty sets and 𝜇  is a fuzzy subset of 𝜇: 𝑄 × 𝑋 × 𝑄 →
[0,1], where 𝑄 is called the set of states, 𝑋 is called the set of 

inputs and 𝜇 is called the transition function. Let 𝑋∗ be the 

set if all word elements of 𝑋 of finite length. Let 𝛽  be the 

empty words in 𝑋∗  and |𝑥|  be the length of finite length. 

Define 𝜇∗: 𝑄 × 𝑋∗ × 𝑄 → [0,1] by  

𝜇∗(𝑞, 𝛽, 𝑝) = {
1,    
0,    

𝑞 = 𝑝
𝑞 ≠ 𝑝 

and ∀𝑏 ∈ 𝑋∗, 𝑥 ∈ 𝑋,  

𝜇∗(𝑞, 𝑥𝑏, 𝑝) = ⋁{𝜇(𝑞, 𝑥, 𝑟) ∧ 𝜇(𝑟, 𝑏, 𝑝): 𝑟 ∈ 𝑄}. 
ℳ is called switching and commutative if and only if 𝜇(𝑞, 𝑎, 𝑝) =
𝜇(𝑝, 𝑎, 𝑞)  and 𝜇(𝑞, 𝑎𝑏, 𝑝) = 𝜇(𝑞, 𝑏𝑎, 𝑝)  for all 𝑞, 𝑝 ∈ 𝑄   and 

𝑎, 𝑏 ∈ 𝑋. If ℳis switching and commutative, then ℳ is called a 

fuzzy finite switchboard automata.”   

 
Definition 2.3 [20] Let ℒ be a complete residuated lattices and 𝑋 

be an (finite) alphabet. A fuzzy automaton over ℒ and 𝑋, or simply 

a fuzzy automaton is a quadruple ℳ = (𝑄, 𝛿, 𝜎, 𝜏), where 

a) 𝑄 is a non-empty set, called the finite set of states,  

b) 𝛿: 𝑄 × 𝑋 × 𝑄 → 𝐿  is a fuzzy subset of 𝑄 × 𝑋 × 𝑄 , 

called the fuzzy transition function, 

c) 𝜎: 𝑄 → 𝐿 is a fuzzy subsets of 𝑄, called the fuzzy set of 

initial states, 

d) 𝜏: 𝑄 → 𝐿 is a fuzzy subsets of 𝑄, called the fuzzy set of 

terminal states.  

We can interpret 𝛿(𝑞, 𝑥, 𝑝) as the degree to which an input letter 

𝑥 ∈ 𝑋 causes a transition from a state 𝑞 ∈ 𝑄 into a state 𝑝 ∈ 𝑄 , 

whereas we can interpret 𝜎(𝑞) and 𝜏(𝑞) as the degrees to which 𝑞 

is respectively an input state and a terminal state.  We will always 

assume that the input alphabet 𝑋 is finite, but from methodological 

reasons we will allow the set of states 𝑄 to be infinite. A fuzzy 

automaton whose set of states is finite is called a finite fuzzy 

automaton.  

 

Definition 2.4 [20] Let 𝑋∗ denote the free monoid over the 

alphabet 𝑋 . The mapping 𝛿  can be extended up to a mapping 

𝛿∗: 𝑄 × 𝑋∗ × 𝑄 → 𝐿: 
If 𝑞, 𝑝 ∈ 𝑄 and 𝑒 ∈ 𝑋∗ is the empty word, then 

𝛿∗(𝑞, 𝑒, 𝑝) = {
1 𝑞 = 𝑝
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

and if 𝑞, 𝑝 ∈ 𝑄, 𝑢 ∈ 𝑋∗ and 𝑥 ∈ 𝑋, then  

𝛿∗(𝑞, 𝑢𝑥, 𝑝) = ⋁(𝛿∗(𝑞, 𝑢, 𝑟) ⊗ 𝛿(𝑟, 𝑥, 𝑝))

𝑟∈𝑄

. 

We have that for all 𝑞, 𝑝 ∈ 𝑄 and 𝑢, 𝑣 ∈ 𝑋∗,  

𝛿∗(𝑞, 𝑢𝑣, 𝑝) = ⋁(𝛿∗(𝑞, 𝑢, 𝑟) ⊗ 𝛿(𝑟, 𝑣, 𝑝))

𝑟∈𝑄

… … … … (1) 

In a way that if for any 𝑢 ∈ 𝑋∗ we define a fuzzy relation 𝛿𝑢 on 𝑄 

by 𝛿𝑢(𝑞, 𝑝) = 𝛿∗(𝑞, 𝑢, 𝑏), ∀𝑞, 𝑝 ∈ 𝑄  called the fuzzy transition 

relation determined by 𝑢, then equation (1) can be written as  

𝛿𝑢𝑣 = 𝛿𝑢 ∘ 𝛿𝑣,    𝑢, 𝑣 ∈ 𝑋∗. 
 

Definition 2.5 [10] The switching fuzzy automaton ℳ̅ =
(�̅�, 𝛿̅, �̅�, �̅�)  of a fuzzy automaton ℳ = (𝑄, 𝛿, 𝜎, 𝜏)  whose fuzzy 

transition function and fuzzy sets of initial and terminal states are 

defined by  

𝛿̅(𝑞, 𝑥, 𝑝) = 𝛿(𝑝, 𝑥, 𝑞) 

for all 𝑞, 𝑝 ∈ 𝑄 and 𝑥 ∈ 𝑋, �̅� = 𝜏 and �̅� = 𝜎. In other words,  

𝛿�̅� = (𝛿𝑥)−1 

for each 𝑥 ∈ 𝑋.  

 

Remark 2.6  

• Roughly speaking the switching or reversing fuzzy automaton 

ℳ̅ is obtained from ℳ by exchanging fuzzy sets of initial and 

final states and “reversing” all the transitions.  

• Due to the fact that the multiplication ⊗ is commutative.  

 

Let 𝒮 = (𝑆,⊕,⊗ ,0,1)  be a semiring with the zero 0 and the 

identity 1. Let ℱ(𝑄) = (𝐿𝑄 ,∧,∨, ∅, 𝑄) is a complete lattice with the 

least element ∅ and the greatest element 𝑄. For any 𝜆 ∈ 𝐿 and 𝑓 ∈
𝐿𝑄 , let us define the left scalar multiplication 𝜆𝑓  and the right 

scalar multiplication 𝑓𝜆  as follows: 𝜆𝑓(𝑞) = 𝜆 ⊗ 𝑓(𝑞)  and 

𝑓𝜆(𝑞) = 𝑓(𝑞) ⊗ 𝜆, for every 𝑞 ∈ 𝑄. Due to commutativity of the 

multiplication ⊗, the left and right scalar multiplications coincide, 

i.e., 𝜆𝑓 = 𝑓𝜆, for all 𝑞 ∈ 𝑄. The lattice ℱ(𝑄) equipped with this 

scalar multiplication will be denoted by ℱ⊗(𝑄) and called the ℒ-

lattice of fuzzy subsets of the set 𝑄. Any subset of  𝐿𝑄  which is 

closed under scalar multiplication and arbitrary meets and joins, 

and it contains the least and the greatest element of  ℱ(𝑄) will be 

called a complete ℒ-sublattice of ℱ⊗(𝑄) [10]” 

3. Fuzzy Finite Switchboard Automata with 

Complete Residuated Lattices 

Refer to 5.2.1 example, each states have multi-membership value 

which means transition to the same state have more than one input 

symbols in the same current state. Thus, in order to obtain the 

optimal membership value, complete residuated lattice is used. 

The purpose of using complete residuated lattice is to choose 

which is the best membership value at each transition.  

Definition 3.1 Let 𝓜 = (𝑸, 𝜹, 𝝈, 𝝉) be a fuzzy automata over 𝓛 

and 𝑿.  

1) 𝓜 is called switching if and only if  

𝜹𝒙(𝒒, 𝒑) = (𝜹𝒙)(𝒑, 𝒒) for ∀𝒒, 𝒑 ∈ 𝑸 and 𝒙 ∈ 𝑿. 

2) 𝓜 is called commutative if and only if  

      𝜹𝒙𝒚(𝒑, 𝒒) = 𝜹𝒚𝒙(𝒑, 𝒒) for ∀𝒒, 𝒑 ∈ 𝑸 and 𝒙, 𝒚 ∈ 𝑿. 

If 𝓜 is switching and commutative, then 𝓜 is called fuzzy finite 

switchboard automata over 𝓛 and 𝑿. 

Now we have the following results. The proof of the next three 

theorems are straightforward.  

Theorem 3.2 The following conditions are equivalent: 

(i). (𝐿,⊗ ,1) is an ℒ-monoid, that is to say, the multiplication is 

distributive to finite joins, 𝑥 ⊗ (𝑦 ∨ 𝑧) = (𝑥 ⊗ 𝑦) ∨ (𝑥 ⊗
𝑧),(𝑦 ∨ 𝑧) ⊗ 𝑥 = (𝑦 ⊗ 𝑥) ∨ (𝑧 ⊗ 𝑥). 

(ii). For any ℳ over ℒ and 𝑋 and for any 𝑞, 𝑝 ∈ 𝑄 and 𝑥, 𝑦 ∈
𝑋∗, 𝛿𝑥𝑦

∗ (𝑞, 𝑝) = 𝛿𝑦𝑥
∗ (𝑞, 𝑝). 

(iii). For any ℳ over ℒ and 𝑋 and for any 𝑞, 𝑝 ∈ 𝑄 and 𝑥 ∈ 𝑋∗,
𝛿𝑥

∗(𝑞, 𝑝) = 𝛿𝑥
∗(𝑝, 𝑞). 

Definition 3.3  

Let ℳ1 = (𝑄1, 𝛿1, 𝜎1, 𝜏1) and ℳ2 = (𝑄2, 𝛿2, 𝜎2, 𝜏2) be fuzzy finite 

automata over ℒ and 𝑋. A (strong) homomorphism from ℳ1 and 

ℳ2  is a pair (𝛼, 𝛽)  of mappings 𝛼: ℳ1 → ℳ2  and 𝛽: 𝑋1 → 𝑋2 , 
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such that 𝛿1(𝑞, 𝑥, 𝑝)(=ℒ) ≤ℒ 𝛿2(𝛼(𝑞), 𝛽(𝑥), 𝛼(𝑝))for any 𝑞, 𝑝 ∈
𝑄1 and 𝑥 ∈ 𝑋1. 

 

Theorem 3.4 Let ℳ1 = (𝑄1, 𝛿1, 𝜎1, 𝜏1)  be a commutative fuzzy 

finite automaton over ℒ  and 𝑋 , and ℳ2 = (𝑄2, 𝛿2, 𝜎2, 𝜏2)  be a 

fuzzy finite automaton over ℒ and 𝑋. Let (𝛼, 𝛽): ℳ1 → ℳ2 be an 

onto strong homomorphism. Then ℳ2 is commutative fuzzy finite 

automata over ℒ and 𝑋.  

Definition 3.5  

Let ℳ1 = (𝑄1, 𝛿1, 𝜎1, 𝜏1) and ℳ2 = (𝑄2, 𝛿2, 𝜎2, 𝜏2) be fuzzy finite 

automata over ℒ and 𝑋. A reverse homomorphism from ℳ1 and 

ℳ2  is a pair (𝛼, 𝛽)  of mappings 𝛼: ℳ1 → ℳ2  and 𝛽: 𝑋1 → 𝑋2 , 

such that  

𝛿2(𝛼(𝑞), 𝛽(𝑥), 𝛼(𝑝))                     

= ⋁{𝛿1(𝑠, 𝑥, 𝑡)|𝑠, 𝑡 ∈ 𝑄1, 𝛼(𝑡) = 𝛼(𝑞), 𝛼(𝑠) = 𝛼(𝑝)} 

for any 𝑞, 𝑝 ∈ 𝑄1 and 𝑥 ∈ 𝑋1. 

 

Theorem 3.6 Let ℳ1 = (𝑄1, 𝛿1, 𝜎1, 𝜏1)  be a fuzzy finite 

switchboard automaton over ℒ  and 𝑋, and ℳ2 = (𝑄2, 𝛿2, 𝜎2, 𝜏2) 

be a fuzzy finite automaton over ℒ and 𝑋. Let (𝛼, 𝛽): ℳ1 → ℳ2 be 

an onto reverse homomorphism. Then ℳ2  is fuzzy finite 

switchboard automata over ℒ and 𝑋. 

4. Fuzzy Finite Switchboard Subsystem 

Definition 4.1 

Let over ℳ = (𝑄, 𝛿, 𝜎, 𝜏) be a fuzzy finite automaton over ℒ and 

𝑋 . Let 𝜇  be a fuzzy subset of 𝑄 . Then 𝜇  is a fuzzy finite 

switchboard subsystem of ℳ, if 

𝜇(𝑞) ⊗ 𝛿𝑥(𝑞, 𝑝) ≤ 𝜇(𝑝) 

and  

𝜇(𝑞) ⊗ 𝛿𝑥𝑦(𝑞, 𝑝) ≤ 𝜇(𝑝) 

 

for all 𝑝, 𝑞 ∈ 𝑄 and 𝑥, 𝑦 ∈ 𝑋. 

 

Theorem 4.1 The collection 𝒮(ℳ) of all fuzzy finite switchboard 

subsystems of a fuzzy finite switchboard automata ℳ  forms a 

complete ℒ-sublattice of ℱ⊗(𝑄). 

 

Proof: It is very clear that the well-defined collection of 𝒮(ℳ) of 

all fuzzy finite switchboard subsystems can be satisfied both 

reverse and commutative by definition 3.1 and 4.1 and theorem 

3.2. Moreover, it is easy to check that the set of all fuzzy finite 

switchboard subsystems of a fuzzy finite switchboard automaton 

is closed under arbitrary meets, joins and ∅ and 𝑄 are belongs to 

𝒮(ℳ). Thus 𝒮(ℳ) is a complete ℒ-sublattice of ℱ⊗(𝑄). 

5. Algorithm with CRL 

In order to enhance the performance, the algorithm of FFSA by 

using CRL is provided as below: 

5.1. Algorithm 

1. Enter the input in FFA and the output in FFSA. 

2. Here, the ∑ consists of unit interval [0,1]. 

3. Define the next states and every state for alphabet 0 and 1.  

4. 𝑞0 ∈ 𝑄 the initial state is taken as input.  
5. Check the validity of fuzzy switching automata and fuzzy 

commutative automata. If  𝛿𝑥(𝑞, 𝑝) = (𝛿𝑥)(𝑝, 𝑞) for ∀𝑞, 𝑝 ∈
𝑄 and 𝑥 ∈ 𝑋.then it is switching. If  𝛿𝑥𝑦(𝑝, 𝑞) = 𝛿𝑦𝑥(𝑝, 𝑞) for 

∀𝑞, 𝑝 ∈ 𝑄 and 𝑥, 𝑦 ∈ 𝑋, thus it is commutative. 

Note: some of the states must satisfy the condition of 

switching state machine and commutative state machine. If 

the states not satisfy the both conditions, the states an usual 

state. 

6. Find the membership value for each state by using CRL. 

6.1 Suppose that 𝑞 →𝑥 𝑝 as a transition, where 𝑝, 𝑞 ∈ 𝑄 and 

𝑥 ∈ 𝑋. The values are given to each input symbols. 

6.2 By using CRL, substitute the value of and  regarding 

the path that are chosen to obtain the membership value. 

6.3 Repeat the step 6.2 to obtain new membership value for 

another path. 

7. Choose the best path or transition state based on the 

membership values. 

5.2. Algorithm construction of the fuzzy finite 

switchboard automata by using CRL 

Input: the set of (𝑛 states) states of FFSA ℳ = (𝑄, 𝛿, 𝜎, 𝜏); 

 the set of inputs alphabets of  ℳ ; 
 the transition table  𝛿 of ℳ= 

Output: YES, if ℳ  is FFSA with states, or NO, if ℳ  is not 

FFSA.  

Procedure: 

Step 1: Enter the state transition matrices  

𝛿𝑥1
, 𝛿𝑥2

, … , 𝛿𝑥𝑛
. 

Step 2: Set i be the initial value, 𝑖 = 1 and 𝑛 ≥ 2 . 

Step 3: State transition 𝛿𝑥, 𝛿𝑦, … , 𝛿𝑛.where 0 ≤ 𝛿𝑛 ≤ 1 

denoted as the grade of membership of state transition. 

Step 4: If the transition has more than one membership 

value, enter the equation of CRL which is min (1 − 𝛿𝑥 +
𝛿𝑦 , 1) where 0 ≤ 𝛿𝑥, 𝛿𝑦 ≤ 1) . 

Step 5: Calculate the membership value by using 

min (1 − 𝛿𝑥 + 𝛿𝑦 , 1). 

- If 𝛿𝑥𝑖
(𝑝, 𝑞) ≥ 0.5, then STOP, the output 

is the best path; 

- If 𝛿𝑥𝑖
(𝑝, 𝑞) ≤ 0.5 then recalculate 

𝛿𝑥𝑖+1
(𝑝, 𝑞) and so on; 

- If 𝛿𝑥𝑖
(𝑝, 𝑞) = 0, the path is not chosen. 

Step 6: for  repeat Step 5. 

Step 7: for , determine all possible path and 

calculate the membership value by using CRL.  

Step 8: for , calculate 𝛿𝑥𝑖
𝛿𝑥𝑖+1

 and 𝛿𝑥𝑖+1
𝛿𝑥𝑖

 

- If 𝛿𝑥𝑖
𝛿𝑥𝑖+1

≠ 𝛿𝑥𝑖+1
𝛿𝑥𝑖

then STOP, the 

output ℳ is not commutative; 

- If 𝛿𝑥𝑖
𝛿𝑥𝑖+2

= 𝛿𝑥𝑖+2
𝛿𝑥𝑖

, recalculate 

𝛿𝑥𝑖
𝛿𝑥𝑖+2

and 𝛿𝑥𝑖+2
𝛿𝑥𝑖

; 

- If both are not equal then STOP, the 

output ℳ is not commutative, NO; 

- Otherwise, recalculate 𝛿𝑥𝑖
𝛿𝑥𝑖+3

 and 

𝛿𝑥𝑖+3
𝛿𝑥𝑖

 
 
and so on; 

- If necessary, calculate until 𝛿𝑥𝑖
𝛿𝑥𝑛

  and 

𝛿𝑥𝑛
𝛿𝑥𝑖

; 

- If both are not equal, the output ℳ is not 

commutative, NO; 

- If both are equal Go to Step 4. 

Step 9:  repeat Step 8. 

Step 10: 𝑖 = 𝑛,  STOP, the output ℳ  is commutative, 

YES. 

Step 11: for 𝑖 ≤ 𝑛 , calculate 𝛿𝑥𝑖
(𝑞, 𝑝) and 

𝛿𝑥𝑖
(𝑝, 𝑞)∀𝑝, 𝑞 ∈ 𝑄 . 

- If 𝛿𝑥𝑖
(𝑞, 𝑝) ≠ 𝛿𝑥𝑖

(𝑝, 𝑞) , then STOP, 

the output ℳ is not switching; 

- If 𝛿𝑥𝑖
(𝑞, 𝑝) ≠ 𝛿𝑥𝑖

(𝑝, 𝑞) , recalculate 

𝛿𝑥𝑖+1
(𝑞, 𝑝)and 𝛿𝑥𝑖+1

(𝑝, 𝑞); 

x y

Q

X

n

1i i= +

i n

1i n −

1i i= +
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- If both are not equal then STOP, the 

output ℳ is not switching, NO; 

- Otherwise, recalculate 𝛿𝑥𝑖+2
(𝑞, 𝑝) and 

𝛿𝑥𝑖+2
(𝑝, 𝑞),; and so on; 

- If both are not equal, the output ℳ is not 

switching, NO; 

- If both are equal Go to Step 7. 

Step 12: 𝑖 = 𝑖 + 1repeat Step 11. 

Step 13: 𝑖 = 𝑛, STOP, the output ℳ is switching, YES. 

5.2.1 Example 

Consider a FFSA system over ℒ and 𝑋 as given below. Let ℳ =
(𝑄, 𝛿, 𝜎, 𝜏) where 

a) 𝑄 is a non-empty set, called the finite set of states,  

b) 𝛿: 𝑄 × 𝑋 × 𝑄 → 𝐿  is a fuzzy subset of 𝑄 × 𝑋 × 𝑄 , 

called the fuzzy transition function, 

c) 𝜎: 𝑄 → 𝐿 is a fuzzy subsets of 𝑄, called the fuzzy set of 

initial states, 

d) 𝜏: 𝑄 → 𝐿 is a fuzzy subsets of 𝑄, called the fuzzy set of 

terminal states.  

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The system of Fuzzy Finite Switchboard Automata (FFSA) 

Note that, 𝑞 →𝑥  𝑝  as a transition, where 𝑞, 𝑝 ∈ 𝑄  and 𝑥 ∈ 𝑋 . 

From Figure 1, = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4} , 𝛿 = {𝑎, 𝑏}, and it consist the 

membership values in an arbitrary set with two distinguished 

elements which values in ℒ. According to the Figure 1, there are 

many paths we can pass through from one state to another state. 

For instance, from 𝑞0  to q2   there are 2 paths which are 𝑞0 →
𝑞1 → 𝑞2 or 𝑞0 → 𝑞3 → 𝑞2 and for each, the input symbols are the 

same that is 𝑎 and . Other example is from 𝑞0 to q4  where there 

have many possibilities of path which are 𝑞0 →𝑎 𝑞1 →𝑏 𝑞4  or   

𝑞0 →𝑎 𝑞3 →𝑏 𝑞4 but have different membership values. It also can 

be apply to the other states. 
 

The system is switching if 𝜹𝒙(𝒒, 𝒑) = (𝜹𝒙)(𝒑, 𝒒)  for ∀𝒒, 𝒑 ∈ 𝑸 

and 𝒙 ∈ 𝑿. 

From Figure 1, 𝛿𝑎𝑏(𝑞0, 𝑞4) = 𝛿𝑎𝑏(𝑞4,𝑞0), therefore the Figure 1 is 

switching. 

 

If  𝛿𝑥𝑦(𝑝, 𝑞) = 𝛿𝑦𝑥(𝑝, 𝑞)  for ∀𝑞, 𝑝 ∈ 𝑄  and 𝑥, 𝑦 ∈ 𝑋. then ℳ  is 

called commutative.  

Figure 1 is referred. Assume  𝛿𝑎𝑏(𝑞0, 𝑞2) = 𝛿𝑏𝑎(𝑞0, 𝑞2), thus the 

Figure 1 is commutative. As a conclusion, Figure 1 is finite 

switchboard automata. 

5.2.2 Illustration of path calculation by using complete 

residuated lattice 

The equation of CRL is given by    

 
Table 1: The path calculation by using CRL 

Path 

𝑞0 →𝑎 𝑞1 →𝑏 𝑞2  or   𝑞0 →𝑎 𝑞3 →𝑏 𝑞2   

𝑞0 →𝑎 𝑞2 

𝑞0 →𝑎 𝑞1 →𝑏 𝑞4  or    𝑞0 →𝑎 𝑞3 →𝑏 𝑞4 

𝑞0 →𝑎 𝑞1 →𝑏 𝑞4  or    q0 →a q3 →b q4 

𝑞0 →𝑎 𝑞2 →𝑎 𝑞4 

𝑞0 →𝑎 𝑞3 

𝑞0 →𝑎 𝑞1 

 

𝑞0 →𝑎 𝑞1 →𝑏 𝑞1
  

𝑞0 →𝑎 𝑞3 →𝑏 𝑞3
  

 

Table 1 shows the calculation of paths by using CRL. The values 

that are obtained by using CRL represent the probability of the 

path that might be chosen. For example, in Figure 1 there are 

many possibilities path from 𝑞0 to q4. Therefore, the values that 

are nearest to 1 is assume as the best path. Regarding to the Figure 

1, from state 𝑞0  to q4  when the input symbol is ,  

q0 →a q2 →a q4 the truth value is 1 that show it is the best choice 

of path. This figure below is the selected path according to the 

membership values. 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

Fig. 2: The simplest system after consider membership value by CRL 

6. Conclusion 

In a conclusion, a notion of fuzzy finite switchboard automata 

(FFSA) with complete residuated lattices is proposed. If the 

system fulfilled the two properties which are fuzzy commutative 

automata and fuzzy switching automata, it can be called as finite 

switchboard automata. Complete Residuated Lattices (CRL) are 

b

( )min 1 ,1x y x y
L

→ = − +

a

 

(b,0.1) 

(b,0.1) 

(b,0.1) 

(a,0.5)(b,0.7) 

(a,0.2) 
(a,0.5) 

(b,0.7) 
(a,0.9) 

(b,0.5) 

(b,0.1) 

𝑞2 

 
𝑞0 

 

𝑞0 

 

𝑞3 

 

 𝑞4 
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𝑞0 

 

𝑞0 

 

𝑞3 

 

 𝑞4 
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important general algebraic that have close links with various 

important logics [15], branches of logic and linear logic [16]. To 

make it more easy, the algorithm of CRL is developed and an 

example is provided. By understanding the concept of FFSA, it 

might lead to a new invention and products. In future research, it 

would be interesting to study about fuzzy transformation 

semigroup based on switchboard concept by using CRL or other 

method of truth value. 
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