

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.19) (2018) 168-171

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

The Role of Natural Language Processing in Requirement

Engineering

Hussin Ahmed
1
, Azham Hussain

2*
, Fauziah Baharom

3

Human-Centered Computing Research Lab, School of Computing, Universiti Utara Malaysia, 06000, Malaysia

*Corresponding Author E-mail: 2azham.h@uum.edu.my

Abstract

The major objective of Software Requirements Specification (SRS) is providing sufficient information for software developers to build
software product successfully. However, the current features of natural language hinders processing and analysis of requirements due to

its ambiguous nature. Over the years, many Natural Language Processing (NLP) approaches were emerged to tackle this problem to
detect errors or extract useful information from requirements documents. In this paper, a review of these approaches has been represented
to reveal the role of NLP in requirement engineering and depict the current dilemma of SRS processing.

Keywords: natural language processing, software requirements specification, requirements methods

1. Introduction

A successful software product depends largely on how well the

requirements have been understood and transformed into relevant
functionalities in the software(Shah & Jinwala, 2015). A
requirement can be defined as a property that a system must
exhibit for meeting the system's motivating need (Dube & Dixit,
2010).Requirements specification is the process of documenting
user and system requirements (Robie, Baharom, & Mohd, 2014).
The output of requirements specification is SRS document which
serves as a fundamental repository of all requirements stated by

customers.Furthermore, it is indispensable reference to every stage
in Software Development Life Cycle (SDLC). Mapping functional
requirements first to specifications and then to code is a

challenging task in software engineering(Diamantopoulos et al.,
2017). Hence, SRS has to provide sufficient information for
software developers in order to gain a deep understanding about
the proposed functionalities of software. A SRS document tends to

follow a previously defined template (see Figure 1). This template
represents the structure of the document including chapters and
sections and equipped with supplementary practical guidelines
(Rodrigues et al., 2014). Nigam et al. (2012) stated that SRS is the
primary vehicle for agreement between the software developers
and customers and it is the basis for judging fulfilment of
contractual obligations. As a consequence, this agreement has to
reflect a clear understanding of the requirements in unambiguous

manner.

Fig. 1: Software requirements specification outline (ISO/IEC/IEEE, 2011)

Requirements are considered as an input to design,
implementation and validation phase of software product
development (Hussain, Mkpojiogu, & Kamal, 2016).

For this reason, the ongoing concern in writing a requirements
document is to make a balance between two important aspects, the
need to make the requirements amenable to processing and the

http://www.sciencepubco.com/index.php/IJET

International Journal of Engineering & Technology 169

need to make the requirements document in a readable format
(Hull et al., 2010).
Achieving this balance will help to avoid miscommunication
among stakeholders and misinterpretation of requirements.
Moreover, this balance will facilitate and accelerate the agreement
between the customers and software developers regarding
implementing what is written in SRS. The acceleration of
agreement will lead to higher productivity in SDLC and contribute

to reduce time and decrease cost. As a result, the specification
language has to fulfill the aforementioned two criteria for
increasing the productivity and producing precise query to
software developers.

2. Literature Review

Since, natural language is widely understood by stakeholders, it is
used as a common way for representing requirements.
Representing requirements in natural languagesuffers from
potential problems like ambiguity, inconsistency and
incompleteness. A systematic literature review in the last two
decades from 1995 till 2016 shows that collecting ambiguous
requirements is one of the highest critical challenges in software
engineering (Bin et al., 2016).Since the advent of software

engineering, researchers used formal and semi-formal methods to
overcome this problem. However, even when formal and semi-
formal languages are used, there is no escape from natural
language as the initial requirements are written in natural language
(Kamsties, 2005). The consequences of ambiguous requirements
will lead to excessive efforts, high cost and failure in some
software projects. For example, software developers might decide
a subjective interpretation of requirements based on their point of

view. Ferrari et al., (2014) argued that this subjective
interpretation leads to designing software in a different way from
what was intended in the requirements.
For several decades, SRS processing and analysis has been the
focus of research in software engineering discipline. Since natural
language is ambiguous, a computer cannot provide full support to
analyze SRS in an automatic fashion. Consequently, the analysis
of SRS is conducted manually which consumes time, effort and
cost. Most importantly, the manual analysis of

requirementsresults in inefficiency and imprecise results (Wang,
2016). The problem will be more obvious and critical when
software projects involve thousands of requirements and hundreds
of SRS documents. Conducting verification of thousands of
requirements via humans will become extremely expensive
(Fanmuy et al., 2014). Generally, the primary source of problems
in requirement engineering is reliance on humans extensively
(Ahmed, 2018). This discussion leads to the importance of finding

an automatic way for processing SRS.NLP was used as a possible
solution to resolve ambiguity and to provide valuable information
to the intended software developers. Ryan (1993) argued that:” It
is highly questionable that the resulting system from NLP would
be of great use in requirements engineering”. Nazir et al. (2017)
conducted a systematic literature review on NLP applications for
software requirement engineering, he concluded that: “Manual
operations are still required on initial plain text of software

requirements before applying the desired NLP techniques”. In this
paper, a complementary review is conducted to understand the
role of NLP in the context of requirement engineering.

3. Methodology

A review of multiple resources in current literature is conducted to

answer the questions of this paper. The objective of this study is to
answer the following two questions:
Q1: What are the current practices ofNLP in SRS processing?
Q2: What are the current limitations of NLP in SRS processing?

4. Current Practices of Software Requirements

Specification Processing

Abbott (1983) has been credited with his pioneering work in
developing an informal strategy to derive the output as per object
oriented concepts. In this strategy, data types are suggested by
common nouns, objects are referenced by proper noun and
reference, control structures are suggested by using if, then, else,
for, do, until and when. (Booch, 1986) developed a method that
extended Abbott’s approach and emphasized on creating an
interface of object to draw a boundary between the inside view

and the outside view of object. Abbott (1983) and Booch (1986)
concluded that it is not a purely mechanical process to transform
their informal strategy into a formal program and it requires a
great deal of background knowledge for the process of
transformations. This means that human intervention was still
necessary to identify words that are suitable for generating object
models.
Currently, researchers strived to extract information from SRS by

developing methods that rely on NLP. NLP is the computerized
approach to analyzing text and being a very active area of research
and development (Reshamwala et al., 2013). Current approaches
use many techniques to achieve two main objectives. The first
objective is to detect defects in SRS such as Körner and Brumm
(2009), Huertas (2012) and Rago et al. (2016). The second
objective is to generate Unified Modeling Language (UML)
diagrams from SRS such as Ilieva and Ormandjieva (2005),

Kothari (2012), MacDonell et al. (2014), Landhaußer et al. (2014),
Elallaoui et al. (2015), Gulia and Choudhury (2016), Iqbal and
Bajwa (2016), Vemuri et al. (2017) and Diamantopoulos et al.
(2017).
The vast majority of current approaches relied upon unrestricted
natural language in combination with using Part of Speech (POS)
technique. The essential purpose of POS is to conduct a semantic
analysis which includes assignment of one or more tags to each
word in a sentence (Tripathy & Rath, 2014). These tags identify

the grammatical category of each word and consider the categories
of words as counterparts to other terminologies in object oriented
language. For instance, nouns represent objects and verbs
represent functions. Ilieva and Ormandjieva (2005)proposed a
methodology via using POS to organize sentences in groups and
built a semantic network from these groups to transform
requirements into object oriented model. Huertas (2012)
developed a tool called Natural Language Automatic Requirement

Evaluator (NLARE). This tool used a set of defined rules as well
as regular expressions to look for problems like ambiguity,
incompleteness, and atomicity on functional requirements
specifications. Kothari (2012) developed a tool called Natural
language Processing for Class (NLPC) to obtain basic elements of
a class diagram from natural language requirements. MacDonell et
al. (2014) developed a system which is composed of three
modules with a user interface. The functionality of this system

relies upon syntax parsing each sentence by NLP tool to extracts
all unique noun terms.A drawback of this system is that the
syntactic parser can produce ambiguous parse trees of each
sentence.
Some approaches relied on Semantic Role Labeling (SRL) in
addition to POS to assign relations in sentences (i.e., who did what
to whom) such as Körner and Brumm (2009) and Landhaußer,
Korner and Tichy (2014). Körner and Brumm (2009)created a tool

called Requirements Engineering Specification Improver (RESI).
The main objective of RESI is to support requirement analysts via
checking for linguistic defects in specifications and to offer a
dialog-box to make suggestions for improving the text. RESI
made use of NLP tools in addition to ontological reasoning for
detecting linguistic defects like distortion and incompletely
specified process words. Landhaußer, Korner and Tichy (2014)
extended the functionality of RESI via automatic UML models
generation and change impact analysis. An obvious limitation of

170 International Journal of Engineering & Technology

using SRL is the generality of semantic representation (Ludwig et
al., 2018). This generality cannot produce efficient information in
the context of sophisticated discipline like software engineering.
Elallaoui et al. (2015) created syntax of user stories and used POS
for extracting the primary elements of every user story like Actor,
Action and Benefit. Then, an algorithm was developed to generate
the sequence diagrams as an output for every sentence in user
stories. Rago et al. (2016) developed an approach called

Requirement analyzer with sequence Aligner (ReqAligner). The
purpose of this approach is to aid analysts to detect duplicate
functionalities in use cases in an automated fashion. Gulia and
Choudhury (2016) focused on generating sequence diagram and
activity diagram from requirements specification. In this approach,
POS technique was used to tag words and two algorithms were
developed to generate activity diagram and sequence diagram.
Vemuri et al. (2017) developed a tool for learning from patterns in

requirements and applying a probabilistic approach in order to
simplify identification of actors. Diamantopoulos et al. (2017)
used many techniques in conjunction with POS like tokenization,
lemmatization and dependency parsing to semantically annotating
functional requirements. Tokenization separates the sentence to
identify tokens, lemmitization determines the uninflected base
forms of words and dependency parsing determines the
grammatical relations that exist between two words.

Although NLP has many advantages in many fields, it is not
efficient in the context of SRS. Taking into consideration that
NLP algorithms are restricted by processing only the information
that they can see (Cambria & White, 2014). In a similar vein,
Gupta et al. (2013) declared that POS technique cannot produce a
precise query in the context of software engineering. This is quite
true, since the functionality of POS is to discover the grammatical
category of each word in specification written in natural language,
it is difficult to represent the exact terminologies in object oriented

programming which differs from the general usage of unrestricted
natural language. Normally, customers have a great deal of
freedom to express their needs without restriction on their use of
natural language. As a result, there is undesirable consequence
resulted from using unrestricted natural language. In essence, the
final analysis of natural language sentence using NLP may not
give correct result (Osborne & Macnish, 1996). Also, this analysis
produces inaccurate or incomplete models that need validation and

extensive manual revision (Selway et al., 2015).
On the other hand, Iqbal and Bajwa (2016) developed a method to
generate UML activity diagram from Semantics of Business
Vocabulary and Rules (SBVR). SBVR is created by Object
Management Group (OMG) as a standard to produce controlled
representation of English language for documenting business
specifications (OMG, 2017). However using SBVR is still an
onerous task to define a complete set of rules and concepts

governing a business (Selway et al., 2015;Nemuraite et al., 2010).
Selway et al. (2015) noticed that manual interpretation of the
business specification written in SBVR is required and the
involvement of technical experts remains necessary. Wang (2016)
and Landhaußer et al. (2014) reported that using controlled
language still not practical for using it in SRS. This was driven by
the difficulty of applying controlled language in existing SRS
documents and the limited freedom of representation of

requirements.

5. CurrentLimitations of Natural Language

Processing

Although, there has been a substantial amount of research
concerning using NLP in software engineering, there are still
critical limitations. Bano (2015) conducted a mapping study and
stated the following observations. Firstly, the software engineering
research community has not paid enough attention regarding the
empirical evaluation of NLP tools and techniques for addressing
ambiguity in requirements. Secondly, the researchers have focused

more on detection of ambiguity whereas avoiding or resolving
ambiguity has been largely neglected in empirical work (Bano,
2015). Moreover, Umber and Bajwa (2011) argued that there is
no appropriate approach or tool for providing an automatic mean
of removing or minimizing ambiguity in natural language. From
the aforementioned observations, it is quite evident that ambiguity
has to be handled initially via representation of requirements in a
machine-readable format. This representation will ensure

consistent use of terminologies and results in accurate
transformation of requirements into models.

6. Conclusion

NLP does not have the capability to produce efficient and reliable
result that can encourage software community to make more

investment in this research area. In order to use NLP efficiently, it
is important to use a controlled natural language with
comprehensive syntax and predefined static semantics.
Developing controlled language in a usable way with the
assistance of interactive tools will be highly useful to requirement
engineer and help to reduce time of repetitive work. Most
importantly, this will helpto extract information precisely
andproduce high-quality software product.

References

[1] Abbott, R. J. (1983). Program Design by Informal English

Descriptions. Communications of the ACM, 26(11), 882–894.

[2] Ahmed, U. (2018). A review on knowledge management in

requirements engineering. In In Engineering and Emerging

Technologies (ICEET), 2018 International Conference (pp. 1–5).

[3] Bano, M. (2015). Addressing the challenges of requirements

ambiguity: A review of empirical literature. In In Empirical

Requirements Engineering (EmpiRE), 2015 IEEE Fifth

International Workshop (pp. 21–24). IEEE.

[4] Bin, L., Rahim, A. B., Dominic, P. D. D., Besrour, S., Bin, L.,

Rahim, A. B., & Dominic, P. D. D. (2016). A quantitative study to

identify critical requirement engineering challenges in the context

of small and medium software enterprise. In In Computer and

Information Sciences (ICCOINS), (pp. 606–610).

[5] Booch, G. (1986). Object-oriented development. IEEE Transactions

on Software Engineering, 211–221.

[6] Cambria, E., & White, B. (2014). Jumping NLP curves: A review

of natural language processing research. IEEE Computational

Intelligence Magazine, 48–57.

[7] Diamantopoulos, T., Roth, M., Symeonidis, A., & Klein, E. (2017).

Software requirements as an application domain for natural

language processing. Language Resources and Evaluation, 51(2),

495–524. http://doi.org/10.1007/s10579-017-9381-z

[8] Dube, R., & Dixit, S. K. (2010). Process-oriented complete

requirement engineering cycle for generic projects. In In

Proceedings of the International Conference and Workshop on

Emerging Trends in Technology (pp. 194–197).

[9] Elallaoui, M., NAFIL, K., & TOUAHNI, R. (2015). Automatic

generation of UML sequence diagrams from user stories in Scrum

process. In In Intelligent Systems: Theories and Applications

(SITA), 2015 10th International Conference (pp. 1–6). IEEE.

[10] Fanmuy, G., Fraga, A., & Llorens, J. (2014). Requirements

verification in the industry. In In Complex Systems Design &

Management (pp. 145–160). Springer, Berlin, Heidelberg.

http://doi.org/10.1007/978-3-642-25203-7

[11] Ferrari, A., Lipari, G., Gnesi, S., & Spagnolo, G. O. (2014).

Pragmatic ambiguity detection in natural language requirements. In

In Artificial intelligence for requirements engineering (AIRE), 2014

IEEE 1st International Workshop (pp. 1–8). IEEE.

[12] Gulia, S., & Choudhury, T. (2016). An efficient automated design

to generate UML diagram from Natural Language Specifications.

In In Cloud System and Big Data Engineering (Confluence), 2016

6th International Conference (pp. 641–648).

[13] Gupta, S., Malik, S., Pollock, L., & Vijay-Shanker, K. (2013). Part-

of-speech tagging of program identifiers for improved text-based

software engineering tools. In In Program Comprehension (ICPC),

2013 IEEE 21st International Conference (pp. 3–12).

International Journal of Engineering & Technology 171

[14] Huertas, C. (2012). NLARE, a natural language processing tool for

automatic requirements evaluation. In In Proceedings of the CUBE

International Information Technology Conference (pp. 371–378).

ACM.

[15] Hull, E., Jackson, K., & Jeremy, D. (2010). Requirements

Engineering. Springer Science & Business Media.

[16] Hussain, A., Mkpojiogu, E. O., & Kamal, F. M. (2016). The role of

requirements in the success or failure of software projects.

International Review of Management and Marketing, 6, 306–311.

[17] Ilieva, M. G., & Ormandjieva, O. (2005). Automatic transition of

natural language software requirements specification into formal

presentation. In In International Conference on Application of

Natural Language to Information Systems (pp. 392–397). Springer.

[18] Iqbal, U., & Bajwa, I. S. (2016). Generating UML activity diagram

from SBVR rules. In In Innovative Computing Technology

(INTECH), 2016 Sixth International Conference (pp. 216–219).

[19] ISO/IEC/IEEE. (2011). 29148-2011 - ISO/IEC/IEEE International

Standard - Systems and software engineering -- Life cycle

processes --Requirements engineering. Retrieved from

https://ieeexplore.ieee.org/document/6146379/

[20] Kamsties, E. (2005). 11 Understanding Ambiguity in Requirements

Engineering. In In Engineering and Managing Software

Requirements (pp. 245–266). Springer, Berlin, Heidelberg.

[21] Körner, S. J., & Brumm, T. (2009). Natural language specification

improvement with ontologies. International Journal of Semantic

Computing, 3(4), 445–470.

http://doi.org/10.1142/S1793351X09000872

[22] Kothari, P. R. (2012). Processing natural language requirement to

extract basic elements of a class. International Journal of Applied

Information Systems (IJAIS), 3(7), 39–42.

[23] Landhaußer, M., Korner, S. J., & Tichy, W. F. (2014). From

requirements to UML models and back: how automatic processing

of text can support requirements engineering. Software Quality

Journal, 22(1), 121–149. http://doi.org/10.1007/s11219-013-9210-6

[24] Ludwig, O., Do, Q. N. T., Smith, C., Cavazza, M., & Moens, M.

(2018). Learning to extract action descriptions from narrative text.

IEEE Transactions on Games, 10(1), 15–28.

[25] MacDonell, S. G., Min, K., & Connor, A. M. (2014). Autonomous

requirements specification processing using natural language

processing.

[26] Nazir, F., Butt, W. H., Anwar, M. W., & Khattak, M. A. K. (2017).

The applications of natural language processing (NLP) for software

requirement engineering-a systematic literature review. In In

International Conference on Information Science and Applications

(pp. 485–493). Springer.

[27] Nemuraite, L., Skersys, T., Sukys, A., Sinkevicius, E., &

Ablonskis, L. (2010). VETIS tool for editing and transforming

SBVR business vocabularies and business rules into UML&OCL

models. Information Technologies, 21–23.

[28] Nigam, A., Arya, N., Nigam, B., & Jain, D. (2012). Tool for

automatic discovery of ambiguity in requirements. International

Journal of Computer Science Issues (IJCSI), 9(5), 350–356.

[29] OMG. (2017). Semantics of Business vocabulary and Rules

(SBVR). Retrieved from https://www.omg.org/spec/SBVR/About-

SBVR/

[30] Osborne, M., & Macnish, C. (1996). Processing natural language

software requirement specifications, 229–236.

[31] Rago, A., Marcos, C., & Diaz-Pace, J. A. (2016). Identifying

duplicate functionality in textual use cases by aligning semantic

actions. Software & Systems Modeling, 15(2), 579–603.

[32] Reshamwala, A., Pawar, P., & Mishra, D. (2013). Review on

natural language processing. IRACST Engineering Science and

Technology: An International Journal (ESTIJ), 3(1), 113–116.

[33] Robie, M. A. M., Baharom, F., & Mohd, H. (2014). Functional

requirements specification for e-tendering system using

requirement template. In In Knowledge Management International

Conference (KMICe), Langkawi, Malaysia.

[34] Rodrigues, A., Verelst, J., Mannaert, H., Ferreira, D. A., &

Huysmans, P. (2014). Towards a system requirements specification

template that minimizes combinatorial effects. In In Quality of

Information and Communications Technology (QUATIC), 2014

9th International Conference.

http://doi.org/10.1109/QUATIC.2014.22

[35] Ryan, K. (1993). The role of natural language in requirements

engineering. In In Requirements Engineering, 1993., Proceedings

of IEEE International Symposium (pp. 240–242).

[36] Selway, M., Grossmann, G., Mayer, W., & Stumptner, M. (2015).

Formalising natural language specifications using a cognitive

linguistic/configuration based approach. Information Systems, 54,

191–208.

[37] Shah, U. S., & Jinwala, D. C. (2015). Resolving ambiguities in

natural language software requirements: a comprehensive survey.

ACM SIGSOFT Software Engineering Notes, 40(5), 1–7.

http://doi.org/10.1145/2815021.2815032

[38] Tripathy, A., & Rath, S. K. (2014). Application of natural language

processing in object oriented software development. In In Recent

Trends in Information Technology (ICRTIT), 2014 International

Conference (pp. 1–7).

[39] Umber, A., & Bajwa, I. S. (2011). Minimizing Ambiguity in

Natural Language Software Requirements Specification. In ICDIM

(pp. 102–107).

[40] Vemuri, S., Chala, S., & Fathi, M. (2017). Automated use case

diagram generation from textual user requirement documents. In In

Electrical and Computer Engineering (CCECE). (pp. 1–4). IEEE.

[41] Wang, Y. (2016). Automatic semantic analysis of software

requirements through machine learning and ontology approach,

21(6), 692–701. http://doi.org/10.1007/s12204-016-1783-3

