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Abstract 

 
The paper presents an exact analytical solution of the stationary problem of an incompressible ideal fluid flow inside a sphere under the 

action of an external potential mass force. 
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1. Introduction 

Most applied problems in mechanics and theoretical physics lead 

to the need to define specific four-dimensional vector functions in 

the form of V=[ϑ0(𝑥0,𝑥1,𝑥2,𝑥3), ϑ1(𝑥0,𝑥1,𝑥2,𝑥3), 

ϑ2(𝑥0,𝑥1,𝑥2,𝑥3), ϑ3(𝑥0,𝑥1,𝑥2,𝑥3)],  whose components are real 

functions of four real variables: time  𝑥0 and spatial variables 

𝑥1, 𝑥2, 𝑥3 [2-4]. The components ϑk(𝑥0,𝑥1,𝑥2,𝑥3), k= 0, 3̅̅ ̅̅ ̅  of 

unknown four-dimensional vector are usually appeared in various 

systems of differential motion equations deduced from the laws of 

conservation in mechanics and physics. A special interest for 

practical purposes (engineering calculations) is finding classical 

solutions of such systems of equations in explicit form, when the 

components of desired four-dimensional vector are smooth 

functions in some domain of definition. However, existing 

mathematical apparatus often leads to the need to study one-

dimensional or two-dimensional (simplified) models of these 

applied problems. In most cases, it is necessary to consider only 

stationary physical processes. Therefore, searching for a proper 

mathematical apparatus for finding classical solutions of the basic 

systems of motion equations in mechanics and theoretical physics 

is an actual problem. This paper describes an application of a 

perspective, in our opinion, approach for solving a rather difficult 

problem of hydrodynamics. 

 

2. Definition of the Four-Dimensional 

Functions Space 

Let G ⊂ R4 is some four-dimensional domain.  

 

Definition 1: Image U=(u0(x0, x1, x2, x3), u1(x0, x1, x2, x3), 

u2(x0, x1, x2, x3), u3(x0, x1, x2, x3)) under continuous mapping  

U :(x0, x1, x2, x3) ∈G →(u0, u1, u2, u3)∈ R4 is called four-

dimensional function and corresponding components of the 

function uk(x0, x1, x2,x3), k= 0, 3̅̅ ̅̅ ̅ as the function components.  

It is easy to understand, that each component uk(x0, x1, x2,x3), k= 

0, 3̅̅ ̅̅ ̅ is a real continuous function of four real variables determined 

in domain G. In what follows, a set of all possible four-

dimensional functions with continuous components will be 

denoted by C[M(G)]. 

 

Lemma 2.1. With regard to the operation of componentwise 

addition and multiplication by a real scalar, the set C[M(G)] is a 

linear vector space over the field of real numbers. 

 

Proof. Let ⋋, μ ∈R  are arbitrary real numbers and  U=(u0, u1, u2, 

u3), W=(w0, w1,w2, w3)∈C[M(G)] are arbitrary continuous four-

dimensional functions. Then it is easy to understand that: 

⋋U+ μW=Q=(⋋u0+ μw0,  ⋋u1+ μw1,  ⋋u2+ μw2, ⋋u3+ μw3)∈ 

C[M(G)] 

Thus, the set of four-dimensional functions C[M(G)] is indeed a 

linear vector space over the field of real numbers. It is infinite-

dimensional, which will be clear hereafter. Now focus readers' 

attention on the following key conclusion from the 

abovementioned. 

 

Lemma 2.2. Any four-dimensional vector of theoretical physics 

with continuous components  V=[υ0(x0, x1, x2, x3), υ1(x0, x1, x2, 

x3), υ2(x0, x1, x2, x3), υ3(x0, x1, x2, x3)], can be represented as an 

element of the C[M(G)] space. 

 

Indeed, let the required four-dimensional vector is being sought in 

some four-dimensional domain G ⊂R4 and has continuous 

components. Then it inevitably follows that V ∈C[M(G)], since by 

definition this space contains all possible four-dimensional 

functions in the given domain. 

 

Next, we study one of the key subspaces of the linear space 

C[M(G)].  It is the elements of this subspace that are directly used 

in solving applied problems of mechanics and theoretical physics. 

 

Definition 2. A four-dimensional function U ∈C[M(G)]  is called 

regular,  if its components everywhere in domain G satisfy 

generalized Cauchy-Riemann conditions (D'Alembert-Euler) of 

the form:  

 
∂u0

∂x0

= 
∂u1

∂x1

= 
∂u2

∂x2

= 
∂u3

∂x3

                                                                        (1) 
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∂u0

∂x1

= 
∂u1

∂x0

= 
∂u2

∂x3

= 
∂u3

∂x2

                                                                        (2) 

 
∂u0

∂x2

= 
∂u1

∂x3

= -
∂u2

∂x0

= -
∂u3

∂x1

                                                                     (3) 

 
∂u0

∂x3

= 
∂u1

∂x2

= -
∂u2

∂x1

= -
∂u3

∂x0

                                                                     (4) 

 

The whole set of regular functions in G is denoted by MA(G). It is 

obvious that any constant four-dimensional vector, an element of  

R4, is certainly a constant regular function in any G domain. 

 

It was shown in reference [5], that MA(G)⊂C[M(G)] is a 

subspace of C[M(G)]. This subspace is infinite-dimensional, since 

it contains a countable set (sequence) of linearly independent 

elements (four-dimensional functions) of the form: E, X, X2, 

X3, …, Xn, …,.., where: 

 

E= X0=(0,1, 0, 0); Xn=(wn0, wn1, wn2, wn3), n∈N                      (5) 

 

In (2.5), each component is determined on the basis of the 

following recurrence formulas: 

wn0= 
1

2
([(x1+ x0)

2+ (x2+ x3)
2
]

n
2 cos (n arctan

x2+ x3

x1+ x0

) - 

 -[(x1- x0)
2+ (x2- x3)

2]
n

2 cos(n arctan
x2- x3

x1- x0

))                              (6) 

 

wn1= 
1

2
([(x1+ x0)

2+ (x2+ x3)
2
]

n
2 cos (n arctan

x2+ x3

x1+ x0

) +  

+[(x1- x0)
2+ (x2- x3)

2]
n

2 cos(n arctan
x2- x3

x1- x0

))                            (7) 

 

wn2= 
1

2
([(x1+ x0)

2+ (x2+ x3)
2
]

n
2 sin (n arctan

x2+ x3

x1+ x0

) +  

+[(x1- x0)
2+ (x2- x3)

2]
n

2 sin(n arctan
x2- x3

x1- x0

))                           (8) 

 

wn3= 
1

2
([(x1+ x0)

2+ (x2+ x3)
2
]

n
2 sin (n arctan

x2+ x3

x1+ x0

) -  

−[(x1- x0)
2+ (x2- x3)

2]
n

2 sin(n arctan
x2- x3

x1- x0

))                         (9) 

 

It is easy to verify that these components satisfy the regularity 

conditions (2.1) - (2.4). Further, in [5] an explicit form of the basic 

elementary functions U(X)∈ MA (G)  of the complex variable 

X=(x0, x1, x3,x4)∈G. Let us give an explicit form of some 

elementary functions: 

 

X = (x0, x1, x2,x3). 

X2=(2x1x0-2x2x3; x1
2 - x2

2- x3
2+x0

2; 2x1x2+2x0x3; 2x1x3+2x0x2). 
exp (X)=(u0(x0, x1, x2, x3), u1, u2, u3) , где 

u0(x0, x1, x2, x3)= exp(x1+ x0) cos(x2+ x3) -exp(x1- x0)cos(x2- 

x3), 
u1(x0, x1, x2, x3)= exp(x1+ x0) cos(x2+ x3) +exp(x1- x0)cos(x2- 

x3), 

u2(x0, x1, x2, x3)= exp(x1+ x0) sin(x2+ x3) +exp(x1- x0)sin(x2- 

x3), 

u3(x0, x1, x2, x3)= exp(x1+ x0) sin(x2+ x3) -exp(x1- x0)sin(x2- 

x3). 

 

It is easy to verify that the components of each of these four-

dimensional functions satisfy the Cauchy-Riemann conditions (1) 

- (4). 

 

The material presented leads to the following conclusions: 

1. The linear vector space C[M(G)] of continuous four-

dimensional functions is infinite-dimensional, since it contains 

a countable number of linearly independent elements of the 

form (5). 

2. All the elements of its linear subspace MA(G)⊂C[M(G)]  can 

be considered as four-dimensional generalizations of one-

dimensional or two-dimensional functions from real or 

complex analysis. Indeed, setting in the formula of any regular 

function x0= x2= x3=0, we get a typical function of one real 

variable x1. If you set x0= x3= in the formula, you can get a 

typical function of the complex variable z= x1+ix2. More 

details about this are given in [5]. 

 

3. Valuation and Completeness of the 𝐂[𝐌(𝐆)] 
Space  

Let a domain G ⊂ R4 is compact. Then for any element of the 

space U=(u0, u1, u2, u3)∈C[M(G)], we can introduce a notion of 

norm by the following formula: 

 

∥U∥ = sup
X∈G

∑ |uk|3
k=0                                                              (10) 

 

It is easy to verify that, with respect to such a uniform norm, 

C[M(G)] is a complete normed space, if we mean the 

componentwise convergence of a sequence of four-dimensional 

continuous functions. Further, for the application, the most 

important conclusions following from Stone's well-known 

theorem [1] are: 

 

1. The subspace MA(G) is an everywhere dense subset of C[M(G)]. 

2. Any element V=C[M(G)] can be approximated with any given 

accuracy by a finite sum of regular four-dimensional functions. 

3. A finite sum of regular functions is also a regular function. 

Therefore, when solving applied problems of mechanics and 

theoretical physics, the mathematical apparatus of the theory of 

four-dimensional regular functions can be used. 

 

All the above-mentioned, we will demonstrate below, based on an 

actual example of solving one problem of hydrodynamics. 

3.  Applications 

In this section, we obtain an exact analytic solution of one, rather 

complicated, problem of hydrodynamics. Let suppose, that an 

ideal incompressible fluid filled with a spherical vessel of radius R 

flows with a characteristic velocity c, under the action of a 

stationary potential force. Need to find the hydrodynamic 

characteristics of the fluid moving inside the sphere. Let 

V⃗⃗ =(V1(x, y, z), V2(x, y, z),V3(x, y, z)) is required velocity vector 

of the moving fluid, P(x, y, z)  is required pressure function, ρ>0  
is known fluid density. Then, as is known from [2], the 

mathematical setting up the problem is formulated as follows: 

To find solution of the Euler equations system in the domain  

D : x2+ y2+ z2< R2 with boundary𝑆 : x2+ y2+ z2= R2  

 

(V⃗⃗  ∙ ∇)V⃗⃗ = -
1

ρ
∇P                                                                         (11) 

 

with continuity condition: 

 

divV⃗⃗ =0                                                                                        (12) 

 

and the boundary condition: 

 

V⃗⃗ n |
s
=0                                                                                        (13) 

 

In (11), the potential mass force is included in the pressure 

gradient in advance. Further, in the reference [6] a formula of a 

general solution of (12) in a class of smooth functions is given in 

the form: 
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V1(x, y, z)=cαu1(0, 
x

R
, 

βy

R
, 

γz

R
)                                                   (14) 

 

V2(x, y, z)=-cβ
1
u2(0, 

x

R
, 

βy

R
, 

γz

R
)                                                (15) 

 

V3(x, y, z)=-cγ
1
u3(0, 

x

R
, 

βy

R
, 

γz

R
)                                                (16) 

 

Here: α, β, γ, β
1
, γ

1
 are arbitrary scalars (real or complex) 

connected by the condition α- ββ
1
- γγ

1
=0 , c is some speed typical 

for given flow, R is the characteristic dimension of the flow, uk(0, 

x1, x2, x3), k= 1, 3̅̅ ̅̅ ̅ are components of an arbitrary regular function 

calculated for x0=0. 

Solution of the original problem (11)-(13) will be sought in the 

class of vector-functions with components of the form (14) - (16). 

In this case, from the symmetry considerations (the domain, where 

the solution is sought, is spherically symmetric) we choose in the 

formulas (4.4) - (4.6) the corresponding components of the four-

dimensional function U= X2-1 (they are indicated above), i.e:. 

 

u1(0, x1, x2, x3)= x1
2- x2

2- x3
2-1                                                    (17) 

 

u2(0, x1, x2, x3)=2x1x2                                                               (18) 

 

u3(0, x1, x2, x3)=2x1x3                                                               (19) 

 

In view of the foregoing, (14) - (16) can be rewritten as: 

 

V1(x, y, z)= 
αc

R2 (x2- β
2
y2- γ2z2- R2)                                           (20) 

 

V2(x, y, z)= -
2cβ

1
βxy

R2                                                                    (21) 

 

V3(x, y, z)= -
2cγ

1
γxz

R2                                                                     (22) 

 

There are five unknown coefficients α, β, γ, β
1
, γ

1
  in the formulas 

(20) - (22). At the same time, for their definition we also have five 

relations (21) - (23). Using these relations, we find: 

 

α=1; β= γ= √2i; β
1
= γ

1
= -

√2i

4
 

 

Finally, an exact solution of the original problem is written as: 

 

V1(x, y, z)= 
c

R2 (x2+2y2+2z2- R2)                                              (23) 

 

V2(x, y, z)= -
cxy

R2                                                                          (24) 

 

V3(x, y, z)= -
cxz

R2                                                                          (25) 

 

P(x, y, z)= -
ρc2

2R4 [x
2(x2-2R2)+(y2+ z2)(R2- y2- z2)]+C            (26) 

 

An arbitrary constant C is determined from the 

condition∫ P(x, y, z)dxdydz
D

=0.  By direct substitution it is easy 

to verify that the functions (23) - (26) give an exact solution of the 

original problem. 

4. Conclusion 

The exact analytical solution of the problem of fluid flowing 

inside a sphere with Neumann boundary conditions using the 

theory of four-dimensional regular functions is obtained. The 

proposed approach can be applied for solving other similar 

hydrodynamic problems. 
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