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Abstract 
 
Quasi-solid-state polymer electrolytes based on poly(ε-caprolactone) (PCL) and dimethylformamide (DMF) with various concentrations 
of potassium iodide (KI) were prepared and characterized for their electrical properties and the performance in dye-sensitized solar cells 

(DSSCs). Incorporation of KI increased the conductivity by 3 order of magnitude from 10-6 to 10-3 Scm-1. The highest conductivity was 
achieved at 0.2 M of KI. The number, n and mobility, µ of ions were calculated by impedance spectroscopy to evaluate the conductivity 
variation quantitatively. Conduction mechanism of the electrolyte was determined using Jonscher’s universal power law. The conduction 
mechanism was discussed by comparing the behaviour of temperature dependence of exponent s with existing theoretical models. The 
small polaron hopping (SPH) model was found to be the model for conduction mechanism of PCL-DMF-KI electrolyte. DSSC with 0.2 
M of KI shows the highest photovoltaic performance, η of 2.72% with short-circuit current density, Jsc of 5.56 mA cm-2, open circuit 
voltage, Voc of 0.72 V and fill factor, ff of 69%. 
 
Keywords: DMF; DSSC; KI; PCL; Polymer Electrolyte. 

 

1. Introduction 

Quasi-solid-state (QSS) electrolyte, also known as semi-solid 
electrolyte, shares the uniqueness of solid and liquid electrolytes.  
It consists of a polymeric host, a plasticizing solvent and a con-

ducting salt. The liquid phase of QSS electrolyte provides chan-
nels for ionic conduction whereas the polymeric phase holds the 
liquid in a solid rubbery state and hence prevents the liquid from 
leaking. QSS electrolyte is usually prepared by incorporating a 
gelling agent into a liquid plasticizing solvent containing desired 
salt. Polymer or inorganic fillers can serve as a gelling agent [1-6]. 
We focus on polymeric gelling agent. 
Synthetic polymers such as poly(ethylene oxide) (PEO) [7], 
poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) 

[8], poly(methyl methacrylate) (PMMA) [9]  and biopolymers 
such as chitosan [10], carboxymethyl cellulose  (CMC) [11], cy-
anoethylated hydroxypropyl cellulose (CN-HPC) [12] have been 
used to prepare QSS electrolytes. In this study, we developed 
poly(ε-caprolactone) (PCL)-based QSS electrolyte. PCL, the syn-
thetic thermoplastic polymer is non-toxic and biodegradable [13]. 
It is being used in biomedical applications [14, 15]. PCL contains 
electron pairs at the ester oxygen that can coordinate with cation 

of salt. This makes it a candidate as host in QSS electrolyte.  
In the preparation of PCL-based QSS electrolytes, dimethylfor-
mamide (DMF) and potassium iodide (KI) were employed as the 
plasticizing solvent and conducting salt, respectively. The opti-
mized electrolyte samples were used in the application of dye-
sensitized solar cells (DSSCs). This paper reports the electrical 
properties of PCL-DMF-KI electrolytes together with the photo-
voltaic performance of the DSSCs.  

2. Experimental 

PCL with molecular weight of 80,000 g mol-1 (Sigma-Aldrich), 
DMF and KI with purity > 99% (Systerm) were used as received. 
Different amounts of KI ranging from 0.0 to 0.5 M were added to 
the DMF containing fixed amount of PCL, stirred at 50 oC until 
“gel-like” electrolyte is formed. Electrical studies were carried out 
using a HIOKI 3532-50 LCR Hi-tester impedance spectrometer in 
the frequency range from 50 Hz to 1 MHz. 

Titanium dioxide (TiO2) photoanodes were prepared by coating 
fluorine-tin oxide (FTO) conducting glass with two layers of TiO2 
and soaking in 3mM N3 dye (cis-bis(isothiocyanato) bis(2,2’-
bipyridyl-4,4’-dicarboxylato) ruthenium (II)). Details of preparing 
TiO2 photoanode can be obtained from [16].  Platinum (Pt) coun-
ter electrodes were prepared by spin-coating a Pt solution on FTO 
glass and sintered at 450 oC for 30 min.  
Small amount of “gel-like” electrolyte was placed in between 
TiO2 photoanode and Pt counter electrode for DSSC assembly.  

The current-voltage (J-V) characteristics of the DSSCs were 
measured under illumination of 100 mWm-2 Xenon light source 
(Oriel LCS 100) with a Metrohm Autolab potentiostat 
(PGSTAT128N). 

3. Results and discussion 

3.1. Conductivity 

Fig. 1 shows the temperature dependence of conductivity for PCL-
DMF-KI electrolyte. Conductivities of all electrolyte samples are 
found to increase with temperature. The order of the conductivity 
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is 0.0 M KI < 0.5 M KI < 0.1 M KI < 0.4 M KI < 0.3 M KI < 0.2 
M KI. Presence of KI increases the conductivity. This is because 
KI provides ions for conduction. The maximum conductivity is 
achieved at 0.2 M of KI.  
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 1: Temperature dependence of conductivity for PCL-DMF electrolyte 

containing (a) 0.0 M KI, (b) 0.1 M KI, (c) 0.2 M KI, (d) 0.3 M KI, (e) 0.4 

M KI and (f) 0.5 M KI. 
 
Conductivity of an electrolyte depends upon two parameters i.e. 
number, n and mobility, µ of ions. Determination of n and µ al-

lows a quantitative analysis of the conductivity trend. In this study, 
the n and µ were determined using impedance spectroscopy.  
Fig. 2 shows the Nyquist plots for electrolytes with and without 
KI. For electrolyte without KI, the Nyquist plot shows a depressed 
semicircle and a small titled spike (cf. Fig. 2(a)). Thus, the equiva-
lent circuit representation is parallel combination of resistance, R 
and constant phase element (CPE) with another CPE in series [17]. 
The real, Zr and imaginary, Zi parts of impedance associated to the 

equivalent circuit are [18]: 
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where R and Q1 are the bulk resistance and bulk capacitance of the 
electrolyte, respectively. Q2 is the double-layer capacitance at the 
electrolyte-electrode interface. β1 is the deviation of the semicircle 

diameter from the Zi axis and β2 is the deviation of the spike from 
the Zr axis. ω is the angular frequency. 
The Nyquist plots for all KI-containing electrolytes show only 
tilted spikes (cf. Fig. 2(b)). The equivalent circuit can be repre-
sented by a resistor connected in series with a CPE [17]. The Zr 
and Zi can then be expressed as [19, 20]: 
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Equations (1) and (2) were used to fit the Nyquist plot of Fig. 2 (a) 
while equations (3) and (4) were used to fit the Nyquist plots of 
Fig. 2 (b). The values of R, Q1, Q2, β1 and β2 can be obtained by 
trial and error until the plots are fitted (cf. Table 1). 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig. 2: Nyquist plots of (a) PCL-DMF and (b) PCL-DMF-0.2 M KI elec-

trolytes. 0.2 M KI was selected as representative example for KI-

containing electrolytes. Dotted line is plot fitting after equations (1) to (4). 
 

Table 1: The circuit parameters of R, Q1, Q2, β1 and β2 at room tempera-

ture. 

KI content 

(M) 

R  

 (Ω) 

Q1  

(F) 

Q2  

(F) 

β1 

(rad) 

β2 

(rad) 

0.0 32400.0 4.20 x 10
-11

 1.96 x 10
-6

 0.98 0.73 

0.1 75.9 - 9.20 x 10
-6

 - 0.82 

0.2 36.0 - 3.71 x 10
-5

 - 0.81 

0.3 52.2 - 4.26 x 10
-5

 - 0.81 

0.4 52.5 - 2.17 x 10
-5

 - 0.83 

0.5 121.5 - 5.68 x 10
-6

 - 0.85 

The obtained value of Q2 was then used to calculate the ion diffu-
sion coefficient, D according to equation (5) [21]. 
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The value of τ can be taken at the frequency at Zi→0 [18]. The 
dielectric constant of the electrolyte, εr can be extracted from the 

plot of εr vs. log f (cf. Fig. 3). A is the electrolyte-electrode contact 
area and εo is the permittivity of free space.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
Fig. 3: Frequency dependence of dielectric constant, εr for PCL-DMF 

electrolyte containing (a) 0.0 M KI, (b) 0.1 M KI, (c) 0.2 M KI, (d) 0.3 M 

KI, (e) 0.4 M KI and (f) 0.5 M KI. 
 
With the known value of D, the n and μ can be calculated accord-
ing to equations (6) and (7), respectively [21].  
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where σ is the conductivity, kB is the Boltzmann constant and T is 
temperature in Kelvin. Table 2 lists the calculated values of D, n 
and μ for PCL-DMF-KI electrolyte at room temperature. 
 

Table 2: The values of room temperature conductivity, σRT, εr, τ, D, n and 

µ for PCL-DMF electrolytes containing various concentrations of KI. 

KI content (M) σRT (Scm
-1

) 
εr 

(at 700 Hz) 
τ  (s

-1
) 

0.0 4.28 x 10
-6

 44 8.16x10
-5

 

0.1 1.83 x 10
-3

 252 1.59x10
-6

 

0.2 2.72 x 10
-3

 1362 7.76x10
-7

 

0.3 2.66 x 10
-3

 1219 1.68x10
-6

 

0.4 2.64 x 10
-3

 695 1.87x10
-6

 

0.5 8.91 x 10
-4

 152 2.12x10
-6

 

The initial increase of conductivity with incorporation of KI is due 
to the dissociation of KI to provide K+ cation and I- anion for con-
duction. With increase in the amount of KI, more K+ and I- ions 

are available for conduction (i.e marked by the greater number of 
n in Table 3). However, beyond 0.2 M of KI, dissociated K+and I- 
ions re-associate. This is because as the number of dissociated 
ions increases, the distance between ions decreases. Consequently, 
dissociated ions re-associate due to strong coulombic attraction 
between them. Ion association not only decrease the number of 
free ions, n but also increase the medium viscosity. An increase in 
viscosity results in lower mobility of ions, µ. As a result, conduc-

tivity decreases beyond 0.2 M of KI. 
 

 

 

 

 

 

Table 3 (continue): The values of room temperature conductivity, σRT, εr, 

τ, D, n and µ for PCL-DMF electrolytes containing various concentrations 

of KI. 

KI content (M) D (cm
2
s

-1
) n (cm

3
) µ (cm

2
V

-1
s

-1
) 

0.0 3.69x10
-7

 1.86x10
18

 1.44x10
-5

 

0.1 2.82x10
-5

 1.04x10
19

 1.07x10
-3

 

0.2 2.99x10
-5

 1.46x10
19

 1.16x10
-3

 

0.3 2.96x10
-5

 1.44x10
19

 1.15x10
-3

 

0.4 2.97x10
-5

 1.43x10
19

 1.15x10
-3

 

0.5 2.02x10
-5

 7.10x10
18

 7.85x10
-4

 

3.2. Conduction mechanism 

The Jonscher’s universal law is given as [22]:   
 

𝜎(𝜔) = 𝜎𝑑𝑐 + 𝐵𝜔𝑠 (8) 

 
where σ(ω) is the total conductivity, σdc is the dc conductivity. The 
ac conductivity is represented by Bωs with B being the parameter 
dependent on temperature and s is the power law exponent with 

value in the range of 0 < s < 1. The exponent s can be determined 
using [23]: 
 

ln 𝜀𝑖 = 𝑙𝑛
𝐵

𝜀𝑜
+ (𝑠 − 1) ln 𝜔 

(9) 

 
where εi is the dielectric loss, symbols εo and ω have their usual 
meanings. Fig. 4 presents the plots of ln εi vs. ln ω. 

 
Fig. 4: Plots of ln εi vs. ln ω for PCL-DMF electrolyte containing 0.2 M 

KI at (a) 303 K, (b) 313 K, (c) 323 K and (d) 333 K. 
 

Various theoretical models have been developed to correlate the 
exponent s with conduction mechanism of an electrolyte. Accord-
ing to the quantum mechanical tunneling (QMT) model, the expo-
nent s is almost equal to 0.8 and increases slightly with tempera-
ture or temperature independent [24, 25]. The small polaron hop-
ping (SPH) model predicts the exponent s to be increased with 
increasing temperature [20, 24].  In the overlapping large polaron 
tunnelling (OLPT) model, the exponent s decreases with tempera-
ture, reaches a minimum and then begin to increase again with 

temperature [25]. Correlated barrier hopping (CBH) model, on the 
other hand, predicts the exponent s to be increased towards unity 
as T→0 K [26]. 
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Fig. 5: Variation of the exponent s with temperature for PCL-DMF elec-

trolyte containing 0.2 M of KI. 
 
Slope of the plots of ln εi vs. ln ω give the values of exponent s. 
From Fig. 5, the exponent s is found to increase linearly with tem-
perature. Thus, the conduction mechanism for PCL-DMF-KI elec-
trolyte can be interpreted based on the SPH model. In the SPH 

model, small polaron is formed upon incorporation of an ion to a 
site. This results in local lattice distortion. Small polarons are as-
sumed to be localized so that ion hopping is independent on the 
intersite separation [23]. 

3.3. Photovoltaic performance 

PCL-DMF electrolytes with different KI concentrations were as-
sembled into DSSCs. Fig. 6 presents the J-V characteristics for the 

DSSCs. The open circuit voltage, Voc and the short-circuit current 
density, Jsc were obtained from the intercept of the plot on the 
voltage axis and current density axis, respectively. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Fig. 6: J-V characteristics of DSSCs for PCL-DMF electrolyte containing 

(a) 0.1 M KI, (b) 0.2 M KI, (c) 0.3 M KI, (d) 0.4 M KI and (e) 0.5 M KI. 

 

Equations (10) and (11) were used to calculate the fill factor, ff 
and conversion efficiency, η of the cells.  
 

𝑓𝑓 =  
𝐽𝑚𝑎𝑥  x 𝑉𝑚𝑎𝑥   

𝐽𝑠𝑐  x 𝑉𝑜𝑐

 
(10) 

𝜂 =  
𝐽𝑠𝑐  x 𝑉𝑜𝑐  x 𝑓𝑓

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

(11) 

 
where Jmax and Vmax are the current density and voltage at the point 
of maximum power output.  
The performance parameters of DSSCs are summarized in Table 4. 
The highest Jsc of 5.56 mA cm-2 and η of 2.72% is observed for 
the cell containing the highest conducting electrolyte sample. This 
finding is in agreement with other researchers where performance 
of DSSCs is reported to be in correlation with the conductivity of 

polymeric electrolyte [27-31]. 
 

Table 4: Performance parameters of DSSCs. 

KI content 

(M) 
σRT (Scm

-1
) Voc(V) 

Jsc  

(mA cm
-2

) 
ff η (%) 

0.1 1.83 x 10
-3

 0.66 3.73 0.47 1.16 

0.2 2.72 x 10
-3

 0.72 5.56 0.69 2.72 

0.3 2.66 x 10
-3

 0.67 4.89 0.67 2.03 

0.4 2.64 x 10
-3

 0.66 3.96 0.53 1.37 

0.5 8.91 x 10
-4

 0.65 2.72 0.50 0.88 

4. Conclusion  

Incorporation of KI has significantly increased the conductivity 
from 10-6 to 10-3 Scm-1. The highest conductivity achieved was at 

0.2 M of KI and highest photovoltaic performance achieved was 
2.72%. The conductivity enhancement in PCL-DMF-KI electro-
lyte is due to the increase in the number, n and mobility, µ of ions. 
The temperature dependence of the exponent s was interpreted by 
the SPH model.   
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