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Abstract 
 

Malware analysis for Android systems has been the focus of considerable research in the past few years due to the large customer base 

moving towards Android, which has attracted a corresponding number of malware writers. Several techniques have been used to detect 

the malicious behavior of Android applications as well as that of the complete system. Machine-learning techniques have been used in 

the past to assess the behavior of an application using either static or dynamic analysis. However, for large scale Android malware analy-

sis traditional machine learning techniques are not feasible. In this regard, many deep neural architectures have used static analysis. It has 

been shown that static analysis techniques can leave many malicious behaviors of an application unnoticed. In this paper, we used a new 

deep-learning architecture known as deep convolutional generative adversarial networks to measure the dynamic behavior of Android 

applications. More- over, we used the notion of Android intents as the parameter to measure the dynamic behavior of an application. We 

gathered a large set of intent-based behavior from more than 4,000 infected applications as well as 10 thousand applications’ good behav-

iors on our modified Oreo version of Android. We received an F1 score of 0.996 and AUC curve of 0.993, which is almost the same as 

those received by many state- of-the-art works using machine learning. 
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1. Introduction 

The basic intension behind the development of malware was in-

deed to test the knowledge and technique employed for particular 

software. Before 1980s, malware was not developed to hide per-

sonally or organizationally sensitive details, nor were they profit-

driven. Mostly they were developed by human without using tools 

to generate automated samples. A 2013 report disclosed that mo-

bile malware developers were earning up to $12,000 USD each 

month [1]. These monetary incentives caused PC malware devel-

opers to pro- duce millions of viruses, while, until 2009, only 

1,000 malware samples were known [2], [3]. Stolen information 

regarding vulnerabilities is sold [4]. As per report of Symantec, 

more than 430 million new malware were reported in the year 

2015. Furthermore, as available on statistics page of VirusTotal, 

there are over a million of newly retrieved samples that had to be 

analyzed [5], [6]. Symantec disclosed that on average, 272 new 

malware programs and 5 new malware families targeting Android 

are discovered every month [7]. Further details regarding Android 

malware vulnerabilities can be found in [8], [9] and in Figure 1. 

Currently, Android malware detection is based on static, dynamic 

and hybrid approaches. Many machine learning techniques are 

used to classify benign and malicious applications on Android 

platform. For example, DREBIN [10] one of the successful work 

done in the recent past to classify the behavior of the application 

on certain matrix, such as, permissions required by an application, 

API calls between the applications and middle- ware etc. 

 
Fig. 1: Android Malware Families 

They gathered a large dataset of 52 GB of behavior of 16 million 

benign applications’ behavior and around 4,000 malware samples. 

However, our work is different from DREBIN in certain ways i.e., 

we are considering the dynamic behavior of the applications to 

classify intents while the DREBIN conducts static analysis of 

applications. In addition, we considered large-scale classification 

models that work on very large datasets. In contrast DREBIN 

worked on traditional classification models, such as, SVMs which 

cannot be scaled to very large datasets. TaintDroid [11] is another 

quite famous work done on behavior tracking at various levels of 

the Android software stack. TaintDroid use ma- chine learning 

model to identify the bad and good behavior. TaintDroid works on 

out-of-the- box analysis technique to measure the run-time behav-
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ior of an app. However, one of our concerns regarding this kind of 

approach is its feasibility in the new Android version. Because of 

the many architectural changes in Android, such as its permission 

models, Delvik replacement with Android Run Time (ARM) etc., 

this technique is no longer workable. Similarly, this work is classi-

fying the behavior on traditional machine learning model. A step-

forward, there are few deep neural architectures models are recent-

ly employed that includes the Convolutional Neural Networks 

(CNNs) [12], Fully Connected Neural Networks (FCNN) [13], the 

deep belief networks (DBNs) [14], Deep Autoencoders [15], and 

recurrent neural networks (RNNs) [16] in the form of long short 

term memory (LSTM) [17] models that can detect malware with 

very low false positives rate. However, that works on static analy-

sis techniques and is not designed for dynamic analysis. Another 

recent work done by Nauman et al. [18] has focuses on how to 

deal with large scale datasets. They utilized various deep leaning 

models to capture good and bad behavior. However, their work is 

also based on static techniques. This means that they are not exe-

cuting the application and capturing its behavior based on certain 

parameters. In this paper, we have decided to capture the intents of 

an application to classify whether its behavior is malicious or be-

nign. The selection of Intents as the behavior of an application 

instead of system calls or other matrices was made to keep the 

simplicity of architecture as well as due to the various quick archi-

tectural changes that have been made to the Android framework. 

As Intent is the very basic element of an Android framework, and 

this notion cannot be changed because of backward compatibility 

of the old applications as well as the fact that changing the pro-

gramming paradigm for Android developers would be big a con-

cern for Google Inc. Our contribution in this paper is twofold.  

• We modified the recent Android OS (Oreo) to intercept the In-

tents of an application and generate very large dataset that is testa-

ble on deep learning model. Also, the Android was modified to 

capture the behavior of an application at run-time and detect 

whether an application is performing any malicious activity. If so, 

our system can generate an alarm to warn the user about unknown 

activity.  

• Second, we utilized deep convolutional generative adversarial 

network (DCGAN) to generate a dynamic behavior analysis model 

of an Android application. Through our primarily results, we 

proved that DCGAN can be an effective model for detection of 

malware and its adversarial examples and can pro- duce high rate 

of accuracy on the Android platform. The manuscript provides a 

detailed back- ground in section II that essentially explains the 

evolution of malware, various malware analysis techniques, and 

malware analysis taxonomy. In section III, we explain the meth-

odology and elaborate on the proposed machine learning DCGAN 

for Android security domain. We further provide experimental 

details and results in Section III (B) and conclude the paper in 

section IV. 

2. Background 

In this section, we provide background details regarding Android 

security. With the increase in Android malware samples, security 

experts provided appropriate remedial measures and developed a 

number of techniques over time. In the following section, we ex-

plain various methods for malware analysis.  

 

2.1. Methods for Malware Analysis 

 
Malware analysis is roughly classified into static, dynamic, and 

hybrid approaches [19], [20], [21], [22], [23]. In the following 

subsections, we review each of these approaches.  

1) Static Malware Analysis: The static analysis does not execute 

the application for analysis purpose. One of the static analysis 

tools includes PEInfo [24] which can extract information or prop-

erties from malware code to characterize malware samples. Static 

analysis of android applications is also done through the use of 

application permissions. Permissions, such as SEND SMS are an 

important feature for analysis as most actions require particular 

permissions in order to be invoked [18], [25]. As an example, 

before accessing the camera, the Android system checks if the 

requesting application has the CAMERA per- mission [26]. These 

requested permissions must be declared within the AndroidMan-

ifest.xml. As the manifest is easy to obtain statically, many 

frameworks, such as PScout [27], [26], [28], use static analysis to 

evaluate the risks of the Android permission system and individual 

applications. However, intruders can manipulate or obfuscate the 

malicious code such that the extraction of information becomes 

difficult [29], [20]. Second, static analysis does not consider net-

work activities and objects that are modified at runtime (also 

termed as reflections) since the effect of these modifications can 

only be viewed at run- time. An example of such a method is static 

taint analyser, [30], which detects privacy leaks among compo-

nents in Android applications.  

2) Dynamic Malware Analysis: Researchers have proposed dy-

namic behaviour analysis mechanisms that records traces of an 

activity during the execution of a malware sample in a controlled 

virtual environment. However, it is not guaranteed that a malware 

will execute un- expected in controlled environment as certain 

malware require a particular condition to occur or become unpack 

itself. A dynamic approach is complement to the static technique 

as it is less liable to obfuscation [31]. Both types of analysis help 

us understand the risks presented by and intentions of the attacker. 

One of the dynamic methods includes TaintDroid [11], which 

monitors the third party Android applications for possible misuse 

of private data. TainDroid keeps eyes on privacy sensitive data 

and how the downloaded applications use personal data of the 

users. Similar work is done by [32] known as FlowDroid and 

DroidScope [33], which monitors profile API-level activity, and 

track information leakage on the android while research conducted 

by [34] informs users about hidden behaviour pertaining to appli-

cations. SCANDROID [35] provides incremental approach for 

checking installed applications and confirming that the data flow-

ing through these applications are intact.  

3) Hybrid Malware Analysis: Approaches that utilize the 

strengths of both static and dynamic approaches are referred to as 

a hybrid analysis. In [36], [37], the authors in static manner in-

cluded hooks in security sensitive functions and APIs in order to 

capture behaviour for onward dynamic analysis. While in [38], the 

authors statically used intents to know all possible paths of execu-

tion to examine behaviour. However, all of these approaches take 

up over- head over Android performance and cannot detect per-

turbations made to the benign and malicious datasets. In the up-

coming sections, we provide details of our proposed solution 

which is a dynamic approach and consider Intents for malware 

analysis. 

3. Proposed System 

In the following section a detailed discussion on the proposed 

solution is provided which is further divided in two sections. The 

first explains the dataset collection for DCGAN classification and 

the second discusses proposed framework. 

 

3.1. Dataset of Intents 
 

Before elaborating how the Intents Dataset is generated, the role 

of Intents in Android is de- tailed. Intents are data structures hold-

ing descriptions about an operation which is required to be per- 

formed. It can be used with startActivity to launch an Activity, 

broadcastIntent to send it to any interested BroadcastReceiver 

components, and startService(Intent) or bindService (Intent, Ser- 

viceConnection) to communicate with a background Service. In-

tents facilitates in late runtime binding between the code among 

applications. Each intent contains action and data pieces of infor-
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mation The Action refers to the general action to be performed, 

such as ACTION_VIEW, ACTION_EDIT, ACTION_MAIN, etc. 

The data part of an intent specifies the data to operate on, as an 

example users record in contacts database. Few more examples of 

Action and data includes e.g. ACTION_VIEW con-

tent://contacts/people/2: provides details of person with identifier 

"2". Similarly ACTION_DIAL tel: 333: Displays the phone dialler 

with the given number. Similarly we have a number of intents for 

carrying out various tasks on Android platform. Since our frame-

work considers using Intents for classification of application, 

therefore, we require a dataset of Intents for dynamic analysis. A 

sample of few intents are numbered as shown in table 1. We ex-

plain how data set of intents is constructed in upcoming section. 

The widely used Drebin [10] and other similar Android  

 
Table i: Mapping of Intents to its corresponding number value 

Number Intent Description 

… … … 

1 Action_Main 
Start as a main entry point, does 

not expect to, receive data. 

160 Action_View Display the data to the user. 

150 Action_Attach_Data 
Used to indicate that some piece of 

data should be attached 

210 Action_Dial 
Dial a number as specified by the 
data. 

03 Action_Call 
Perform a call to someone 

specified by the data 

… … … 

 

Datasets [39] do not possess runtime behavioural data and mostly 

have static information regarding applications, while this studies 

aims at analysing the dynamic behaviour of application on An-

droid. For analysing runtime behaviour of applications, a dataset 

was generated based on Android Intents. The Oreo source code 

was downloaded, and hooks are utilized in order to capture all 

possible behaviours an application could exhibit during its runtime. 

Around 10 million application’s data are collected that were 

downloaded using (GPlayCLI) [40]. We installed these applica-

tions over our modified Android OS to generate very large dataset 

of Intents generated by these apps. Hooks are placed in Android 

OS and stored the behaviour in log files to initially learn via our 

discriminative model. The collected data from various applications 

behaviour received around 5GB of intents sequences. We applied 

DCGAN model on our dataset by dividing it into training and test 

sets. The dataset is classified into training set, and test sets with 

ratio of 2/3 and 1/3 respectively at random. That is performed to 

ensure learning and to avoid memorization and look up table. If 

we use whole dataset as training set it will be like look up table 

and model will not perform well when real data is provided to it. 

Machine might have saved the results somewhere in memory. The 

k-fold cross validation concept was applied for providing more 

rigorous sampling and to overcome anomalies within datasets. 

 

3.2. Proposed Framework:  

 

Use of Generative Model We propose use of one of a cutting-edge 

concept in deep learning i.e. generative and discriminative models 

specifically the Deep Convolutional Generative Adversarial Net-

works (DCGANs) [41], [42], [43], which have recently gained 

marvellous acceptance in comparing adversarial examples. It has a 

pair of models the Generator and Discriminator as depicted in 

Figure 2.   

 

A generative model tries to learn the joint probability of the input 

data and labels simultaneously, i.e. P(x, y). The generative model 

creates likely new (x, y) distribution samples, while the discrimi-

native model maps labelled inputs (x) to class output labels (y). 

 

 

 

 

 

 

 

 

 
Fig. 2: Layers of generator and discriminator in Deep Convolutional Generated Adversarial Network [42] 

 

In other words, they learn the probability distribution Prob (y | x). 

The generator network generates more realistic examples while 

the discriminator network learns to get more and better in recog-

nizing the true data from generated one. Both the networks learn 

to get better using learning parameters whose values are updated 

through gradient descend algorithm used in the DCGAN. The 

discriminator update function is represented as: 
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While the generator update mathematical function is: 
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We propose to use the generator to receive sequence intents as a 

vector of input (x), learn parts of input representations, and gener-

ate specific data/intents that are similar to the input in order to 

generate variation in the input. The Discriminator which is trained 

on original inputs (in our case benign intents) verifies whether the 

input sequence is original or it’s generated (possibly different 

patterns of malware). Polymorphic malware are mostly generated 

version of existing malware that are modified. Mathematically the 

cost function of the DCGAN is represented as [41]: 

 

minmaxV (G,D)= Ex∼p logD(x)+Ez∼pzz log(1−D(G(z)))       (3) 

 

This study contributes by training a DCGAN on recorded benign 

sequences of intents i.e. benign behaviours in order to execute 

various permissions and to protect execution of unwanted combi-

nations of sequences of intents to ensure security of applications 

and data. The DCGAN, which is proven to perform very well in 

the domain of vision, determines the underline patterns among 

various permissions and generates alarm in case of manipulated 
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intents or for those permissions that were not granted for specific 

tasks. 

 

3.3. Experimental setup Required Tools:  

 
The following mandatory con- figuration was made for implemen-

tation of DC- GAN:  

 

1. Pandas and Numpuy: In order to handle data we used Pandas 

library, while the Numpy is used for numeric computations.  

 

2. Theano: It has the capability to produce optimized implementa-

tions related to mathematical functions that are based on multi-

dimensional tensors. Theano compiles C low level language code 

for symbolic computation. Based on the features it offers theano is 

configured in many domains in the literature for deep learning [44]  

TensorFlow is a similar library presented by Google [45].  

 

3. Keras, a library that is used for Deep Learning and creation of 

Neural Networks. It accepts one of the two backends i.e. Ten-

sorflow and Theano. We use Theano as it is more stable.  

 

4. Matplotlib: For plotting and visualization. 

4. Results 

At last we might want to convey our best outcomes to take note. 

Using Deep Convolutional Generative Adversarial Networks, on a 

reasonably large dataset, we obtained the best possible results, 

which obviously beat other deep learning models trained on a 

dataset. Similarly, we claim that DCGAN is quite appropriate 

technique that is used to detect malicious behaviour deviating 

from normal for an Android app. DCGAN accomplished the best 

F1 score of 0.996, a score better than any state-of-the-art an-

nounced outcomes. Moreover, we obtained 0.988 accuracy, 0.993 

precision and FPR of 0.002, which is quite acceptable. The mal-

ware detection rate was 0.991 and the AUC was 0.993 as repre-

sented in Figure 3.  

 
Fig. 3: Receiving Operating Characteristic(ROC) for Deep Learning em-

ployed models [18] 

 

The results of employing DCGAN as compared to other ap-

proaches are provided in Table II. 
 

Table II: Malware Analysis Results on Deep Learning Employed Models 

[18] 

 

 

 

 

 

5. Conclusion  

 
The Security and privacy of Android application has always been 

a top priority for service providers and consumers. A number of 

techniques have been employed for protecting Android devices 

and sometimes a complete OS stack. This paper contributes to 

design and implement a dynamic malware classification technique 

based Intents generated by an app. Our results showed that it pro-

vides high accuracy i.e. with maximum TP and minimum FP. The 

framework is real time deployable and is non-signature based 

malware detection technique. State-of-the-art employed machine 

learning approaches include the Neural Networks, RNN and ESN. 

Furthermore, the idea is presented that how we use Deep Convolu-

tional Generated Adversarial Networks (DCGANs) for intents 

based malware analysis. The DCGANs have provided fine-tuned 

results in pattern recognition in various domains. Indeed, 

DCGANS are more robust as compared to the present machine 

learning techniques employed. We believe that our approach im-

proves and produces more accurate results than previously provid-

ed machine learning techniques.  
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