

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.29) (2018) 101-103

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Deep Convolutional Generative Adversarial Networks for In-

tent-based Dynamic Behavior Capture

Salman Jan1*,2, Shahrulniza Musa1, Toqeer Ali3, and Ali Alzahrani3

1Malaysian Institute of Information Technology,
1Universiti Kuala Lumpur
2University of Peshawar

3Islamic University of Madinah

*Corresponding author E-mail: jan.salman@s.unikl.edu.my

Abstract

Malware analysis for Android systems has been the focus of considerable research in the past few years due to the large customer base

moving towards Android, which has attracted a corresponding number of malware writers. Several techniques have been used to detect

the malicious behavior of Android applications as well as that of the complete system. Machine-learning techniques have been used in

the past to assess the behavior of an application using either static or dynamic analysis. However, for large scale Android malware analy-

sis traditional machine learning techniques are not feasible. In this regard, many deep neural architectures have used static analysis. It has

been shown that static analysis techniques can leave many malicious behaviors of an application unnoticed. In this paper, we used a new

deep-learning architecture known as deep convolutional generative adversarial networks to measure the dynamic behavior of Android

applications. More- over, we used the notion of Android intents as the parameter to measure the dynamic behavior of an application. We

gathered a large set of intent-based behavior from more than 4,000 infected applications as well as 10 thousand applications’ good behav-

iors on our modified Oreo version of Android. We received an F1 score of 0.996 and AUC curve of 0.993, which is almost the same as

those received by many state- of-the-art works using machine learning.

Keywords: Android security, Malware detection, Deep Learning, Generative Models, DCGAN,

1. Introduction

The basic intension behind the development of malware was in-

deed to test the knowledge and technique employed for particular

software. Before 1980s, malware was not developed to hide per-

sonally or organizationally sensitive details, nor were they profit-

driven. Mostly they were developed by human without using tools

to generate automated samples. A 2013 report disclosed that mo-

bile malware developers were earning up to $12,000 USD each

month [1]. These monetary incentives caused PC malware devel-

opers to pro- duce millions of viruses, while, until 2009, only

1,000 malware samples were known [2], [3]. Stolen information

regarding vulnerabilities is sold [4]. As per report of Symantec,

more than 430 million new malware were reported in the year

2015. Furthermore, as available on statistics page of VirusTotal,

there are over a million of newly retrieved samples that had to be

analyzed [5], [6]. Symantec disclosed that on average, 272 new

malware programs and 5 new malware families targeting Android

are discovered every month [7]. Further details regarding Android

malware vulnerabilities can be found in [8], [9] and in Figure 1.

Currently, Android malware detection is based on static, dynamic

and hybrid approaches. Many machine learning techniques are

used to classify benign and malicious applications on Android

platform. For example, DREBIN [10] one of the successful work

done in the recent past to classify the behavior of the application

on certain matrix, such as, permissions required by an application,

API calls between the applications and middle- ware etc.

Fig. 1: Android Malware Families

They gathered a large dataset of 52 GB of behavior of 16 million

benign applications’ behavior and around 4,000 malware samples.

However, our work is different from DREBIN in certain ways i.e.,

we are considering the dynamic behavior of the applications to

classify intents while the DREBIN conducts static analysis of

applications. In addition, we considered large-scale classification

models that work on very large datasets. In contrast DREBIN

worked on traditional classification models, such as, SVMs which

cannot be scaled to very large datasets. TaintDroid [11] is another

quite famous work done on behavior tracking at various levels of

the Android software stack. TaintDroid use ma- chine learning

model to identify the bad and good behavior. TaintDroid works on

out-of-the- box analysis technique to measure the run-time behav-

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJET

2 International Journal of Engineering & Technology

ior of an app. However, one of our concerns regarding this kind of

approach is its feasibility in the new Android version. Because of

the many architectural changes in Android, such as its permission

models, Delvik replacement with Android Run Time (ARM) etc.,

this technique is no longer workable. Similarly, this work is classi-

fying the behavior on traditional machine learning model. A step-

forward, there are few deep neural architectures models are recent-

ly employed that includes the Convolutional Neural Networks

(CNNs) [12], Fully Connected Neural Networks (FCNN) [13], the

deep belief networks (DBNs) [14], Deep Autoencoders [15], and

recurrent neural networks (RNNs) [16] in the form of long short

term memory (LSTM) [17] models that can detect malware with

very low false positives rate. However, that works on static analy-

sis techniques and is not designed for dynamic analysis. Another

recent work done by Nauman et al. [18] has focuses on how to

deal with large scale datasets. They utilized various deep leaning

models to capture good and bad behavior. However, their work is

also based on static techniques. This means that they are not exe-

cuting the application and capturing its behavior based on certain

parameters. In this paper, we have decided to capture the intents of

an application to classify whether its behavior is malicious or be-

nign. The selection of Intents as the behavior of an application

instead of system calls or other matrices was made to keep the

simplicity of architecture as well as due to the various quick archi-

tectural changes that have been made to the Android framework.

As Intent is the very basic element of an Android framework, and

this notion cannot be changed because of backward compatibility

of the old applications as well as the fact that changing the pro-

gramming paradigm for Android developers would be big a con-

cern for Google Inc. Our contribution in this paper is twofold.

• We modified the recent Android OS (Oreo) to intercept the In-

tents of an application and generate very large dataset that is testa-

ble on deep learning model. Also, the Android was modified to

capture the behavior of an application at run-time and detect

whether an application is performing any malicious activity. If so,

our system can generate an alarm to warn the user about unknown

activity.

• Second, we utilized deep convolutional generative adversarial

network (DCGAN) to generate a dynamic behavior analysis model

of an Android application. Through our primarily results, we

proved that DCGAN can be an effective model for detection of

malware and its adversarial examples and can pro- duce high rate

of accuracy on the Android platform. The manuscript provides a

detailed back- ground in section II that essentially explains the

evolution of malware, various malware analysis techniques, and

malware analysis taxonomy. In section III, we explain the meth-

odology and elaborate on the proposed machine learning DCGAN

for Android security domain. We further provide experimental

details and results in Section III (B) and conclude the paper in

section IV.

2. Background

In this section, we provide background details regarding Android

security. With the increase in Android malware samples, security

experts provided appropriate remedial measures and developed a

number of techniques over time. In the following section, we ex-

plain various methods for malware analysis.

2.1. Methods for Malware Analysis

Malware analysis is roughly classified into static, dynamic, and

hybrid approaches [19], [20], [21], [22], [23]. In the following

subsections, we review each of these approaches.

1) Static Malware Analysis: The static analysis does not execute

the application for analysis purpose. One of the static analysis

tools includes PEInfo [24] which can extract information or prop-

erties from malware code to characterize malware samples. Static

analysis of android applications is also done through the use of

application permissions. Permissions, such as SEND SMS are an

important feature for analysis as most actions require particular

permissions in order to be invoked [18], [25]. As an example,

before accessing the camera, the Android system checks if the

requesting application has the CAMERA per- mission [26]. These

requested permissions must be declared within the AndroidMan-

ifest.xml. As the manifest is easy to obtain statically, many

frameworks, such as PScout [27], [26], [28], use static analysis to

evaluate the risks of the Android permission system and individual

applications. However, intruders can manipulate or obfuscate the

malicious code such that the extraction of information becomes

difficult [29], [20]. Second, static analysis does not consider net-

work activities and objects that are modified at runtime (also

termed as reflections) since the effect of these modifications can

only be viewed at run- time. An example of such a method is static

taint analyser, [30], which detects privacy leaks among compo-

nents in Android applications.

2) Dynamic Malware Analysis: Researchers have proposed dy-

namic behaviour analysis mechanisms that records traces of an

activity during the execution of a malware sample in a controlled

virtual environment. However, it is not guaranteed that a malware

will execute un- expected in controlled environment as certain

malware require a particular condition to occur or become unpack

itself. A dynamic approach is complement to the static technique

as it is less liable to obfuscation [31]. Both types of analysis help

us understand the risks presented by and intentions of the attacker.

One of the dynamic methods includes TaintDroid [11], which

monitors the third party Android applications for possible misuse

of private data. TainDroid keeps eyes on privacy sensitive data

and how the downloaded applications use personal data of the

users. Similar work is done by [32] known as FlowDroid and

DroidScope [33], which monitors profile API-level activity, and

track information leakage on the android while research conducted

by [34] informs users about hidden behaviour pertaining to appli-

cations. SCANDROID [35] provides incremental approach for

checking installed applications and confirming that the data flow-

ing through these applications are intact.

3) Hybrid Malware Analysis: Approaches that utilize the

strengths of both static and dynamic approaches are referred to as

a hybrid analysis. In [36], [37], the authors in static manner in-

cluded hooks in security sensitive functions and APIs in order to

capture behaviour for onward dynamic analysis. While in [38], the

authors statically used intents to know all possible paths of execu-

tion to examine behaviour. However, all of these approaches take

up over- head over Android performance and cannot detect per-

turbations made to the benign and malicious datasets. In the up-

coming sections, we provide details of our proposed solution

which is a dynamic approach and consider Intents for malware

analysis.

3. Proposed System

In the following section a detailed discussion on the proposed

solution is provided which is further divided in two sections. The

first explains the dataset collection for DCGAN classification and

the second discusses proposed framework.

3.1. Dataset of Intents

Before elaborating how the Intents Dataset is generated, the role

of Intents in Android is de- tailed. Intents are data structures hold-

ing descriptions about an operation which is required to be per-

formed. It can be used with startActivity to launch an Activity,

broadcastIntent to send it to any interested BroadcastReceiver

components, and startService(Intent) or bindService (Intent, Ser-

viceConnection) to communicate with a background Service. In-

tents facilitates in late runtime binding between the code among

applications. Each intent contains action and data pieces of infor-

International Journal of Engineering & Technology 3

mation The Action refers to the general action to be performed,

such as ACTION_VIEW, ACTION_EDIT, ACTION_MAIN, etc.

The data part of an intent specifies the data to operate on, as an

example users record in contacts database. Few more examples of

Action and data includes e.g. ACTION_VIEW con-

tent://contacts/people/2: provides details of person with identifier

"2". Similarly ACTION_DIAL tel: 333: Displays the phone dialler

with the given number. Similarly we have a number of intents for

carrying out various tasks on Android platform. Since our frame-

work considers using Intents for classification of application,

therefore, we require a dataset of Intents for dynamic analysis. A

sample of few intents are numbered as shown in table 1. We ex-

plain how data set of intents is constructed in upcoming section.

The widely used Drebin [10] and other similar Android

Table i: Mapping of Intents to its corresponding number value

Number Intent Description

… … …

1 Action_Main
Start as a main entry point, does

not expect to, receive data.

160 Action_View Display the data to the user.

150 Action_Attach_Data
Used to indicate that some piece of

data should be attached

210 Action_Dial
Dial a number as specified by the
data.

03 Action_Call
Perform a call to someone

specified by the data

… … …

Datasets [39] do not possess runtime behavioural data and mostly

have static information regarding applications, while this studies

aims at analysing the dynamic behaviour of application on An-

droid. For analysing runtime behaviour of applications, a dataset

was generated based on Android Intents. The Oreo source code

was downloaded, and hooks are utilized in order to capture all

possible behaviours an application could exhibit during its runtime.

Around 10 million application’s data are collected that were

downloaded using (GPlayCLI) [40]. We installed these applica-

tions over our modified Android OS to generate very large dataset

of Intents generated by these apps. Hooks are placed in Android

OS and stored the behaviour in log files to initially learn via our

discriminative model. The collected data from various applications

behaviour received around 5GB of intents sequences. We applied

DCGAN model on our dataset by dividing it into training and test

sets. The dataset is classified into training set, and test sets with

ratio of 2/3 and 1/3 respectively at random. That is performed to

ensure learning and to avoid memorization and look up table. If

we use whole dataset as training set it will be like look up table

and model will not perform well when real data is provided to it.

Machine might have saved the results somewhere in memory. The

k-fold cross validation concept was applied for providing more

rigorous sampling and to overcome anomalies within datasets.

3.2. Proposed Framework:

Use of Generative Model We propose use of one of a cutting-edge

concept in deep learning i.e. generative and discriminative models

specifically the Deep Convolutional Generative Adversarial Net-

works (DCGANs) [41], [42], [43], which have recently gained

marvellous acceptance in comparing adversarial examples. It has a

pair of models the Generator and Discriminator as depicted in

Figure 2.

A generative model tries to learn the joint probability of the input

data and labels simultaneously, i.e. P(x, y). The generative model

creates likely new (x, y) distribution samples, while the discrimi-

native model maps labelled inputs (x) to class output labels (y).

Fig. 2: Layers of generator and discriminator in Deep Convolutional Generated Adversarial Network [42]

In other words, they learn the probability distribution Prob (y | x).

The generator network generates more realistic examples while

the discriminator network learns to get more and better in recog-

nizing the true data from generated one. Both the networks learn

to get better using learning parameters whose values are updated

through gradient descend algorithm used in the DCGAN. The

discriminator update function is represented as:

)))]
)(

((1()
)(

([log)1(
1 i

ZGDLog
i

xD
m

i
m

d −+= (1)

While the generator update mathematical function is:

)))
)(

((1log()1(
1 i

ZGD
m

i
m

d −=

 (2)

We propose to use the generator to receive sequence intents as a

vector of input (x), learn parts of input representations, and gener-

ate specific data/intents that are similar to the input in order to

generate variation in the input. The Discriminator which is trained

on original inputs (in our case benign intents) verifies whether the

input sequence is original or it’s generated (possibly different

patterns of malware). Polymorphic malware are mostly generated

version of existing malware that are modified. Mathematically the

cost function of the DCGAN is represented as [41]:

minmaxV (G,D)= Ex∼p logD(x)+Ez∼pzz log(1−D(G(z))) (3)

This study contributes by training a DCGAN on recorded benign

sequences of intents i.e. benign behaviours in order to execute

various permissions and to protect execution of unwanted combi-

nations of sequences of intents to ensure security of applications

and data. The DCGAN, which is proven to perform very well in

the domain of vision, determines the underline patterns among

various permissions and generates alarm in case of manipulated

4 International Journal of Engineering & Technology

intents or for those permissions that were not granted for specific

tasks.

3.3. Experimental setup Required Tools:

The following mandatory con- figuration was made for implemen-

tation of DC- GAN:

1. Pandas and Numpuy: In order to handle data we used Pandas

library, while the Numpy is used for numeric computations.

2. Theano: It has the capability to produce optimized implementa-

tions related to mathematical functions that are based on multi-

dimensional tensors. Theano compiles C low level language code

for symbolic computation. Based on the features it offers theano is

configured in many domains in the literature for deep learning [44]

TensorFlow is a similar library presented by Google [45].

3. Keras, a library that is used for Deep Learning and creation of

Neural Networks. It accepts one of the two backends i.e. Ten-

sorflow and Theano. We use Theano as it is more stable.

4. Matplotlib: For plotting and visualization.

4. Results

At last we might want to convey our best outcomes to take note.

Using Deep Convolutional Generative Adversarial Networks, on a

reasonably large dataset, we obtained the best possible results,

which obviously beat other deep learning models trained on a

dataset. Similarly, we claim that DCGAN is quite appropriate

technique that is used to detect malicious behaviour deviating

from normal for an Android app. DCGAN accomplished the best

F1 score of 0.996, a score better than any state-of-the-art an-

nounced outcomes. Moreover, we obtained 0.988 accuracy, 0.993

precision and FPR of 0.002, which is quite acceptable. The mal-

ware detection rate was 0.991 and the AUC was 0.993 as repre-

sented in Figure 3.

Fig. 3: Receiving Operating Characteristic(ROC) for Deep Learning em-

ployed models [18]

The results of employing DCGAN as compared to other ap-

proaches are provided in Table II.

Table II: Malware Analysis Results on Deep Learning Employed Models

[18]

5. Conclusion

The Security and privacy of Android application has always been

a top priority for service providers and consumers. A number of

techniques have been employed for protecting Android devices

and sometimes a complete OS stack. This paper contributes to

design and implement a dynamic malware classification technique

based Intents generated by an app. Our results showed that it pro-

vides high accuracy i.e. with maximum TP and minimum FP. The

framework is real time deployable and is non-signature based

malware detection technique. State-of-the-art employed machine

learning approaches include the Neural Networks, RNN and ESN.

Furthermore, the idea is presented that how we use Deep Convolu-

tional Generated Adversarial Networks (DCGANs) for intents

based malware analysis. The DCGANs have provided fine-tuned

results in pattern recognition in various domains. Indeed,

DCGANS are more robust as compared to the present machine

learning techniques employed. We believe that our approach im-

proves and produces more accurate results than previously provid-

ed machine learning techniques.

Acknowledgement

This studies is based on PhD research work of the principal author

at Malaysian Institute of Information Technology, University Kua-

la Lumpur.

References

[1] T. Register, “Earn £8,000 a MONTH with bogus apps from Russian

malware factories,” 2013, available at:
https://www.theregister.co.uk/2013/08/05/mobile_ mal-

ware_lookout/.

[2] “McAfee Threats Report: First Quarter 2013,” 2013, available at:
https://www.wilderssecurity.com/threads/ mcafee-threats-report-

first-quarter-2013.348153/.

[3] McAfee, “McAfee Threats Report: 2014,” 2013, available at:
https://www.mcafee.com/error-pages/404.aspx?

url=https://www.mcafee.com/us/resources/reports/ rp-threats-

predictions-2014.pdf.
[4] I. Week, “Cybercrime Black Market ,” 2014, avail- able at:

https://ulasforensikadigital.weebly.com/home/ cybercrime-black-

market.
[5] Symantec, “Internet Security Threat Report,” April 2016,

https://www.symantec.com/content/dam/symantec/

docs/reports/istr-21-2016-en.pdf.
[6] Google, “VirusTotal. File Statistics,” https://www. virusto-

tal.com/en/statistics/,July2017.
[7] Symantec, “Internet Security Threat Report 2014,” 2014, available

at: https://issuu.com/ezenta-itsikkerhed/docs/ inter-

net_security_threat_ report_201.
[8] J. J. Drake, Z. Lanier, C. Mulliner, P. O. Fora, S. A. Ridley, and G.

Wicherski, Android hacker’s handbook. John Wiley & Sons, 2014.

[9] S. Ltd, “Android Malware Families,” 2009, avail- able at:
http://developer.android.com/reference/java/

net/URLClassLoader.html.

[10] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C.
Siemens, “Drebin: Effective and explain- able detection of android

malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[11] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taint- droid: an infor-

mation-flow tracking system for realtime privacy monitoring on

smartphones,” ACM Transactions on Computer Systems (TOCS),
vol. 32, no. 2, p. 5, 2014.

[12] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,

speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[13] K. Hornik, M. Stinchcombe, and H. White, “Multi- layer feedfor-

ward networks are universal approxima- tors,” Neural networks, vol.
2, no. 5, pp. 359–366, 1989.

[14] R. Salakhutdinov and I. Murray, “On the quantitative analysis of

deep belief networks,” in Proceedings of the 25th international con-
ference on Machine learning. ACM, 2008, pp. 872–879.

International Journal of Engineering & Technology 5

[15] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionali-

ty of data with neural networks,” science, vol. 313, no. 5786, pp.
504–507, 2006.

[16] Z. Yang, Z. Hu, Y. Deng, C. Dyer, and A. Smola, “Neural machine

translation with recurrent attention modeling,” arXiv preprint
arXiv:1607.05108, 2016.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural computation, vol. 9, no. 8, pp. 1735– 1780, 1997.
[18] M. Nauman, T. A. Tanveer, S. Khan, and T. A. Syed, “Deep neural

architectures for large scale android malware analysis,” Cluster
Computing, pp. 1–20, 2017.

[19] M. I. Sharif, V. Yegneswaran, H. Saidi, P. A. Porras, and W. Lee,

“Eureka: A framework for enabling static malware analysis.” in
ESORICS, vol. 8. Springer, 2008, pp. 481– 500.

[20] [A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for

malware detection,” in Computer security applications conference,
2007. ACSAC 2007. Twenty-third annual. IEEE, 2007, pp. 421–

430.

[21] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Ki- raz, K. A.
Yuksel, S. A. Camtepe, and S. Albayrak, “Static analysis of execut-

ables for collaborative malware detec- tion on android,” in Com-

munications, 2009. ICC’09. IEEE International Conference on.

IEEE, 2009, pp. 1–5.

[22] D. Kim, A. Majlesi-Kupaei, J. Roy, K. Anand, K. ElWazeer, D.

Buettner, and R. Barua, “Dynodet: Detecting dynamic obfuscation
in malware,” in International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment. Springer, 2017, pp.

97–118.
[23] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of

malware based on integrated static and dynamic features,” Journal

of Network and Computer Applications, vol. 36, no. 2, pp. 646–656,
2013.

[24] github, “PEInfor Service.” https://github.com/crits/crits_ ser-

vices/tree/master/peinfo_service,July2017.
[25] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,

“Droidmat: Android malware detection through manifestand API

calls tracing,” in Information Security (Asia JCIS), 2012 Seventh
Asia Joint Conference on. IEEE, 2012, pp. 62–69.

[26] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android

permissions demystified,” in Proceedings of the 18th ACM confer-
ence on Computer and communications security. ACM, 2011, pp.

627–638.

[27] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012

ACM conference on Computer and communications security. ACM,

2012, pp. 217–228.
[28] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evo-

lution in the android ecosystem,” in Proceedings of the 28th Annual

Computer Security Applications Conference. ACM, 2012, pp. 31–
40.

[29] C. Linn and S. Debray, “Obfuscation of executable code to improve

resistance to static disassembly,” in Proceedings of the 10th ACM
conference on Computer and communications security. ACM, 2003,

pp. 290–299.

[30] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S.
Rasthofer, E. Bodden, D. Octeau, and P. Mc- Daniel, “Iccta: De-

tecting inter-component privacy leaks in android apps,” in Proceed-

ings of the 37th International Conference on Software Engineering-
Volume 1. IEEE Press, 2015, pp. 280–291.

[31] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution

paths for malware analysis,” in Security and Privacy, 2007. SP’07.

IEEE Symposium on. IEEE, 2007, pp. 231–245.

[32] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, and P. McDaniel, “Flow- droid: Precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for

android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269,
2014.

[33] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the

os and dalvik semantic views for dynamic android malware analy-
sis.” in USENIX security symposium, 2012, pp. 569–584.

[34] B. Davis and H. Chen, “Retroskeleton: retrofitting an- droid apps,”

in Proceeding of the 11th annual international conference on Mo-
bile systems, applications, and services. ACM, 2013, pp. 181–192.

[35] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated

security certification of android,” Tech. Rep., 2009.
[36] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-

Rekowsky, “Appguard–fine-grained policy enforcement for un-

trusted android applications,” in Data Privacy Management and Au-

tonomous Spontaneous Security. Springer, 2014, pp. 213–231.
[37] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNa- mara, T.

R. Magrino, E. X. Wu, M. Rinard, and D. X. Song, “Contextual

policy enforcement in android applications with permission event
graphs.” in NDSS, 2013, p. 234.

[38] T.-H. Ho, D. Dean, X. Gu, and W. Enck, “Prec: practical root ex-

ploit containment for android devices,” in Proceedings of the 4th
ACM conference on Data and application security and privacy.

ACM, 2014, pp. 187– 198.
[39] VXShare, “VirusShare,” Accessed date 03 November 2017, availa-

ble at: https://www.virusshare.com.

[40] Google Play Downloader via Command line, https://
github.com/matlink/gplaycli.

[41] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” in Advances in neural information processing systems,

2014, pp. 2672–2680.

[42] Z. C. Lipton, “Deep Convolutional Generative Adversarial Net-
works,” available at: https://github.com/zackchase/ mxnet-the-

straight-dope/blob/master/chapter14_ generative-adversarial-

networks/dcgan.ipynb.

[43] J. Burns, “Exploratory Android Surgery,” in Black Hat Technical

Security Conference USA, 2009, available at:

https://www.blackhat.com/html/bh-usa-09/ bh-usa-09-archives.html.
[44] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Good- fellow, A.

Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano:

new features and speed improve- ments,” arXiv preprint
arXiv:1211.5590, 2012.

[45] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.

Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,

2015,” arXiv preprint arXiv:1603.04467, 2015.

