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Abstract 
 
The identification and selection of different physical parameters greatly influence the machining of materials. Cutting speed, feed, tool 
rake angle and friction are important physical parameters that affect the machining of the materials. Selection of suitable cutting parame-

ters can help to achieve the better machining quality and enhanced tool life. Properly defined FE-model can efficiently simulate the ma-
chining processes and thus may help to save the machining cost and expensive materials instead of performing real-life experiments. In 
the present work, a detailed finite element analysis on the orthogonal cutting of aluminium alloy (AA2024) is conducted to validate the 
FE-based machining model. Numerically obtained resultant cutting forces are successfully compared with the experimental results for 
0.3 and 0.4 mm/rev cutting feeds with 17.5° tool rake angle. Subsequently, the cutting forces are predicted for the selected feeds of 0.35 
& 0.45 mm/rev and for different tool rake angles like 9.5°, 13.5° & 21.5° using finite element analysis. Finally, the optimum cutting pa-
rameters are suggested for cutting AA2024.           
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1. Introduction 

The aeronautical grade aluminium alloy 2024 (AA2024) is widely 
used in various engineering applications because of its excellent 
mechanical properties. This particular material goes under various 

machining processes before taking the designed shape of the fin-
ished product and thus experience severe cutting forces [1-2]. The 
different cutting parameters like cutting speed, feed, tool rake 
angle, and workpiece/tool interface friction affect the machining 
quality and chip formation morphology [3]. An exhaustive exper-
imentation is required to determine the optimum cutting parame-
ters that can enhance the machining quality and effective tool life. 
The finite element analysis can provide the alternate solution to 

the expensive experimentation provided that required material 
properties are available [4-5]. Different researchers performed 
finite element analysis to simulate the machining processes of 
metallic materials [6-11].  
The cutting procedure in metals may be simulated using two es-
tablished approaches i.e. fracture mechanics and damage mechan-
ics. Fracture mechanics assumes that a crack is already present in 
the component and energy is required to propagate it further [12]. 

Damage mechanics not only deals with the propagation of a crack 
but can also deal with the initiation of a crack [13-14]. The later 
approach is adopted in the current study to simulate the machining 
process. A damage layer of the order of tool tip radius is modelled 
between workpiece support and chip. This damaged layer is mod-
elled with Johnson-Cook plasticity material behaviour coupled 
with damage evolution law. Various researchers used Johnson-
Cook plasticity coupled damage model to successfully simulate 
the machining process in metals [15-17].  

In this article, a comprehensive 2D finite element analysis study is 
carried out to simulate the orthogonal cutting process of AA2024. 
Commercially available finite element software 

ABAQUS/Explicit is used to model and simulate the machining 
process. Finite element (FE) simulations are performed consider-
ing different cutting parameters like cutting speed, feed, tool rake 
angle and friction effect at the workpiece/tool interface surfaces. 
Numerically acquired cutting forces results are compared with the 
experimental results for 0.3 and 0.4 mm/rev feeds with 17.5° rake 
angle [4]. In addition, two more feeds (0.35 and 0.45 mm/rev) and 
three different rake angles (9.5°, 13.5° and 21.5°) are selected for 

FE simulations and resultant cutting forces are predicted for the 
orthogonal cutting process of AA2024.  
This article is organized as follows: the selected Johnson-Cook 
plasticity coupled damaged material model is explained in section 
2. Finite element modeling and analysis considering various cut-
ting parameters is described in section 3 and finally concluding 
remarks are presented in section 4. 

2. Material Model for FE-Analysis 

Plasticity and damaged coupled Johnson-Cook (JC) material mod-
el will be employed for the FE simulations of cutting and chip 
formation processes [18]. JC model describes the material behav-
iour taking into account the high strain rates, large strains and 
temperature dependant viscoplasticity effects [18-19]. Consider 

that   is the plastic flow stress then following relation can be    

expressed [18]: 

http://creativecommons.org/licenses/by/3.0/
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Where; A , B  and n are the strain hardening material constants; 

C  is strain hardening rate constant, m  is thermal softening mate-

rial constant, 
roomT represents the reference ambient temperature 

and 
meltT is the melting temperature of the considered material.   

is the equivalent plastic strain, 


 and 0


 are the plastic strain rate 

and reference strain rate respectively. y is material’s yield 

strength. If one assumes that 0i


 is the plastic strain at damage 

initiation then expressed by the following relation [19]: 
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In the above equation, P  is the pressure stress and 
1 5~D D  are the 

experimentally determined damage constants. Different JC param-
eters for AA2024 are given in Table 1. During the FE computa-
tions, the damage is initiated when a scalar parameter  exceeds 1 

and is expressed as follows [20]: 
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Following energy-based criteria is adopted for the initiation and 
propagation of fracture in the material [4] [13]: 
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Where; fG  and fu  are energy and equivalent plastic displace-

ment at fracture respectively. This equivalent plastic displacement 
can be expressed using the following relation [21]:  
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Fracture energy required for mode I and II crack growth can be 
calculated using the relation given below [4]:  
 

   
2

2

, ,

1
f CI II I II

G K
E

 
  
 

                                              (6) 

 
Here, 

ICK  and 
IICK are the mode I and II fracture toughness and 

their values are 26 (MPa )ICK m  and 37 (MPa )IICK m  [4]. E  

is the modulus of elasticity of the material and   is the Poisson 

ratio. If D  is defined as scalar damage variable then it can be 

represented by linear or exponential damage evolution laws [4]. 
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The uni-axial stress-strain response for linear and exponential 
damage evolution laws is shown in Fig. 1 and properties of differ-
ent JC parameters are listed in Table 1. 

3. Finite Element Analysis 

In this section, 2D FE analysis results are presented and discussed 
for the orthogonal cutting process of AA2024 with different cut-
ting parameters such as cutting speed (V), tool rake angle (γo), 
feed (ƒ) and friction coefficient (µ). All the simulations are per-

formed in ABAQUS/Explicit using coupled temperature-
displacement four node quadrilateral continuum elements with 
plane strain assumption (CPE4RT).  
The workpiece and tool geometries along with necessary boundary 
conditions are shown in Fig. 2. The workpiece is divided into 
three parts as: 1) chip 2) damage zone 3) workpiece support. The 
size of the damage zone is of the order of the tool tip radius [22]. 
A Coulomb friction model is used between the tool and workpiece 

surfaces [4]. Moreover, chip also makes self contact. During the 
FE analysis the tool will interact and follow the damage zone path. 
The properties of the workpiece and tool are given in Table I. FE 
analysis results of cutting forces are compared with the experi-
mental results for orthogonal cutting of AA2024 [4]. 
 

Table 1: Workpiece and Tool Properties for AA2024 [4] 

Physical parameter Work piece (AA2024) Tool  

Density, ρ (Kg/m
3
) at 

25C 
2700 11900 

Poisson ratio, ν 0.33 0.22 

Specific heat               

Cp (T) (JKg
-1

°C
-1) 

Cp = 0.557 T + 877.6 400 

Thermal conductivity 

λ (T) (Wm
-1

C
-1) 

25≤T≤300: λ = 0.247T+114.4 

300≤T≤Tmelt: λ = -0.125T+226.0 
50 

Expansion, α (mm
-1

°C
-1) α + 8.9 x 10

-3
 T + 22.2 - 

Tmelt, (°C) 520 - 

Troom (°C) 25 25 

JC Parameters  

y = 352 MPa; B = 440 MPa; n = 0.42; C = 0.0083; m = 1; D1 = 0.13 

D2 = 0.13; D3 = -1.5; D4 = 0.011; D5 = 0 
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Fig. 1: Stress-strain behaviour for JC material model 
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Fig. 2: Workpiece and Tool geometries. Vc = Cutting Velocity, ϒ0 =Rake 

angle, α0 = Clearance angle, f = Chip Thickness.  
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The reaction cutting force obtained from FE analysis for cutting 
speed of 800 m/min, a feed of 0.4 mm/rev and rake angle of 17.5° 
for two different friction coefficients (0.15 and 0.1) is shown in 
Fig. 3. The FE results are compared with the experimental one and 

are found to be in good agreement. One can also observe that fric-
tion coefficient with a value of 0.15 produced relatively much 
better results. Fig. 4 shows the Mises stress distribution. Fig.5 and 
Fig. 6 show the comparison of FE obtained results with the 

experimental results for 0.3 and 0.4 mm/rev feeds for different 
cutting speeds. Both figures show acceptable errors when FE re-
sults are compared with experimental. Though maximum error 
obtained for a small feed of 0.3 mm/rev is slightly high (9.1%) in 

comparison of larger feed of 0.4 mm/rev (6.1%) for cutting speed 
of 200 m/min. 
Fig. 7 shows the variation of cutting force by varying the feed and 
friction coefficients. The maximum variation is 5.7 % and mini-
mum variation is 3 % by changing the friction coefficient value 
from 0.15 to 0.1. Moreover, this variation in cutting force decreas-
es as the cutting speed increases.  
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Fig. 3: Evolution of cutting force with time with varying friction coeffi-

cients 

 

 
Fig. 4: Mises stress profile on chip formation (Cutting speed of 800 m/min 

and feed of 0.4 mm/rev) 
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Fig. 5: FE analysis vs Experimental results [4] for 0.3 mm/rev feed 
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Fig. 6: FE analysis vs Experimental results [4] for 0.4 mm/rev feed 
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Fig. 7: Cutting force vs Cutting speed with varying feeds and friction 

coefficients 
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Fig. 8: Cutting force vs rake angle (Cutting speeds of 200, 400 and 800 

m/min) 

 
Fig. 8 presents the variation of cutting force by varying the tool 
rake angle for three different cutting speeds. One can observe that 
the cutting force increases as the tool rake angle decreases i.e. 

cutting force changes by 9.8% by changing the rake angle for 
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cutting speed of 200 m/min. It is evident that the variation in the 
cutting force increases with the increase in cutting speed i.e. it 
increases from 9.8% to 14.4% as the cutting speed changes from 
200 to 800 m/min.  
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Fig. 9: Cutting force vs Feed (Cutting speeds of 200, 400 and 800 m/min) 

with varying feeds 
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Fig. 10: Cutting force vs Cutting speed 

 

 
Fig. 11: Temperature profile with varying cutting speeds 

 
Fig. 9 present the variation of cutting force with cutting speed for 
various cutting feeds. It cab seen that cutting force rises almost 

linearly (32.3%) as the feed is increased from 0.3 to 0.45 mm/rev 
for 200 m/min cutting speed. An observation can also be made 
from Fig. 10 that cutting force does not increase appreciably as the 
cutting speed increases from 200 t0 800 m/min if other parameters 
like feed, friction coefficient, and rake angle are kept constant. 
This particular observation can also be made from Fig. 7. Fig. 11 
depicts the temperature profiles during the chip formation simula-
tions for varying cutting speeds. Maximum temperature increases 

from 220 °C to 270 °C as the cutting speed increases from 200 to 
800 m/min. 

4. Conclusion 

In this article finite element modeling and analysis is performed 
for different cutting parameters like cutting speed, feed, friction 

coefficient and tool rake angle. The effect of different varying 
cutting parameters is studied in detail for the orthogonal cutting of 
AA2024. The authenticity of FE analysis results is confirmed by 
comparing it with experimental results for 0.3 & 0.4 mm/rev feed 
and 200, 400 & 800 m/min cutting speeds for the tool rake angle 
of 17.5°. Then FE simulations are performed to predict the results 
for 0.35 & 0.45 m/min feeds by varying tool rake angles (9.5°, 
13.5° & 21.5°) for different cutting speeds. It is observed from the 

FE results that cutting force varies maximum by 9.8% and 14.4% 
for cutting speeds of 200 and 800 m/min respectively if tool rake 
angles are changed from 9.5° to 21.5°. It is noted that cutting force 
varies around 32%-33% approximately for cutting speeds of 200 
and 800 m/min if the feed is changed from 0.3 to 0.45 mm/rev. 
Finally, a temperature range of 220 °C to 270 °C is predicted by 
changing cutting speeds from 200 to 800 m/min. Later, can help to 
select suitable cutting tool materials. 
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