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Abstract 
 
The crossing number of a graph is the smallest number of two edge crossings over all planar representations of the graph. In this paper, 
we investigate the crossing numbers of complete bipartite and complete graphs. Further, we identify optimal drawings and present results 
on crossing numbers of these classes of graphs. In addition, Zarankiewicz's conjecture on complete bipartite graphs and Guy's conjecture 
on complete graphs are verified to be true. 
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1. Introduction 

Graphs are structures with simplicity and visibility. They serve as 
excellent models of data representation. The concepts of graph 
theory aid in addressing real life problems. During World War II, 
Mathematician Pál Turán worked in a brick factory and pushed 
wagons containing bricks from the kilns to their respective storage 

sites. The wagons were pushed along tracks that were placed be-
tween every kiln and every storage site. The workers noticed that 
it was harder to push the wagons wherever the tracks intersected. 
This situation led Turán to think on how the tracks could be placed 
in such a manner that crossing of tracks is minimized. This situa-
tion came to be known as Turán’s Brick Factory Problem. The 
concept of crossing number has been applied in Very Large Scale 
Integration (VLSI) and incidence geometry. VLSI is a process of 

constructing integrated circuits by merging thousands of transis-
tors into a single chip. The area and size reduction of VLSI devic-
es lowers the production costs and increases performance of chips. 
The study of crossing number plays a crucial role in analysing and 
minimising the layout area and the chip size while constructing 
VLSI devices [1]. Moreover, minimizing the crossings of the edg-
es of graphs makes these graphs aesthetically pleasing which in 
turn makes them easier to analyse.  

2. Preliminaries 

The following terminologies are in reference to [2]. A graph G 
(V,E) is a collection of vertices and edges where V represents the 
set of vertices and E represents the set of edges. A complete bipar-
tite graph is a graph in which the vertices are partitioned into two 

sets, set M and set N and every vertex of M is adjacent to every 
vertex of N. It is represented as Km,n, where m is the number of 
vertices in M and n is the number of vertices in N. A complete 
graph is a graph in which every vertex is adjacent to all the other 
vertices. It is represented by Kn where n is the number of vertices. 
A planar graph is a graph in which the edges do not cross each 

other. The crossing number of a graph is the smallest number of 
two edge crossings over all planar representations of the graph. 
In 1954, Zarankiewicz proposed a formula for the crossing num-

ber of a complete bipartite graph, Cr (Km, n) = ⌊
m

2
⌋ ⌊

m−1

2
⌋ ⌊

n

2
⌋ ⌊

n−1

2
⌋ . 

Zarankiewicz has proved that this formula serves as an upper 

bound to the actual number. The original proof given by 
Zarankiewicz contained an error, which was corrected by Richard 
K Guy in 1969 [3]. It remains a conjecture, as the formula has not 
been proven as a lower bound as well. In the year 1969, Kleitman 
proved that this formula applies to K5, n for all n [4]. Later in the 
year 1993, Dr.Woodall published a result stating that this conjec-
ture holds for K7,7[5], showing that the formula holds for all Km,n 
with min (m, n) ≤ 8. The smallest unsettled cases for crossing 
numbers are known to be for K7, 11 and K9,9. 

In the year 1972, Richard Guy presented a conjecture stating that 
the crossing number of a complete graph of order n is given as 

Cr(Kn)=  
1

4
⌊

n

2
⌋ ⌊

n−1

2
⌋ ⌊

n−2

2
⌋ ⌊

n−3

2
⌋. This conjecture is yet to be prov-

en or disproven for all values of n. Guy proved the conjecture for 
n ≤ 10 [6] which was later extended to n ≤ 12 by Pan and Richter 
in 2007 [7]. 

3. Main results 

Complete Bipartite Graphs: 
Consider Km,n(V1,V2,E) where |V1|=m, |V2|=n and m ≤ n. Hence 
Km,n, has m+n vertices and m×n edges. 
In our drawing of Km,n we represent vertices of V1 in dark and V2 
in a lighter shade. Place n vertices of V2 vertically and two verti-
ces of V1 on either sides. These two vertices of V1 can be made 
adjacent to all the n vertices of V2 without causing any crossing of 

edges using 2n edges. Place the remaining m-2 vertices of V1 al-
ternatively between the n vertices of V2. These m-2 vertices can be 
made adjacent to two vertices of V2 each without causing any 
crossing of edges using 2 (m-2) edges.  

http://creativecommons.org/licenses/by/3.0/
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Fig. 1: Complete Bipartite Graph Km, N. 

 
Hence, the number of edges that would cause crossings is, 
 

= mn – (2n + 2(m − 2)) 

 

=mn – (2m +  2n −  4) 
 
The edges, which cause crossing, will now be strategically placed 

to minimise the number of crossings. We place edges in such a 
way that we attain maximum degree for the remaining m-2 verti-
ces, sequentially. We continue in this manner until all mn – 
(2m+2n-4) edges are placed. We prove this result by considering 
drawings of K3,n, where n = 3, 4, 5, …, determining the sequences 
of crossings, analysing and generalizing for all values of n. 
 
Theorem 1: The crossing number of K3, n, n ≥ 3 is given by, 

 

 
 
Proof:  
Consider K3,3. From the figure of K3, 3 [Fig.2], it can be noted that 

the drawing can be completed by placing mn – (2m +  2n −
 4) = 1 edge which causes one crossing. 
 

Hence Cr (K3, 3) = 1 
 

 
Fig. 2: Complete Bipartite Graph K3, 3. 

 
Consider K3,4. From the figure of K3, 4 [Fig.3], it can be noted that 

the drawing can be completed by placing mn – (2m +  2n −
 4)= 2 edges. These two edges cause crossings in the sequence of 

1, 1. 
Hence, crossing number Cr (K3,4) = 1+1= 2 
 

 

Fig. 3: Complete Bipartite Graph K3, 4. 

 
Consider K3,5. From the figure of K3, 5 [Fig.4], it can be noted that 

the drawing can be completed by placing mn – (2m +  2n −  4) 

= 3 edges. These three edges cause crossings in the sequence of 1, 
2, 1. 
Hence, crossing number Cr (K3,5) = 1+2+1= 4 
 

 
Fig. 4: Complete Bipartite Graph K3, 5. 

 
It can be verified that Cr (K3,6) = 1+2+2+1 = 6 
 
Proceeding in this manner, the sequence of crossings in K3,n, 
where n is even is given by, 

1, 2, 3, …,
n−4

2
, 

n−2

2
 ,

n−2

2
 ,

n−4

2
, …, 3, 2, 1 

Also, the sequence of crossings in K3,n, where n is odd is given by, 

1, 2, 3, …, 
n−3

2
, 

n−1

2
 , 

n−3

2
, …, 3, 2, 1 

 

 
 

 
 

 
 
Theorem 2: The crossing number of Km,n, m,n ≥ 4 is given by, 
 

 
 
Proof: 
Consider K4,4. From the figure of K4, 4 [Fig.5], it can be noted that 

the drawing can be completed by placing 𝑚𝑛 – (2𝑚 +  2𝑛 −
 4) = 4 edges. These four edges cause crossings in the sequence of 
1, 1, 1, 1. From the result of K3,n, it can be noted that the sum of 

the sequence of crossings in K4,4 is twice the sum of the sequence 
of crossings in K3,4. 
 
Hence Cr (K4, 4) = 2 × Cr (K3,4) = 4 
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Fig. 5: Complete Bipartite Graph K4, 4. 

 

Consider K4,5. From the figure of K4, 5 [Fig.6], it can be noted that 

the drawing can be completed by placing 𝑚𝑛 – (2𝑚 +  2𝑛 −
 4)= 6 edges. These six edges cause crossings in the sequence of 

1, 2, 1, 1, 2, 1. From the result of K3,n it can be noted that the sum 
of the sequence of crossings in K4,5 is twice the sum of the se-
quence of crossings in K3,5. 
 
Hence Cr (K4, 5) = 2 × Cr (K3,5) = 8 
 

 
Fig. 6: Complete Bipartite Graph K4, 5. 

 
Proceeding in this manner, crossing number of K4,n where n ≥ 4 is 
twice the crossing number of K3,n. 
 
Cr (K4,n) = 2 × Cr (K3,n) 

 
Consider K5,5. From the figure of K5, 5 [Fig.7], it can be noted that 

the drawing can be completed by placing 𝑚𝑛 – (2𝑚 +  2𝑛 −  4) 
= 9 edges. These nine edges cause crossings in the sequence of 1, 
2, 1, 1, 2, 1, 2, 4, 2. This sequence can be rearranged as 1, 2, 1, 1, 
2, 1, 1, 2, 1, 1, 2, 1. From theresult of K3,n, it can be noted that the 

sum of the sequence of K5,5 is four times the sum of the sequence 
of K3,5. Hence Cr (K5, 5) = 4 x Cr (K3,5) = 16. 
 

 
Fig. 7: Complete Bipartite Graph K5,5. 

 

Consider K5,6. From the figure of K5, 6 [Fig.8], it can be noted that 

the drawing can be completed by placing 𝑚𝑛 – (2𝑚 +  2𝑛 −
 4)= 12 edges. These 12 edges cause crossings in the sequence of 

1, 2, 2, 1, 1, 2, 2, 1, 2, 4, 4, 2. This sequence can be rearranged as 
1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1. From the result of K3,n, it 
can be noted that the sum of the sequence of K5,6 is four times the 
sum of the sequence of K3,6. Hence Cr (K5, 6) = 4 x Cr (K3,6) = 24 

 
Fig. 8: Complete Bipartite Graph K5,6. 

 
Proceeding in this manner, it can be noted that the crossing num-
ber of K5,n where n ≥ 5 is four times the crossing number of K3,n. 
 
Cr (K5,n) = 4×Cr(K3,n) 

 
On constructing diagrams of Km,n for 4 ≤ m ≤ 7 it can be verified 
that, 
 
Cr (K4,n)= 2 ×Cr( K3,n ) = ( 1+1 ) × Cr (K3,n) 
 
Cr (K5,n)= 4 ×Cr( K3,n ) = ( 1+2+1 ) × Cr (K3,n) 
 

Cr (K6,n)= 6 ×Cr(K3,n) = ( 1+2+2+1 ) × Cr (K3,n) 
 
Cr (K7,n)= 9× Cr(K3,n) = ( 1+2+3+2+1 ) × Cr (K3,n) 
 
Hence, the crossing number of Km,n is given by, 
 

 
 

 
 

 
 

 
 
Hence, the above theorem proves that crossing number of Km,n, 
m,n ≥ 4 is a multiple of crossing number of K3,n, n≥3. 
 
Complete Graphs 
Consider a complete graph Kn with n vertices and nC2edges. 
In our drawing of Kn, [Fig.9], we place n-2 vertices vertically and 

two vertices on either sides. Each of these vertices can be made 
adjacent to all n-2 vertices and each other without causing any 
crossing of edges using 2(n-2) +1 edges. 
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Fig. 9: Stage 1 of Constructing a Complete Graph. 

 
Also, as seen in Fig.10, n-3 edges can be placed to form a path 
consisting of n-2 vertices without any crossings. 
 

 
Fig. 10: Stage 2 of Constructing a Complete Graph. 

 
Hence, the number of edges that would cause crossings is, 
 

= nC2– ((2( 𝑛 − 2) + 1) + 𝑛 − 3) 

 
= nC2 −(3𝑛 − 6) 

 

= 
𝑛2−7𝑛+12

2
 

 
The edges, which cause crossing, will now be strategically placed 
to minimise the number of crossings. We place the maximum 
possible number of edges that intersect with only one edge each. 
Next, we place the maximum possible number of edges that inter-
sect with only two edges each. We continue in this manner until 

all 
𝒏𝟐−𝟕𝒏+𝟏𝟐

𝟐
edges are placed. 

Theorem 3 
The crossing number of Kn is given by, 
 

 
 
Proof: 
Consider K5. From the figure of K5 [Fig.11], it can be noted that 

the drawing can be completed by placing 
𝒏𝟐−𝟕𝒏+𝟏𝟐

𝟐
 = 1 edge which 

causes one crossing. 
Hence, crossing number Cr (K5) = 1 
 

 
Fig. 11: Complete Graph K5. 

 
Consider K6. From the figure of K6 [Fig.12], it can be noted that 

the drawing can be completed by placing 
𝒏𝟐−𝟕𝒏+𝟏𝟐

𝟐
 = 3 edges. 

These three edges cause crossings in the sequence of 1, 1, 1. 

Hence, crossing number Cr (K6) = 1+1+1 = 3 
 

 
Fig. 12: Complete Graph K6. 

 
Consider K7. From the figure of K7 [Fig.13], it can be noted that 

the drawing can be completed by placing 
𝒏𝟐−𝟕𝒏+𝟏𝟐

𝟐
 = 6 edges. 

These six edges cause crossings in the sequence of 1, 1, 1, 1, 2, 3. 
This sequence can be rearranged as1, 2, 3, 2, 1 whose sum is 
2(1+2) + 3. 
Hence, crossing number Cr (K7) = 9 
 

 
Fig. 13: Complete Graph K7. 

 
Consider K8. From the figure of K8 [Fig.14], it can be noted that 

the drawing can be completed by placing 
𝒏𝟐−𝟕𝒏+𝟏𝟐

𝟐
 = 10 edges. 

These ten edges cause crossings in the sequence of 1, 1, 1, 1, 1, 2, 
2, 3, 3, 3. This sequence can be rearranged as1, 2, 3, 3, 3, 3, 2, 1 
whose sum is 2(1+2) + 3 + 3 + 3 + 3. 
Hence, crossing number Cr (K8) = 18 

 

 
Fig. 14: Complete Graph K8. 
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Proceeding in this manner, the sequence of crossings in Kn, where 
n is even is given by, 

1, 2, 3, …, k-1, (k, …
𝐧

𝟐
 times), k-1, …, 3, 2, 1 where k is the sum 

of first 
𝐧−𝟒

𝟐
 terms. 

Also, the sequence of crossings in Kn, where n is odd is given by, 

1, 2, 3, …, k-1, k, k-1 …, 3, 2, 1 where k is the sum of first ⌊
𝐧−𝟐

𝟐
⌋ 

terms. 
Hence, the crossing number of Kn is given by, 
 

 
 

       
 

        
 

 

4. Conclusion 

In this paper, we investigate the crossing numbers of complete 
bipartite and complete graphs. Based on our results, the conjec-

tures are verified to be true. Further, the focus of our research 
would be on developing theories on related parameters and identi-
fying the applications of the concept of crossing number. 
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