

Copyright © 2018 Radhakrishnan Gopalapillai et. al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4) (2018) 2964-2970

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

doi: 10.14419/ijet.v7i4.12472

Research paper

Robotic sensor data analysis using stream data mining

techniques

Radhakrishnan Gopalapillai
 1

*, Deepa Gupta
 2

, Sudarshan, T. S. B
 3

1 Assistant Professor, Department of Computer Science & Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidya-

peetham, India
2 Associate Professor, Department of Mathematics, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India

3 Professor, Department of Computer Science & Engineering, PES University, Bengaluru, India
*Corresponding author E-mail: g_radhakrishnan@blr.amrita.edu

Abstract

Many robotic applications deploy multiple robots and it is possible that more than one of those robots are operating in the same environ-

ment. Such situations demand grouping together of similar environments in real-time to perform actions in a coordinated way. The main
challenge when robots sent huge amount of data is to process the data stream without storing them. In this work, an experimental setup is
created to gather data from simulated robotic environments. The data collected are treated as continuously arriving time series data and
they are com-pressed using summary data structures suitable for clustering. The robotic environments are clustered using techniques
based on simple single pass K-means and StreamKM++ algorithms. The methods used to adapt these two algorithms for robotics data
streams are discussed. The suitability of these techniques for robotic applications is analyzed and performances of the algorithms are
compared.

Keywords: Clustering Algorithms; Data Mining; Robotic Environment; Sensor Data; Stream Data.

1. Introduction

Robots are used in many applications to do tasks that are normally
performed by humans. They are particularly used to automate
mundane tasks or to perform tasks that are risky or dangerous for a

human to perform. For example, mobile robots are used in ware-
houses for efficient movement of materials. A key component of
robotic applications is the mechanism to understand the environ-
ment in which the robot is deployed to perform particular task. In
many robotic applications, multiple robots surveying the environ-
ment produce huge amount of sensor data which may be streamed
to a central computer for processing. The data collected are typi-
cally multi-modal high dimensional data.

Stream data mining has developed as an independent research area
that can be applied to any domain where data are continuously
arriving. Advances in wireless communication led to the devel-
opment of low-power sensors. It is utilized in numerous sensing
automation tasks such as temperature monitoring, humidity and
surveillance. Sensor networks are used in many application do-
mains, such as object tracking, environment monitoring, disaster
management as well as smart environments. In these applications,
reliable monitoring is an essential requirement for the information

that are continuously arriving from sensors and camera attached to
unmanned vehicles flying in unknown territory.
Clustering techniques are widely utilized as part of machine learn-
ing applications to compress substantial amounts of high-
dimensional information to summarized data that are valuable for
a particular application. Streams often deliver elements rapidly
and once the data is processed, it is not viable to store the data and
hence not accessible for further processing. Stream data mining

algorithms do incremental processing of data in real time as the

data is not available for iterative reading. They are often executed
in main memory, without access to secondary storage or with
limited passes of data stored in secondary storage. These issues in

stream data clustering are to be taken into account for effective
clustering.
In many applications, it is important to analyze the data collected
and transform it into usable information through stream data min-
ing techniques so that the processed information can be used later
for decision making. The aim of this work is to record useful in-
formation from robotic environments that produces streams of
data and to cluster them using stream clustering algorithms. An

exploratory robotic environment has been designed where robot is
customized to move in a straight path with a consistent pace to
record data using sensors attached to it. An arrangement of dis-
tinctive exploratory environments, which incorporates hot and
cold objects of different shapes and sound sources kept around the
robot path, is outlined. The data collected by the robot are then
used to cluster the environments using stream data mining algo-
rithms.

This paper is organized as follow: Section 2 explains past work
related to robotic environment and stream data mining. Section 3
describes the overall architecture of the work focusing on design
of robotic environment, data collection and stream clustering algo-
rithms. This section discusses two stream data mining algorithms,
simple single pass K-means [1] and streamKM++ [2] that have
been adapted to cluster the data gathered. Experimental results
obtained from the two algorithms are shown in Section 4. The
results are analyzed and compared in terms of accuracy of cluster-

ing and computation time. Conclusions from the analysis and di-
rections for future work are discussed in Section 5.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 2965

2. Related work

Data mining on time series data have been explored in the past [3].
Dynamic Time Warping (DTW) distance based clustering of time
series data collected by mobile robots have shown good results
[4]. Complete linkage clustering algorithm has been applied in that

work and the accuracy of results obtained through this method fall
in the range of 88 to 97%. Clustering of robotic scenarios using
data gathered with simple infrared sensors have shown good accu-
racy when the scenarios are simple and distinct [5]. The clustering
performed using agglomerative clustering techniques reported
accuracy in the range of 73 to 98%. The work discussed in [6]
explains how back propagation neural network (BPNN) has been
used for classification of robotic environments using time series

data gathered using sonar sensors. Another experiment [7] that is
based on similar robotic environment summarizes the experi-
mental setup for creating a virtual robotic environment. The robot-
ic environments are then clustered using the data acquired from IR
proximity sensors and thermal sensors. K-medoid clustering algo-
rithms are used for clustering the sensor data and it is observed
that the clustering accuracy is in the range of 75-100%. Clustering
is done using traditional offline algorithms which requires multi-

ple pass over the data. The experiments on robotic environment
described earlier [3-7] focused on clustering the complete dataset
that is already gathered using multiple passes of the data.
Jacqueline Heinerman, Evert Haasdijk and A.E. Eiben introduced
Context Recognition in Data Streams (CoRDS), a method that
enables a robot to identify and recognize different situations in its
environment [8]. CoRDS uses environment data collected using
robot’s sensors. .Sabarish B.A et.al. explored clustering of large

volume of spatiotemporal data generated from GPS enabled de-
vices such as smartphones, cars, sensors, and social media [9].
They clustered trajectories using hierarchical clustering method
using Dynamic Time Warping (DTW) distance measure.
Jonathan A. Silva, et all [10] have done a survey of data structures
and algorithms used for clustering data streams. According to
them, important aspects of data stream clustering are data structure
for statistical summary, number of user-defined parameters, clus-
ter shape and type of clustering problem. Since stream data do not

provide the entire dataset at initial point, stream clustering algo-
rithms do the clustering incrementally. Barbara [11] explores the
requirements that are needed for data stream clustering. The chal-
lenge is to design an algorithm that can take care of changes in-
crementally within the available memory and time.
In data stream clustering techniques, the clustering step uses an
appropriate summary data structure to store statistical summaries
and then a standard clustering algorithm is used to find clusters

The structures used for summarizing data and the specific cluster-
ing techniques used may vary from one stream data mining algo-
rithm to another. Most of the algorithms use K–means for cluster-
ing the data. One of the popular algorithms to mine large dataset is
BIRCH [12] that builds a hierarchical data structure using a bal-
anced tree to incrementally capture clustering features of incoming
points. This algorithm focusses on performing the clustering with-
in the constraints of available memory by minimizing the input

data points required. Aggarwal et.al. developed Clustream algo-
rithm to handle data streams that have evolving characteristics
[13]. A Hierarchical algorithm called ODAC [14] maintains a tree-
like hierarchy of clusters based on variables. It manages concept
evolution using a combination of both divisive and agglomerative
hierarchical clustering.
K-means algorithm is probably the best known algorithm for data
clustering where the objects to be clustered have numerical attrib-

utes. The scalability issues in K-means algorithm when applied to
stream data are addressed by Farnstrom et al. [1] who used com-
pression-based techniques of Bradley et al. [15] to obtain a single-
pass algorithm, but they have not mentioned any method to initial-
ize K-means. K-means++ algorithm describes a better technique to
fix initial cluster means [16]. Clustering of distributed data stream
using STREAMLS [17] is an extension to Bradley’s techniques
that keeps the same goal but has restriction on use of available

memory and buffer. Once the input buffer is filled, STREAMLS
creates k interim clusters with the data in buffer and retains only
centroids of the clusters formed weighted by the number of data in
each cluster. This process is repeated with new points. Stream
KM++ used for clustering stream data of very large dataset uses
the concept of coreset tree to summarize the data that are arriving
and then summarized data is clustered using K-means++ algo-
rithm. Nair, PC et.al discusses an experimental study on the im-

plementation of StreamKM++ to effectively cluster time series
robotic image data with memory restrictions [18]. Their work
required extraction of features from images as a pre-processing
step.
The research work discussed in previous sections focused either
on offline clustering of robotic environments or stream clustering
on generic data. This work on focusses on adapting stream cluster-
ing techniques for robotic data to cluster robotic environment. The

objective of experiments discussed in this paper is to cluster robot-
ic environments using data collected by inexpensive sensors.
Though the data set collected is small enough to fit in main
memory, stream mining techniques employed in this work will be
scalable for large datasets where multiple passes of the data is not
feasible. This work adapts two stream data clustering algorithms –
simple single pass k-means algorithm and streamKM++ algorithm
and analyzes the suitability of adapted methods to cluster the data

objects collected from indoor robotic environments specifically
designed for the experiment. The details of the architecture used
for the experiment is discussed in the next section.

3. Architecture

The overall architecture of the proposed work is shown in the

Figure 1. First, information is gathered from experimental robotic
environments using sensors attached to robots. These were indoor
robotic environments that had objects of difference shapes and
sizes. A wheeled robot mounted with different sensors was used to
collect data about the environment from different locations. The
data gathered at different was stored and later processed as if these
data were coming as data stream. Since the study was on tech-
niques for clustering environments, complexities involved in real
time data acquisition and transmission was not focused. The in-

formation gathered is converted into a format that is useful for
processing and the features are extracted and compressed. Then
the stream data mining algorithms are applied on the extracted
information. Though the data collection is done in an offline
mode, techniques used here can be applied to stream data very
well.

Fig. 1: High Level Architecture of the Clustering Process.

3.1. Design of experimental scenarios

The experimental setup is done to simulate different robotic envi-
ronments. In this work, a set of seven different indoor robotic
environments are created and data collected using sensors attached
to robots exploring these environments or scenarios. The goal was
to create a few scenarios which look different from each other.

Data Collection

Data pre-processing

Single Pass K-means Stream KM+

Results Analysis and comparison

Stream clustering

2966 International Journal of Engineering & Technology

Each robotic environment designed has objects of different shapes
such as spherical, rectangular, cone or pyramid placed at different
locations. The positions of the objects in a particular scenario are
altered to create a new scenario. In order to make the data multi-
modal, a few of these objects are designed for having different
thermal profile. Couple of audio sources are also added to the
environment though they are not used in this study.
Each of the scenarios typically contain 32 objects - 24 non-thermal

objects, 4 objects that are hot and 4 objects that are cold placed in
a square area of 210cm by 210cm. The cold and hot objects have
been kept at a constant temperature between 15°c and 70°c. The
ambient temperature during experiment was close to 30°c. The
scenarios fall into three distinct types. The first type of scenarios is
uniformly dense; i.e. all objects are uniformly distributed through-
out the environment. Another set of scenarios have more objects
in one quadrant and very few objects in another quadrant. The

third type of scenarios have more concentration of thermal objects
in one quadrant. A photograph of one of the environments without
thermal objects is shown in Figure 2.

Fig. 2: Photograph of an Experimental Environment.

The experimental environment shown schematically in Figure 3
represents one of the scenarios where objects are distributed even-

ly throughout the environment. The thick horizontal and diagonal
lines seen in the diagram are the straight paths used by the robot to
explore the environment.

Fig. 3: Environment Where Objects are Evenly Distributed.

Figure 4 shows a scenario where objects are not distributed uni-
formly. In this scenario, there are more objects in the south-east
quadrant and north-west quadrant. Scenario shown in Figure 5 has
objects kept closer to diagonal path compared to horizontal and
vertical paths.

Fig. 4: Scenario with Uneven Distribution of Objects.

Fig. 5: Scenario with Objects Closer to Diagonal.

The robot is programmed to move in a single straight line path at
constant speed to explore the environment. Robot moves in

straight paths from east to west, north to south, west south corner
to north east corner or north west corner to east south corner and
vice versa. Robot conducted 1000 trails or explorations along each
of the predefined paths in a single environment. For example, in
one such exploration, robot will start from south west corner of the
environment and travel towards the north east corner. The read-
ings of on-board sensors like long range IR sensors, PIR thermal
imaging sensor of resolution 4 x 4 and microphones are taken
every 200 milliseconds. The data collection process was repeated

in other six environments.

3.2. Characteristics of data

The robot is mounted with two thermal sensors, four IR distance
sensors and audio sensors. Figure 6 shows the approximate loca-
tions where the IR and thermal sensors are mounted on the robot.
The thermal sensor is a low cost 4 x 4 pixels thermal camera
which captures the thermal profile of the environment. The read-

ing of the thermal sensor is calibrated to give temperatures in de-
gree centigrade. Four attributes are collected from IR sensors and
16 attributes are collected from each of the two thermal sensors
mounted on the right and left side. Thus the data gathered at a
particular instance have 36 attributes.

International Journal of Engineering & Technology 2967

Fig. 6: Sensors Mounted on the Robot.

3.3. Data pre-processing

In order to reduce the amount of data passed to the clustering algo-
rithm, the thermal image consisting of 16 pixels has been convert-
ed to a single attribute by taking the average of the pixel values of

the central region of 2x2 pixels as shown in Figure 7. The pixels
are marked as P00 to P33. The average values of pixels P11, P12,
P21 and P22 are taken and the values of other pixels are ignored.
Hence the data for each snapshot of the environment consisted of
four distance attributes and two thermal attributes.

Fig. 7: Pixel Matrix of Thermal Sensor.

The complete set of data attributes collected is considered as a
single object. Robot takes about 10 seconds to explore the envi-
ronment in each direction. Since the sensor readings are taken
every 200 milliseconds, each run of the robot captures 50 snap-
shots of the environment consisting of 6 attributes per snapshot.
Typical data collected from the environment during a single trial
are shown in Figure 8.

Fig. 8: Data Corresponding To a Single Trial.

The data collected from an environment is stored as the attributes
of a single object for the purpose of clustering. Hence each envi-
ronment is represented by a single object of 300 attributes where
each attribute is numerical.

3.4. Data stream clustering method

As discussed earlier, the experiment consists of 7 different scenar-
ios. The dataset created has 7000 data objects with each data ob-

ject representing one of the seven scenarios. Each object can be
considered as a labelled object with object label being the scenario
from which that object is created. This label is removed during the
clustering process. However, it has been used to calculate the ac-
curacy of clustering obtained. The objects are taken uniformly at
random from the scenarios. The objective of the clustering is to
group together similar scenarios into seven clusters corresponding
the seven experimental environments created.

In this experiment, two algorithms, simple single pass k-means
and streamKM++ have been adapted for robotic data. Simple sin-
gle pass k-means is an efficient algorithm that gives results com-
parable to other data stream clustering algorithms. StreamKM++
is reported to give better clustering results at the cost of computa-
tional efficiency. A brief description of the simple single pass k-
means and streamKM++ algorithms and how they have been ap-
plied to cluster robotic data is discussed in the next section.

3.4.1. Simple single pass k-means algorithm

The simple single pass k-means algorithm [1] is an extension of
the single pass k-means algorithm [12] which is used for cluster-
ing stream data. It uses primary and secondary compression tech-
niques and then merges both to obtain the result. The simple sin-
gle pass k-means need very less computation compared to all other
stream data clustering algorithm. The k-means algorithm initializ-
es the cluster means and performs clustering by assigning each

point to the nearest cluster mean. k-means algorithm depends
strongly on the initial set of centers. The algorithm uses a buffer
area to store partial unprocessed data read from the data stream.
Each data element in the buffer is clustered using standard k-
means algorithm. Here Euclidean distance has been used to calcu-
late the distance between two data objects. Once the clusters are
formed with partial data, each cluster is stored as a new repre-
sentative object and all the elements in the cluster are discarded.
The simple single pass k-means algorithm used in this work is

given in Figure 9.

Algorithm 1: Simple single pass k-means

1) Read the data from the input stream until buffer is full

2) Initialize the weight (w) of each data to 1.

3) Select the k cluster means using modified random selection method.

4) Assign each of data to the nearest cluster mean.

5) Recalculate the cluster mean, taking into account the weight of each

point.

6) If there is change in cluster mean, go to step 3.

7) If no more data in the stream, go to step 12

8) Empty the buffer.

9) Represent each cluster as a single data object and insert each repre-

sentative object in to the buffer.

10) Fill the remaining space in the buffer by reading next set of stream

data.

11) Go to step 3.

12) Output the cluster centers.

Fig. 9: Simple Single Pass K-Means Algorithm.

The initial cluster mean is chosen randomly, in most of the case,
but if it is randomly chosen there may be chance of selecting more
than one cluster mean from the same cluster that leads to more
number of iteration while performing K-means which reduces the
performance of the algorithm. In order to achieve better result,
initial set of cluster centers are chosen using modified random

selection method as follow.
i) Select a data point randomly from the available dataset as

first cluster mean.
ii) Subsequent cluster mean is selected by computing distance

of each of point to the mean already selected. The minimum
distance to any of the cluster already selected is taken as the
distance of object.

iii) The object that has maximum distance is selected as the

cluster mean.
iv) Repeat this procedure until K cluster means are obtained.
v) An attribute vector and a weight w represent each object in

a cluster. The sufficient statistics of a cluster are Sum, the

2968 International Journal of Engineering & Technology

weighted sum of object attributes and N, the number of ob-
jects in the cluster. When an object Xi is added to a cluster
Cj, sufficient statistics of the cluster are updated using the
formulae given in equations (1) and (2).

Sum (Ci) = Sum (Ci) + WI*Xi (1)

N (Ci) = N (C1) + 1 (2)

Once the clusters are formed with objects in the buffer, a repre-
sentative object is created for each cluster and buffer is cleared.
The representative objects will have corresponding cluster means
as their attributes. The weight of a representative object is the
number of objects in the cluster.

3.4.2. Stream-KM++ algorithm

StreamKM++ algorithm uses a coreset tree to merge and reduce

the data objects. The data objects in the data stream are represent-
ed as O1, O2,…,On. A structure called bucket is used to store the
summarized data from the robotic data stream. Buckets are la-
belled as B0, B1, … Bk. Each bucket can store m data objects. At
any point of time, bucket B0 can store objects numbering between
zero to m whereas other buckets contain either zero or exactly m
objects. The number of buckets required store n data objects from
the robotic stream is of the order of O(log n). The ith bucket Bi

contains summarized information for 2i-1m points from the data
stream
The Merge and reduce process is given in Algorithm 2 shown in
Figure 10. The merge and reduce step uses the coreset tree con-
struction process described in Algorithm 3, shown in Figure 11 to
generate representative points. Every node in the coreset tree con-
tains a representative point q, a set of objects S, and the cost of the
node. The cost of a node is computed as the sum of squared dis-
tance of all objects in the node to its representative point. When

the algorithm starts, corset tree contains just one node, i.e., the
root node that has all objects to be merged and reduced.

Algorithm 2: Merge and Reduce

1) Let B0, B1, Bk be initially empty buckets

2) While B0 is not full

3) insert points to B0

4) k = 1

5) Create an empty bucket S and move contents of B0 to S

6) Empty B0

7) While Bk is not empty

8) Merge & reduce S and Bk using Coreset Tree Construction & store

in S

9) Empty Bk

10) k = k+1

11) Move data from S to Bk

12) If data is available in data stream, goto step 2

Fig. 10: Merge and Reduce Algorithm.

Algorithm 3: Coreset Tree Construction

1) Create a root node with 2m objects to be merged. Let the node to be

split is denoted as cnode. Let representative object of a node i is de-

noted as qi.

2) Select a representative object qroot from root node at random.

3) cnode = root

4) qCnode = qroot

5) qnew = select(cnode,qcnode)

6) Create a left child for cnode with qcnode as rep. point

7) Create a right child for cnode with qnew as rep. point.

8) Rearrange points of cnode to left and right children

9) Update cost of node as cost of left child +cost of right child

10) If the number of leaf nodes in the tree is less than m

11) current = root

12) While current is not leaf

13) current=select_node(current)

14) cnode=current

15) Goto step 5

16) Form coreset with representative object of all leaf nodes

17) Wieght(qi) = number of points in the ith leaf node

Fig. 11: Corset tree construction algorithm.

Tree construction is achieved in a top-down approach by splitting
nodes. Let the current node to be split is denoted as cnode and let
qcnode be the representative point. A procedure se-
lect(cnode,qcnode) chooses a new representative point from cnode
randomly with probability proportional to the sum of squares of
Euclidian distances of all objects in cnode to qcnode. Procedure
select_node(current) selects one of the children nodes of the cur-

rent node to reach a leaf node based on PPC where PPC is the
Probability Proportional to Cost of each of the child node.
Experimental results and analysis
In this section, the experimental results for the clustering of data
streams are discussed. The simple single pass K-means and
streamKM++ algorithm results are analyzed to find their effec-
tiveness in clustering robotic environment using sensor data gath-
ered. Each algorithm uses its own specific structure to store stream

data that is converted into some data structure and a summarizing
procedure to reduce the stream data that is already processed.
As discussed in section 3, data collected pertained to seven robotic
scenarios. The robot has made 1000 explorations in each direction
within each scenario. Hence there are 7000 data objects corre-
sponding to the trails made in each direction. If these 7000 objects
are clustered to form seven clusters, each cluster should corre-
spond to one of the seven robotic environments. Each cluster

should ideally contain 1000 objects related to the particular envi-
ronment associated with that cluster. The objects allocated to each
cluster are then checked to see whether they are assigned to the
right cluster. The confusion matrix shown in Table 1 captures the
result of clustering of the data taken during the exploration of
environments from north to south direction using simple single
pass algorithm. The seven environments are marked as S1 to S7 in
the confusion matrix.
The confusion matrix shows that five of the clusters had 100%

correct memberships. Objects belonging to scenario 3 got assigned
to two different clusters - clusters 3 and 6. 119 objects belonging
to scenario 3 were incorrectly assigned to cluster 6. Hence the
overall accuracy of clustering was computed as the ratio of 6881
to 7000.

Table 1: Confusion Matrix of Clustering of Trials in North to South Direc-

tion Using Simple Single Pass Algorithm

Predicted Scene (cluster)

S1 S2 S3 S4 S5 S6 S7

Actual Scene

S1 1000 0 0 0 0 0 0

S2 0 1000 0 0 0 0 0

S3 0 0 881 0 0 119 0

S4 0 0 0 1000 0 0 0

S5 0 0 0 0 1000 0 0

S6 0 0 0 0 0 1000 0

S7 0 0 0 0 0 0 1000

One of the parameters that affect the accuracy of clustering and
space requirement is the buffer/bucket size used in the algorithm.

The effect of buffer size on clustering accuracy is explored by
varying the buffer size. In this experiment, bucket sizes varying
from 100 to 700 objects have been used. Figure 12 shows the re-
sults of simple single pass K-means and streamKM++ algorithms
with different buffer/bucket sizes.

International Journal of Engineering & Technology 2969

Fig. 12: Accuracy of Algorithms for Different Bucket Sizes for Path1 –

North South.

The average accuracy of clustering with data collected from north

to south and south to north directions of robotic environment is
shown in the figure. It is observed that the accuracy of simple
single pass K-means is higher for smaller buffer sizes compared to
streamKM++. The computation time taken by the algorithms are
shown in Figure 13. It is observed that simple single pass algo-
rithm takes less computation time compared to streamKM++ algo-
rithm. The computation time taken by simple single pass K-means
is close to one fifth of the time taken by streamKM++.

Fig. 13: Computation Time of Algorithms for Path1 – North South.

Similarly, Figure 14 shows the average results of clustering of

trials conducted in west to east and east to west directions. It is
observed that the streamKM++ produces better results

Fig. 14: Accuracy of Algorithms for Different Bucket Sizes for Path2 –

East West.

Figure 15 shows the respective computation time and it is clearly

seen that simple single pass K-means takes less time compared to
streamKM++ for varying buffer size as in the previous case.

Fig. 15: Computation Time of Algorithms for Path2 – East West.

When bucket size of streamKM++ is increased, the time taken to
process the data has not shown significant differences with data
taken in both directions. It is observed that the algorithm for the
sensor data clustering becomes less efficient as the bucket size

increases even though there is an increase in accuracy up to bucket
size of 500. Hence a bucket size of 500 seems to be good for the
data considered. StreamKM++ algorithm is more efficient when
the bucket size and number of buckets needed to process stream

data is initially calculated based on the size of dataset. Since the
data from the sensor is arriving like a stream, the size of dataset is
unpredictable. Simple single pass K-means algorithm produces
less accurate clusters but uses less computation time compared to
streamKM++ algorithm. Selection of buffer size beyond 500 has
not shown improvement in the accuracy of clustering for sensor
data obtained from the robotic environment in most of the cases.

4. Conclusion and future work

This work summarizes the design of robotic environments, a data
collection setup to collect data about the environment, and cluster-
ing of environments based on similarity. The data collected have
been processed and the data has been read as if a stream of data is
arriving. The robotic environments have been clustered using

methods based on simple single pass K means and streamKM++
algorithms. The result obtained by simple single pass K means
showed accuracy in the range of 71% for a bucket size of 100 to
100% for a bucket size of 500. Accuracy of single pass K means
algorithm is less than the accuracy given by streamKM++ algo-
rithm for bucket sizes less than 500. However, simple single pass
algorithm takes lesser computation time. StreamKM++ algorithm
gives better clustering results at the cost of higher computation

time. The accuracy of clustering varies with bucket size used in
these algorithms. More experiments are needed to arrive at an
empirical relationship between bucket size and the expected num-
ber of clusters and data set size.
The future work includes the clustering of sensor stream data from
a real world application and clustering the data that is arriving
from different direction of the robotic environment.

References

[1] Farnstrom, F. Lewis, J. In addition, Elkan, C. Scalability for Clus-

tering Algorithms Revisited, SIGKDD Exploration Newslett. 2, 1,

2000, pp. 51–57.

[2] Ackermann,M. Martens, R. Raupach, M. Swierkot, C. Lammersen,

K. and Sohler, C. 2012. StreamKM++: A clustering algorithm for

data streams. ACM J. Exper. Algor.17, 1.

https://doi.org/10.1145/2133803.2184450.

[3] Nair, B B. Kumar, P.K.S. Sakthivel, N.R. Vipin, U, Clustering

stock price time series data to generate stock trading recommenda-

tions: An empirical study”, Expert Systems with Applications, Vol.

70, pp. 20-36, March 2017

https://doi.org/10.1016/j.eswa.2016.11.002.

[4] Radhakrishnan, G. Gupta, D. Abhishek, R. Ajith, A. Sudarshan,

T.S.B. Analysis of multimodal time series data of robotic environ-

ment. Proceedings of 12th International Conference on Intelligent

Systems Design and Applications (ISDA), Kochi, India, pp. 734-

739, 2012.

[5] Radhakrishnan, G. Gupta, D. TSudarshan,T.S.B.,Experimentation

And Analysis Of Time Series Data For Rescue Robotics, Proceed-

ings of 2nd International Symposium On Intelligent Informatics

(Ist'13), Mysore, India, pp.443-453, 2013.

[6] Gopalapillai, R. Vidhya, J. Gupta, D. Sudarshan, T.S.B. Classifica-

tion of robotic data using artificial neural network, Proccedings of

IEEE Recent Advances Intelligent Computational Systems (RA-

ICS), Trivandrum, India, pp.333-337, 2013.

[7] Mishra, S. Radhakrishnan, G. Gupta, D. Sudarshan T.S.B., Acquisi-

tion and Analysis of Robotic Data Using Machine Learning Tech-

niques, Computational Intelligence in Data Mining - Volume 3

Smart Innovation, Systems and Technologies Volume 33, 2015, pp

489-498.

[8] Jacqueline Heinerman, Evert Haasdijk and A.E. Eiben, Unsuper-

vised identification and recognition of situations for high-

dimensional sensori-motor streams, Neurocomputing, Vol. 262, 1

November 2017, pp. 90-107.

https://doi.org/10.1016/j.neucom.2017.02.090.

[9] Sabarish B.A, Karthi R, Gireeshkumar T.B, Clustering of trajectory

data using hierarchical approaches, Lecture Notes in Computational

Vision and Biomechanics, Vol. 28, 2018, pp. 215-226

https://doi.org/10.1007/978-3-319-71767-8_18.

[10] Jonathan A. Silva, Elaine R. Faria. Data Stream Clustering: A Sur-

vey, ACM Computing Surveys, 2013 Vol. 46, No. 1, Article 13.

https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1016/j.eswa.2016.11.002
https://doi.org/10.1016/j.neucom.2017.02.090
https://doi.org/10.1007/978-3-319-71767-8_18

2970 International Journal of Engineering & Technology

[11] Barbara. Requirements of Clustering Data Streams, SIGKDD Ex-

plorations (2002) 3(2):23-27.

https://doi.org/10.1145/507515.507519.

[12] Zhang Et Al. Birch: An Efficient Data Clustering Method for Very

Large Databases. ACM SIGMOD: (1996) 103-110.

[13] Aggarwal, C.C. Han, J. Wang, J. In addition, Yu, P.S. A framework

for clustering evolving data streams. In VLDB 2003, Proceedings

of 29th International Conference on Very Large Data Bases, pages

81–92.

[14] Rodrigues, P. P., Gama, J., And Pedroso, J. P,.Hierarchical Cluster-

ing Of Time-Series Data Streams. IEEE Trans 2008, Knowl. Data

Engin 20, 5, 615 –627.

[15] Bradley, P. S., Fayyad, U. M., And Reina, C, Scaling clustering al-

gorithms to large databases. Proceedings of the fourth International

Conference on Knowledge Discovery and Data Mining (KDD’98).

1998.

[16] Arthur, D. and Vassilvitskii, S. (2007). K-means++: the advantages

of careful seeding. Proceedings of the eighteenth annual ACM-

SIAM symposium on discrete algorithms. Society for Industrial and

Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035.

[17] L. Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,

Streaming-Data Algorithms for High-Quality Clustering, Proceed-

ings of IEEE International Conference on Data Engineering, 2001,

pp. 685-694.

[18] Priyanka C.Nair, Radhakrishnan G, Deepa Gupta, Sudarshan TSB,

Clustering of Robotic Environment using Image Data Stream, Pro-

ceedings of the IEEE International Conference on Communication

Control and Intelligent System (CCIS-2015), Mathura, India, 2015,

pp. 208-213.

https://doi.org/10.1145/507515.507519

