

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 113-119

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A Preemptive Behaviour-based Malware Detection through

Analysis of API Calls Sequence Inspired by Human Immune

System

Fadzli Marhusin
1,2

*, Christopher John Lokan
3

1Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan,

Malaysia
2CyberSecurity and Systems Research Unit, Islamic Science Institute (ISI), Universiti Sains Islam Malaysia (USIM), Bandar Baru Nilai,

71800 Nilai, Negeri Sembilan, Malaysia
3The University of New South Wales (UNSW), Canberra, Australia

*Corresponding author E-mail: fadzli@usim.edu.my

Abstract

This study detects malware as it begins to execute and propose a data mining approach for malware detection using sequences of API
calls in a Windows environment. We begin with some background of the study and the influence of Human Immune System in our de-
tection mechanism, i.e. the Natural Killer (NK) and Suppressor (S) Cells. We apply the K = 10 crosses fold data validation against the
dataset. We use the n-grams technique to form the data for the purpose of establishing the Knowledge Bases and for the detection stage.
The detection algorithm integrates the NK and S to work in unison and statistically determine on whether a particular executable deemed
as benign or malicious. The results show that we could preemptively detect malware and benign programs at the very early beginning of

their execution upon inspecting the first few hundreds of the targeted API Calls. Depending on the speed of the processor and the ongo-
ing running processes, this could just happen in a split of a second or a few. This research is as part of our initiative to build a behaviour
based component of a cyber defence and this will enhance our readiness to combat zero-day attacks.

Keywords: API Calls based Detection; K-grams; Malware; N-grams.

1. Introduction

Malware is software code that has malicious intent, can only do
harm if it is allowed to execute without being detected. In recent
years, there have been huge changes in the threat landscape and it
is a major cybersecurity threat. Malware writer working day and
night. Every day, there is a huge volume of brand new and unique
malware coming up. Among the most difficult and challenging
tasks for malware detection researchers are to detect and eliminate

evasive malware that use state of the art technology, i.e.; encryp-
tion, encrypted payload, ransom facilities, social engineering tech-
niques, for exploitation objectives. Antivirus companies detect
large number of them. However, some of the malware can be
identified and some others unable to be detected. For many of us,
we familiar with most of malware types, but there are still brand
new and novel ones emerging from times to times.
In this paper, we explain the technique we use to prepare our ex-
periment from the context of real-time detection process. This

shall include on how we capture the raw data, select features,
transform, establish and updates Knowledge Bases and eventually
do the detection.

2. Background of the Study

Attacks may vary from the individual or organisational level, to

nation-states resorting to cyber warfare to infiltrate and sabotage

enemies’ operation. Hence, there is an urgent need for a dependa-
ble cyber defense. The professional malware writer has every
opportunity to test against all commercial based on signature
based detectors. Malware detection is hard when the latest mal-
ware employs some protection and evasion techniques – thus cre-
ating a zero-day attack situation. This happens because none of the
signature based detectors in the market possesses knowledge about

the attack. Thus, behaviour-based detection is needed to detect
zero-day malware attacks.
In API calls research, it is believed that malware generates se-
quences of API calls that are different from benign API calls, and
involve sequences of actions such as create, read, write, delete and
change files, and directories or special resources of the OS. Most
malware is also capable of communicating with other hosts (alt-
hough this is not always necessary) for replication attempts, ac-

cessing resources from other hosts and sending information to
others. Some other types of malware such as worms, utilise a spe-
cial facility in a certain OS so that, upon logon, the malware au-
tomatically run again, thereby disallowing the end-user from mak-
ing any attempt to remove them, as exhibited by the Brontok
worm [1].
A seminal work by [2] fragmented long system calls of UNIX
processes into shorter system call signatures. They used a se-
quence length of 10 based on their empirical observation of the

unique n-gram sequences. When deciding the size of the n-gram,
they raised two issues: (1) if the size of n is large, the size of the
storage database will also be large; and (2) if the size of n is too

114 International Journal of Engineering & Technology

small, it could be very difficult to discriminate between benign
software and malware.
In [3] enhanced the above technique by proposing a detection
using variable-length sequences of API calls as an alternative to
fixed-length sequences.

3. The influence of Human Immune System

(HIS)

In this section, we briefly describe the mechanisms of the HIS
which have inspired many researchers to adopt similar characteris-
tics in computer defence [2, 4-10]. The death of human cells may

undergo one of these 1) Lysis 2) Apoptosis 3) Necrosis. The lysis
is a stage where a cell might be just repaired. The apoptosis is a
stage whereby a cell will undergo a dismantle process and the
necrosis is the one where a cell is destroyed due to external factors
such as pathogen.
In other context of HIS, B cells are white blood cells that play a
large role in the humoral immune response, whereas T cells have
roles in the cell-mediated immune response, also known as the

innate immune system. The major task performed by B cells is to
make antibodies. A variety of T cells, Natural Killer (NK) cells,
recognises a pathogen when the cell's Major Histocompatibility
Complex (MHC) shown on its surface is detected as non-self.
Damaged or infected cells tend to show unusual levels of MHC.
NK cells are cell killers activated when they receive one of the
following signals:

 Cytokines: A stressed cell may release uric acid to inhibit a

pathogen that is entering through its cell wall. NK cells detect
this acid and respond against pathogens situated in the sur-
rounding area of the cell.

 FC-Receptor: At the site of infection, a large number of white
cells engulf pathogens and repair infected cells.

 Activating and inhibitory receptors: NK cells have receptors
that connect to nearby cells to regulate their destructive activi-
ties.

Pioneering works by [2] used the nature of peptides to allow the
recognition of self and non-self by using the input vector as analo-
gous to the peptide. Using the negative selection algorithm, there
are two stages involved: generation and detection. In the first, a
normal profile is recorded with the assumption that there are no
intrusive activities. Once the normal profile is sufficiently devel-
oped, a raw vector is passed to a process with the aim of matching

it to the self-sample. If there are any matching signatures, the ones
in the self-sample are discarded and the remaining vectors (ab-
normal) are passed to a detector. In the detection stage, the detec-
tor compares the recorded attack vectors with the incoming vec-
tors and any matching pattern is considered anomalous.
There are a number of other research studies, including those of
[7-8] which have attempted to explore ideas of mapping between
malicious code detection and the Danger Theory [10]. The Danger

Theory [11-12] involves algorithms such as the dendritic cells
(DCs) [7] and Toll-like Receptor [13]. In [7], the authors adopted
the functionality of DCs. Firstly, the DCs forward a collected pro-
tein (antigen) together with its environmental context to the effec-
tor’s T cells. When passed to the lymph node, a DC displays an
antigen with context signals, and T cells that have a complemen-
tary receptor for the antigen are activated for immunisation. If a
cell is stressed because danger is present within a particular tissue,
nearby DCs will produce inflammatory cytokine. Then, the cell

will undergo lysis or apoptosis. Additionally, the authors included
the idea of pattern recognition receptors that are available on DCs
and can detect certain well-known pathogens, such as bacteria,
that have particular proteins called pathogen-associated molecular
patterns (PAMPs) which are learnt over a long time. Mature DCs
activate the immune response and semi-mature DCs suppress it.
These activation and suppression processes regulate and balance
the immune response activity.

In [7], the PAMP can be assumed as a security policy violation.
The Safe Signal is the same as normal behaviour whereas the
Danger Signal is equivalent to a harmful symptom, such as a sharp
spike in memory or Control Processing Unit (CPU) processes.
Cytokine is equivalent to a system’s load average that can change
as a result of one or more symptoms. An antigen is regarded as an
exploited system call.
In computer security, a better understanding and discovery of

mechanism in HIS is important and a way forward to formulate
new strategies towards a more sophisticated control of malware
attacks.

4. The Architecture of the Detection System

and Methodology

The method of malware detection in our study is via real-time
monitoring of the API call sequences as execution begin. Our
approach is inspired by the nature of Human Immune System (HIS)
theories. The detection algorithm is mainly inspired by the role of
the Natural Killer (NK) and Suppressor (S). The algorithm decides

by relying upon Knowledge Based (KB) that evolve over time.
The Negative Selection algorithm is used to produce several opti-
mal models of KB and find the most optimal, given several con-
straints. The KB, built via recent based data, is a collection of the
behaviour of the old malware and benign profiles. KB is used to
detect zero-day malware and good programs. Sequences of API
calls are analysed in n-grams which are compared with KB. A
decision is made based on a statistical measure, indicating similar-

ity represented in the n-grams against each of the profiles in the
KB. Findings of the research is fundamental for a solid insight and
capability to combat any zero-day attacks.

Process

Detector

Detection

System

Running Programs

Hook

Agent2

App2

App1

App...n

Hook

Agent1

Hook

Agentn
...

Malware Profile

Benign Profile

Fig. 1: Architecture of the detection system

Figure 1 illustrates the general components in our detection archi-
tecture. The detection system contains detectors and one of it is

the Process Detector. The running programs are subjected to
monitoring by the process detector. As a new program launched, a
hook agent is assigned to the process, capturing all the relevant
API Calls for the purpose of detection. The detector will hook
itself with the executable with the aim of finding anomalies in the
API call sequences of each program. Hooking of this API Calls in
this way are possible via the support of Deviare framework [14] or
Detours software package [15]. This two software can quickly

assist developers and researchers to intercept API calls of Win-
dows’ OSs. This software could be used to collect and establish
benign and malware profiles which will be used by the Process
Detector. There is also apimonitor software program [16] that can
be used to gather API Calls in a controlled environment.
An existing dataset is used, available at [17], to enable comparison
with the results published in the work of Ahmed et al. [18] who
used the same dataset. This dataset consists of sequences of API

calls from 98 benign programs and 416 malware executables. The
latter comprise 117 Trojans, 165 viruses and 134 worms, and in-
clude a number of malware that make use of obfuscation tech-
niques. Based on our checking of online databases describing
malware [19-21], some malware implement polymorphism or
encryption engines, e.g., Virus.Win32.Alman.a, Vi-
rus.Win32.Dream.4916, Virus.Win32.Crypto, Vi-
rus.Win32.Chop.3808 and Virus.Win32.Aris, and others packing

International Journal of Engineering & Technology 115

and unpacking engines, e.g., Worm.Win32.Lioten, Tro-
jan.Win32.AVKill.a, Trojan.Win32.AntiNOD.b, Tro-
jan.Win32.Ajim, Mytob and Zotob. We believe that the inclusion
of these malware will provide some insight into the capability of
our detection system to fight evasion attacks. As described by the
original authors, this malware collection was obtained from [22],
and proprietary software [16] was used to record the API calls of
its benign programs and malware executables. The sizes of the

executables used varied: in the benign category, the minimum and
maximum were 4KB and 104588KB, respectively, and the aver-
age 1263KB; whereas in the malware category, the maximums of
the Trojan, virus and worm types were comparatively small, being
only 9,277KB, 5,832KB and 1,301KB, respectively, with an aver-
age of around 266.7KB and a minimum of approximately 2.7KB.
Apparently, benign programs generate longer API sequences than
malware. Below is an example of API call sequences generated by

the Trojan horse Win32.Bancos.j.apm:
“GlobalFree, RegOpenKeyExA, RegOpenKeyExW, HeapAlloc,
HeapFree, RegQueryValueExW, HeapAlloc, HeapFree,
RegCloseKey, GlobalSize…”.
We examined the dataset and API classes on the Microsoft Devel-
oper Network (MSDN) website [23] and noted that the APIs ap-
pearing in the dataset fall into the 16 classes:
Registry, Network, Network Share Management, Windows Net-

working Functions, Memory Management, Windows Native Sys-
tem Services Routine (Windows Driver Kit), File Management,
Directory Management, Volume Management,
Disk Management, Large Integer Functions, Winsock, Winsock
Service Provider Interface (Winsock SPI), Process and Thread,
Process Status API (PSAPI) Function and lastly Dynamic Link
Libraries.
We grouped them into seven classes: 1) registry; 2) network; 3)
memory; 4) file directories and special functions; 5) socket; 6)

process and thread; and 7) dynamic link libraries, as listed in Ta-
ble 1. Our exploratory analysis shows that there is a total of 237
unique API calls generated by benign programs and malware
executables, of which the benign use only 166 and the malware
195. There are 71 API calls used only by malware executables of
which 33 (46%) appear in all malware classes while 12.6%, 11.2%
and 19.7% appear exclusively in Trojan, virus and worm, respec-
tively, as listed in Table 2.

Table 1: API classes in [23] evaluated in study.

Clas

s ID
API Function/Routine Classes

1 Registry

2
Network, Network Share Management and Windows Networking

Functions

3 Memory Management

4
File Management, Directory Management, Volume Management,

Disk Management and Large Integer Functions

5 Socket (Winsock and Winsock SPI)

6 Process and Thread, and Process Status API Functions

7 Dynamic Link Libraries

Table 2: Statistics of targeted API calls invoked in the dataset

Unique API Calls Category Total

Total API Call category invoked 237

Total uniquely invoked in benign 166

Total uniquely invoked in malware 195

Shared in malware and benign 124

Exclusively invoked in benign 42

Exclusively invoked in malware 71

Mutually invoked in Trojan, virus and worm but not benign 33

Total uniquely invoked in Trojan 159

Total uniquely invoked in virus 147

Total uniquely invoked in worm 140

Exclusively invoked in Trojan 9

Exclusively invoked in virus 8

Exclusively invoked in worm 14

Table 3: Shared or exclusive API call sequences in benign and malware

Category Benign Trojan Virus Worm
Total executables 98 117 165 134

Total calls 2,210,786 635,989 612,808 43,3554
Appear only in be-

nign
2061 N/A N/A N/A

Appear in benign &

malware
2,208,725 599,533 603,124 42,6604

Appear in malware

but not in benign
N/A 3,6456 9,684 6,950

The above-mentioned APIs are based on only unrepeated figures.
A real API call sequence involves a mixed invocation of repetitive
functions starting from the initial execution of the executable until
it stops. Table 3 shows the total numbers of appearances of API
calls in the dataset. Although there are fewer benign programs
than malware executables, they carry 56.8% of the total API call
invocations, followed by Trojan (16.3%), virus (15.7%) and worm
(11.1%). The ratios of malware calls appearing exclusively in

Trojan, virus and worm to the total malware calls are very small,
being 0.03%, 0.01% and 0.02%, respectively.
The benign programs in the dataset generate relatively more API
calls than malware. The APIs used by benign, malware and both
programs are shown in Table 3 in which it can be seen that a small
proportion of the total APIs, 0.09%, is used exclusively by benign
programs’ executions. Trojan, virus and worm types use APIs
which do not exist in any benign applications and, regardless of

whether the APIs exist exclusively in each malware category, we
identify 5.7% of them in Trojan, 1.58% in virus and 1.6% in worm.
In summary, to discriminate benign from malware programs is
challenging because a large number of APIs are used by both, that
is, 99.91% in benign, 94.27% in Trojan, 98.42% in virus and
98.4% in worm. Based on this information, we expect that viruses
will contain more n-grams similar to benign, followed by worms
and Trojans.

4.1. Features Selection and Data Reduction

An API call sequence contains a number of features depending on
the names of its functions. A sequence of API calls captured using
the apimonitor [16] tool can contain comprehensive information,
such as the executable’s profile, and the function’s name and its
associated parameters. Although spatial and temporal information
could be retrieved from a collection of API call sequences, using

too many features will usually involve more complex detection
algorithms in order to associate them and produce aggregated data.
Therefore, we use only function names as a feature for detection
purposes.
We investigate the need to ignore certain API classes in the da-
taset and find that some which appear in benign, malware or both
seem to have high concentrations of one type, as can be observed
from the APIs in Classes 3, 4 and 7 shown in Table 4.
As too many API calls are invoked from Memory Management,

with many at a high frequency and yet co-existing in high propor-
tions in benign and malware, we propose that memory-related API
calls not be used as a source of data due to their high frequency of
variable declaration, invocation and re-invocation in modern pro-
grams. Based on this, and further evidence provided in the next
section, we remove all memory-related API calls in the dataset.
It is noted that the benign data does not use any API calls from
Class 4 which is evidence that benign API calls are only partially

collected, perhaps only those of the executables captured from the
initial execution up to a certain time or condition (i.e., when the
GUI is ready) and does not include those generated when an end-
user started interacting with the program.

Table 4: Insight into reduction process for API classes

No.
API Function/Routine

Classes
Appear in

Benign
Appear

in Both
Appear in

Malware
1 Registry 15 34 n/a
2 Network, Network 1 4 10

116 International Journal of Engineering & Technology

No.
API Function/Routine

Classes
Appear in

Benign
Appear

in Both
Appear in

Malware
Share Management

and Windows Net-

working Functions

3
Memory Manage-

ment
1 33 1

4

File Management,

Directory Manage-

ment, Volume Man-

agement, Disk Man-

agement and Large

Integer Functions

n/a n/a 50

5
Socket (Winsock and

Winsock SPI)
20 16 6

6
Process and Thread,

and Process Status

API Functions
5 32 4

7
Dynamic Link Librar-

ies
n/a 5 n/a

4.2. The N-Grams

An n-gram is a technique used in data mining [24-25] can be de-
fined as a sub-sequence of n items from a given stream or se-
quence of data which can come from various sources, such as text,
graphic, audio and video. Concerning the dataset used in this pa-

per, the term sequence or stream refers to the API calls invoked by
a running executable and an item refers to any API functions with-
in chosen classes of API in Windows Platform. Hence, an n-gram
of an API call sequence refers to a sequence of functions the size
of which is subject to the value of n. Usually, n-grams are non-
overlapping sequences of items but can be designed to be overlap-
ping. We apply non-overlapping sequences of API calls; for ex-
ample, a string of API call sequences generated by a Trojan horse

named Win32.Bancos.j.apm is:
“GlobalFree, RegOpenKeyExA, RegOpenKeyExW, HeapAlloc,
HeapFree, RegQueryValueExW, HeapAlloc, HeapFree,
RegCloseKey, GlobalSize …”.
If the size of n = 5, it can be transformed into:
n-gram1 = GlobalFree, RegOpenKeyExA, RegOpenKeyExW,
HeapAlloc, HeapFree
n-gram 2 = RegQueryValueExW, HeapAlloc, HeapFree,

RegCloseKey, GlobalSize
Further, these n-grams can be transformed into the simpler format
of:
n-gram 1 = 1,2,3,4,5
n-gram 2 = 6,4,5,7,8
Determining actual n-gram sizes is very important as two issues
arise, as highlighted in [2, 26]. If n is small, the n-gram sequences
will find it difficult to discriminate between benign and malware.

Inversely, a large n will create a large number of unique sequences
as they form a larger combinational matrix of APIs.

Table 5: Unique n-grams of benign vs malware with removal of Memory

Management Class APIs

n Size Benign
Malware

(Redundant)

Malware

(Unique)

1 132 161 70

2 1237 1850 1188

3 4460 5173 3385

4 9477 8434 5651

5 14220 10423 7552

6 17530 11071 8621

7 19080 11116 9135

8 19408 10819 9209

9 19423 10568 9190

10 18854 10104 8929

We investigate this issue and evaluate n sizes of 1 to 10. As shown
in Table 5 it appears that the best setting for n is when n = 5 as any
n values greater than five will have lesser reduction rates but larg-

er n-gram cardinality. Therefore, we set n = 5 in this experiment
which means that there are five function names for every n-gram.
The dataset contains 48472 benign and 19732 malware n-grams
when n = 5. Removing the Memory Management class greatly
reduce the numbers to only 14220 benign and 7552 malware n-
grams, a reduction of 70.66% and 61.73% respectively from their
original numbers. Table 5 shows the number of n-grams in the
benign and malware profiles based on all the 10-fold data for n-

gram sizes of 1 to 10, without the Memory Management class
APIs. The last column shows the number of n-grams in the mal-
ware profile after removing redundant n-grams appearing in the
benign dataset.
We analyse the data which is partially displayed in Table 5 that we
obtained using the paired-samples Wilcoxon test to see if there is
evidence of a real difference with and without removing the
Memory Management class APIs and if there are real differences

between the three benign/malware columns. At the .05 signifi-
cance level, we conclude that with the Memory Management class
APIs, there is a significant difference in the number of n-grams in
the benign and malware (redundant) categories [V = 49, p-value =
2.734E-02] as are those in the benign and malware (unique) cate-
gories [V = 55, p-value = 1.953E-03] and for malware (redundant)
and malware (unique) categories [V = 55, p-value = 1.953E-03].
Similar results are also obtained when we remove the Memory

Management class APIs for the number of n-grams in the benign
and malware (redundant) categories [V = 51, p-value = 1.367E-02]
as are those in the benign and malware (unique) categories [V = 55,
p-value = 1.953E-03] and for malware (redundant) and malware
(unique) categories [V = 55, p-value = 1.953E-03].

Table 6: Percentage of n-gram reduction from the removal of the Memory

Management class APIs

n Size
Benign

(%)

Malware

(Redundant) (%)

Malware

(Unique) (%)

1 20.5 17.4 1.4

2 44.2 33.7 15.9

3 59.0 51.6 38.2

4 66.1 61.4 54.6

5 70.7 66.1 61.7

6 73.4 69.1 66.3

7 75.5 70.9 68.8

8 76.9 71.7 70.2

9 77.5 72.1 71.2

10 78.0 72.6 71.9

Average 64.2 58.7 52.0

Std. Dev. 18.6 19.0 25.3

Statistical analysis shows that the removal of the Memory Man-
agement class APIs from the dataset significantly reduces the
number of n-grams [F = 9.934, p < 5.520E-03] as are those for the
malware (redundant) [F = 11.88, p < 2.870E-03] and malware
(unique) [F = 8.734, p < 8.470E-03] categories. Table 6 shows
that the amount of n-gram reduction is in an increase trend and

proportional to the size of n.

4.3. The NK and S Inspired Detection Algorithm

In our study, we form an algorithm based on the Self/Non-self-
Theory. We have malware and benign profiles and identify a
threshold that distinguishes between them. We adapt the roles of
NK, which identifies the preferred threshold, and Suppressor,
which controls its setting so that it will not overkill, to dynamical-

ly modify the threshold. We explain the profiles, threshold and its
self-adjusted process in the following sub-sections.
Figure 2 shows the general structure of API calls for trapping an
executable. While an executable is running, the system captures its
related sequences of API calls, which is processed and trans-
formed before being passed to the decision component as a block
of n-grams. Statistical data are retrieved from this block, contain-
ing the n-grams’ degrees of closeness to both the malware and
benign profiles. The decision component relies greatly on the in-

International Journal of Engineering & Technology 117

formation learned from past data contained in these profiles and
uses a threshold to make the decision. If the executable’s profile is
above this threshold, it is deemed malware, otherwise benign. The
process of selecting the threshold value is inspired by the roles of
NK and Suppressor.

API Calls Stream

Update

Decision

Sequences of n-grams

Benign & Malware

Profiles

Fig. 2: General structure of API calls-trapping on single executable

Although many programs can be hooked, some mature or trusted
ones can be relaxed or ignored, thereby avoiding the need to hook
too many safe executables which may include protected executa-

ble and standard services of the OS.

4.4. Benign and Malware Profiles

Benign and malware profiles maintain a system’s knowledge
about its self and non-self. They were built based on knowledge of
known benign and malware detected in the past.
In a commercial environment, an antivirus company can obtain
these two required profiles by collecting API calls of common

software used by users worldwide. Then, which program profiles
need to be included would depend on the programs installed or
available on the relevant computers. Its malware profile could be
generated from its existing malware collection or from several
websites that offer already-detected malware. The results are two
common profiles for use in detection during execution, updates to
which can be made, as necessary, under the supervision of the
antivirus company. Within this framework, each machine will

have a unique profile of itself, very similar to the HIS which is
unique to an individual, but updates could also be standardised by
the antivirus company. To determine whether this approach will
work requires further research.

4.5. Detection Process

Details of the proposed algorithm are presented in this section.
Throughout this paper, we use the notations listed in Table 7.

Table 7: Notations used for algorithm

Nota-

tion
Description

B All benign files in training dataset

M All malware files in training dataset

Bn n-grams collected from all benign training files

Mn
n-grams collected from all malware training files in which Mn not

subset of Bn

m

Mimics indicator

 for MHC level in cell; process for obtaining m value described

on next page; and m’ new value of m after adjustment influenced

by NK and S

X Current file to be evaluated and it is from testing data

Xn n-grams of X testing data

y Score value returned when Xn parsed into Mn and Bn

NK Natural Killer cell

S Suppressor cell

As an executable run, its n-grams are monitored. Then, to make a
decision, the collection of n-grams seen so far (Xn) is compared
with the total sets of n-grams from the known malware (Mn) and
known benign programs (Bn). Three counts are obtained: the
numbers of n-grams in common with malware, benign and neither.
From this, the ratio y is computed as y = (n-grams in common with
malware) / (n-grams in common with malware + n-grams in
common with benign); if it is at or above a threshold (m), the exe-

cutable is deemed to be malware.
The main question is the reliability of the decision. Another ques-
tion of interest is how soon during execution can a reliable deci-
sion be made.
The initial value of m is found by computing ratio y for each
known malware in the training set (using all its n-grams) and se-
lecting the median of all of the y values. The value of m can be
adjusted. Generally, the detection process undergoes the following

two main stages.

4.5.1. Stage 1: Preparation

The n-grams of the malware (Mn) and benign programs (Bn) in
the training set are obtained and gathered as two separate collec-
tions, with those that appear in both being removed from the Mn
profile but retained in the Bn profile.
Mn and Bn are used for two purposes: as part of the process for
determining the decision threshold (m); and for describing whether

each test executable is malware or benign.
Then, for each file in M, its n-grams (Xn) are obtained and com-
pared with those of Mn and Bn. The idea is to determine how each
malware compares with other malware and with benign programs.
The outcome from that comparison is a y value for each file in M:
y = (total n-grams in common with Mn) / (total n-grams in Mn +
total n-grams in Bn). These y values are sorted and their median is
the initial value for m, using which benign programs will most
likely be correctly detected. However, this initial value of m is

clearly too high: by definition, many malware will fall below this
threshold, and thus not be detected. Therefore, before the testing
phase begins, an adjustment for m is made by simply following
the rule that, if (m > S) m = NK*S, else m = NK*m, so that a new
m is obtained.

4.5.2. Stage 2: Evaluation of Testing Set

For each file (X) in the testing set, Xn is parsed into n-gram match-
ing Bn and n-gram matching Mn. From this, ratio y is computed as

y = (total n-grams in common with Mn) / (total n-grams in Mn +
total n-grams in Bn) and, if it is at or above the threshold (m), the
executable is deemed malware.

4.6. K-Fold Cross-Validation

Cross-validation [27] is used to assess the results of a learning
algorithm by dividing a dataset into two parts called training and
testing sets. It is a common technique known as k-fold cross vali-

dation for which k is usually set to 10. Its objective is to provide
each partition of a dataset with an equal chance of both validating
other partitions and being validated. Thus, the k-fold aims to make
use of all the data for both training and testing while avoiding the
over-fitting that can arise if the same data is used in full for both
training and testing.
The experiment at this phase is conducted in a controlled envi-
ronment. We distribute the 98 benign and 416 malware files

equally into 10 folds, following the standard k-fold (k = 10) cross-
validation scheme. The former is sorted alphabetically, with each
sequentially placed in one-fold, thereby resulting in 8 folds with
10 benign programs and 2 with 9. For the malware files, we first
group them according to their malware types and sort them alpha-
betically. Then, those in the Trojan cluster are sequentially added
to folds followed by those in the virus and worm clusters.

118 International Journal of Engineering & Technology

In each of these 10-fold data sets, one-fold is used as testing data
and the other 9 form the training set. As one round of the k-fold
begins, we pass the training set to the detection system, so it can
begin learning it to find the values for Bn, Mn and m. Then, the
testing folds are loaded for testing to begin. For each X file, the y
value is obtained and compared against m which is moderated by
NK and S. The TP and FP rates are calculated for each round of
the folds and the normalised and averaged results representing the

entire folds are obtained at the end of the experiment.

4.7. Performance Measures

We evaluate the performances of the detection system using:

 TP: The percentage of malware executables correctly classi-

fied as malware

 FP: The percentage of benign programs wrongly classified as

malware

5. Results and Discussion

The aim of this experiment is to provide insight into the capability

of this system to recognise malware and benign pre-emptively,
which is useful for combatting most malware since they take the
form of a single file or are embedded in a small program. Howev-
er, it is not intended to detect malware which is specially crafted
and embedded within a large software application and those with
time bomb features, i.e.; the execution of malicious payload is
scheduled to occur at a specific time later. In this pre-emptive-
based detection, we attempt to determine how many n-grams are

needed to reliably detect malware.
First, we test system performances on a range of numerical values,
from the first to first 1000th n-grams, and then identify which
percentage point of the malware execution, based on the n-gram
sequences, generates the best results.
The size of each executable varies due to the operations pro-
grammed in it and its invocations of different patterns of API call
sequences. While most executable in the dataset contain less than

1000 n-grams, some have many more. However, we assume that
evaluating the files beyond the 1000th n-gram is unnecessary as
the results are predictably much earlier, as can be seen in Figure 3
and 4.

0

10

20

30

40

50

60

70

80

90

100

1 78 155 232 309 386 463 540 617 694 771 848 925

n-gram blocks

R
a
te

s
 (

%
)

TP

FP

Fig. 3: Detections based on 1st to 1000th n-grams with NK and S

0

10

20

30

40

50

60

70

80

90

100

1 78 155 232 309 386 463 540 617 694 771 848 925
n-gram blocks

R
a
te

s
 (

%
)

TP

FP

Fig. 4: Detections based on 1st to 1000th n-grams without S

It can be seen that pre-emptive detection achieves good perfor-
mances at a consistent rate from the 29th n-gram, yielding averag-
es of 95.19% for TP and 1.02% for FP with respective standard
deviations of 3.0 and 3.2. To be more precise, most TP rates of the
10-fold tests produce at least 92.7%, and the sixth 100%, detection.
The system records 0% FP rates on all folds except the ninth
which is 10%.
When NK and S work in tandem, the peak performances appear in

several places from the 113th to 135th n-grams, most of which
record accuracy rates of 100% for TP and 0% for FP. This indi-
cates that the system is capable of recognising benign programs
and malware executable quite early in their execution, even after
only 113 n-grams, with high accuracy.
We also evaluate the performance of the system with NK alone
and find good performances still start at the 29th n-gram. Figure 3
shows the overall performances of the detection system with this

setting. The peak performances appear in several places from the
113th to 135th n-grams. Within the range of these overall perfor-
mances, most record accuracy rates of at least 99.76% for TP and
0% for FP, which at the 113th n-gram, reach 100% and 0%, re-
spectively. Overall, the system performs slightly better with NK
and S integrated rather than with NK alone.
How far through a malware’s execution is the 113th n-gram? Ta-
ble 8 shows details of each k-fold, and median and mean values of

the percentage range for malware files; for example, for the mal-
ware in fold 1, when 113 n-grams are expressed as a percentage of
malware total executions, the median value is 12.4%. This indi-
cates that a reliable decision could be made in the very early stage
of program execution.

Table 8: 113
th n-gram as percentage of total execution

k-Fold
Median of %

Range for Malware

Mean of %

Range for Malware

1 12.4 28.7

2 10.0 28.8

3 5.0 30.5

4 10.3 31.9

5 5.8 32.6

6 10.3 32.3

7 14.7 34.2

8 9.2 35.7

9 8.5 37.2

10 10.6 39.4

Average 9.7 33.1

Std. Dev. 2.9 3.5

5.1. Distinguishing Benign from Malware

As can be seen in Figure 5, several benign programs are close to
the decision threshold. We identify these files and find that MSN
Messenger is the closest, followed by FreeCell, Word and Counter
Strike. This indicates that, by following our API scheme, these
executables generate n-gram patterns closer to malware profiles
than do the rest of the benign program. Programs or executables
that produce y values too close to the m line are at risk of being
misclassified.

0

0.21

1 35 69 103 137 171 205 239 273 307 341 375 409 443 477 511

File ID

y
va

lu
e

y for Malware

m

y for Benign

Fig. 5: Detection graph showing discrimination lines between malware

and benign at 113
th
 n-gram

International Journal of Engineering & Technology 119

5.2. Execution Speeds

The overall speed performances for pre-emptive detection as in
Table 9 lists the average times taken to perform the evaluation
tasks for the 10-fold data with their respective standard deviations,

with and without the detection algorithm.

Table 9: Times taken to perform detection

Setting
Average/Fold

(in seconds)

Std.

Dev.

Differences with-

out Detection

Algorithm/Fold

(in seconds)

Std.

Dev.

NK+S at 29
th 149.84 5.71 3.63 5.71

NK+S at

113
th

150.88 5.27 1.39 6.48

NK+S on full

execution
166.39 5.86 16.94 4.74

6. Conclusion

In this section, we presented a malware detection approach that
can correctly distinguish between malware and benign programs.
Using a data mining technique and inspired by the immune system
of NK and Suppressor, the results showed that this system is ro-

bust. Also, its correct selection of API call sequences and numbers
of n-grams also helped to achieve promising results.
The results suggested that we could effectively detect most of the
malware executable and benign programs as early as the 29th n-
gram. We obtained stable performances over a range of n-gram
blocks, and the peak and perfect performances were seen soon
after the first hundred, i.e., as early as the 113th n-gram.
Our future works include the evaluation against a bigger scale of
the dataset and to include ransomware. Alongside with these ex-

periments, we will begin the development of the malware detec-
tion software tools.

Acknowledgement

This work supported by a research project funded under The Min-
istry of Higher Education, Malaysia (Grant No

FRGS/1/2015/ICT01/USIM/02/1).

References

[1] F-secure. Brontok.N. http://www.f-secure.com/v-

descs/brontok_n.shtml.

[2] Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1998). Intrusion

detection using sequences of system calls. Journal of Computer

Security, 6(3), 151-180.

[3] Wespi, A., Dacier, M., & Debar, H. (2000). Intrusion detection

using variable-length audit trail patterns. Proceedings of the Third

International Workshop on Recent Advances in Intrusion Detection,

pp. 110-129.

[4] Delves, P., Martin, S., Burton, D., & Roitt, I. (2006). Roitt's

essential immunology (essentials). Wiley-Blackwell.

[5] Declercq, W., Vandenabeele, P., & Begley, T. P. (2007).

Apoptosome and Caspase activation. Wiley Encyclopedia of

Chemical Biology, pp. 1-12.

[6] Ismail, S. (2010). Apoptosis: Kematian terancang sel.

https://www.majalahsains.com/apoptosis-kematian-terancang-sel/.

[7] Kim, J., Greensmith, J., Twycross, J., & Aickelin, U. (2005).

Malicious code execution detection and response immune system

inspired by the danger theory. Proceedings of the Adaptive and

Resilient Computing Security Workshop, pp. 1-4.

[8] Fu, H., Yuan, X., & Hu, L. (2007). Design of a four-layer model

based on danger theory and AIS for IDS. Proceedings of the

International Conference on Wireless Communications,

Networking and Mobile Computing, pp. 6331-6334.

[9] Dasgupta, D. (2006). Advances in artificial immune systems. IEEE

Computational Intelligence Magazine, 1(4), 40-49.

[10] Matzinger, P. (1994). Tolerance, danger and the extended family.

Annual Review in Immunology, 12, 991-1045.

[11] Aickelin U., Bentley P. Cayzer S, K. J., & McLeod J. (2003).

Danger theory: The link between AIS and IDS. Proceedings of the

2nd International Conference on Artificial Immune Systems, pp.

147-155.

[12] Zekri, M., & Souici-Meslati, L. (2014). Immunological approach

for intrusion detection. Revue Africaine de la Recherche en

Informatique et Math. ematiques Appliquees, 17, 221-240.

[13] Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors:

Critical proteins linking innate and acquired immunity. Nature

Immunology, 2(8), 675-680.

[14] Nektra Advanced Computing. Deviare API.

http://www.nektra.com/products/deviare-api-hook-windows/.

[15] Microsoft. Detours - Microsoft research.

http://research.microsoft.com/en-us/projects/detours/.

[16] API Monitor. (2010). http://apimonitor.com/order.html.

[17] nexginrc.org. API call dataset. (2010).

http://nexginrc.org/Datasets/Default.aspx.

[18] Ahmed, F., Hameed, H., Shafiq, M. Z., & Farooq, M. (2009). Using

spatio-temporal information in API Calls with machine learning

algorithms for malware detection. Proceedings of the 2nd ACM

Workshop on Security and Artificial Intelligence, pp. 55-62.

[19] Symantec. W32.Almanahe.A. (2007).

http://www.symantec.com/business/security_response/writeup.jsp?

docid=2007-041317-4330-99.

[20] Kaspersky Lab. Malware profile search. (2010).

http://www.kaspersky.com/find?

[21] Symantec. Malware profile search. (2010).

http://searchg.symantec.com/search?

[22] VX Heavens. Virus collection. (2010).

http://vx.netlux.org/faq.php#whole.

[23] Microsoft Corporation. MSDN library. (2010).

http://msdn.microsoft.com/en-us/library.

[24] Witten, I. H., & Frank, E. (2005). Data mining: Practical machine

learning tools and techniques. Morgan Kaufmann.

[25] Lim, H. (2016). Detecting malicious behaviors of software through

analysis of API sequence k-grams. Computer Science and

Information Technology, 4(3), 85-91.

[26] Forrest, S., Perelson, A .S., Allen, L., & Cherukuri, R. (1994). Self-

nonself discrimination in a computer. Proceedings of the IEEE

Symposium on Research in Security and Privacy, pp. 202-212.

[27] Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. In L.

Liu, & M. T. Özsu (Eds.), Encyclopedia of Database Systems. Mas-

sachusetts: Springer, pp. 532-538.

