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Abstract 
 
This study detects malware as it begins to execute and propose a data mining approach for malware detection using sequences of API 
calls in a Windows environment. We begin with some background of the study and the influence of Human Immune System in our de-
tection mechanism, i.e. the Natural Killer (NK) and Suppressor (S) Cells. We apply the K = 10 crosses fold data validation against the 
dataset. We use the n-grams technique to form the data for the purpose of establishing the Knowledge Bases and for the detection stage. 
The detection algorithm integrates the NK and S to work in unison and statistically determine on whether a particular executable deemed 
as benign or malicious. The results show that we could preemptively detect malware and benign programs at the very early beginning of 

their execution upon inspecting the first few hundreds of the targeted API Calls. Depending on the speed of the processor and the ongo-
ing running processes, this could just happen in a split of a second or a few. This research is as part of our initiative to build a behaviour 
based component of a cyber defence and this will enhance our readiness to combat zero-day attacks.  
 
Keywords: API Calls based Detection; K-grams; Malware; N-grams. 

 

1. Introduction 

Malware is software code that has malicious intent, can only do 
harm if it is allowed to execute without being detected. In recent 
years, there have been huge changes in the threat landscape and it 
is a major cybersecurity threat. Malware writer working day and 
night. Every day, there is a huge volume of brand new and unique 
malware coming up. Among the most difficult and challenging 
tasks for malware detection researchers are to detect and eliminate 

evasive malware that use state of the art technology, i.e.; encryp-
tion, encrypted payload, ransom facilities, social engineering tech-
niques, for exploitation objectives. Antivirus companies detect 
large number of them. However, some of the malware can be 
identified and some others unable to be detected. For many of us, 
we familiar with most of malware types, but there are still brand 
new and novel ones emerging from times to times. 
In this paper, we explain the technique we use to prepare our ex-
periment from the context of real-time detection process. This 

shall include on how we capture the raw data, select features, 
transform, establish and updates Knowledge Bases and eventually 
do the detection. 

2. Background of the Study 

Attacks may vary from the individual or organisational level, to 

nation-states resorting to cyber warfare to infiltrate and sabotage 

enemies’ operation. Hence, there is an urgent need for a dependa-
ble cyber defense. The professional malware writer has every 
opportunity to test against all commercial based on signature 
based detectors. Malware detection is hard when the latest mal-
ware employs some protection and evasion techniques – thus cre-
ating a zero-day attack situation. This happens because none of the 
signature based detectors in the market possesses knowledge about 

the attack. Thus, behaviour-based detection is needed to detect 
zero-day malware attacks.  
In API calls research, it is believed that malware generates se-
quences of API calls that are different from benign API calls, and 
involve sequences of actions such as create, read, write, delete and 
change files, and directories or special resources of the OS. Most 
malware is also capable of communicating with other hosts (alt-
hough this is not always necessary) for replication attempts, ac-

cessing resources from other hosts and sending information to 
others. Some other types of malware such as worms, utilise a spe-
cial facility in a certain OS so that, upon logon, the malware au-
tomatically run again, thereby disallowing the end-user from mak-
ing any attempt to remove them, as exhibited by the Brontok 
worm [1].  
A seminal work by [2] fragmented long system calls of UNIX 
processes into shorter system call signatures. They used a se-
quence length of 10 based on their empirical observation of the 

unique n-gram sequences. When deciding the size of the n-gram, 
they raised two issues: (1) if the size of n is large, the size of the 
storage database will also be large; and (2) if the size of n is too 
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small, it could be very difficult to discriminate between benign 
software and malware. 
In [3] enhanced the above technique by proposing a detection 
using variable-length sequences of API calls as an alternative to 
fixed-length sequences. 

3. The influence of Human Immune System 

(HIS) 

In this section, we briefly describe the mechanisms of the HIS 
which have inspired many researchers to adopt similar characteris-
tics in computer defence [2, 4-10]. The death of human cells may 

undergo one of these 1) Lysis 2) Apoptosis 3) Necrosis. The lysis 
is a stage where a cell might be just repaired. The apoptosis is a 
stage whereby a cell will undergo a dismantle process and the 
necrosis is the one where a cell is destroyed due to external factors 
such as pathogen. 
In other context of HIS, B cells are white blood cells that play a 
large role in the humoral immune response, whereas T cells have 
roles in the cell-mediated immune response, also known as the 

innate immune system. The major task performed by B cells is to 
make antibodies. A variety of T cells, Natural Killer (NK) cells, 
recognises a pathogen when the cell's Major Histocompatibility 
Complex (MHC) shown on its surface is detected as non-self. 
Damaged or infected cells tend to show unusual levels of MHC. 
NK cells are cell killers activated when they receive one of the 
following signals: 

 Cytokines: A stressed cell may release uric acid to inhibit a 

pathogen that is entering through its cell wall. NK cells detect 
this acid and respond against pathogens situated in the sur-
rounding area of the cell.  

 FC-Receptor: At the site of infection, a large number of white 
cells engulf pathogens and repair infected cells. 

 Activating and inhibitory receptors: NK cells have receptors 
that connect to nearby cells to regulate their destructive activi-
ties. 

 
Pioneering works by [2] used the nature of peptides to allow the 
recognition of self and non-self by using the input vector as analo-
gous to the peptide. Using the negative selection algorithm, there 
are two stages involved: generation and detection. In the first, a 
normal profile is recorded with the assumption that there are no 
intrusive activities. Once the normal profile is sufficiently devel-
oped, a raw vector is passed to a process with the aim of matching 

it to the self-sample. If there are any matching signatures, the ones 
in the self-sample are discarded and the remaining vectors (ab-
normal) are passed to a detector. In the detection stage, the detec-
tor compares the recorded attack vectors with the incoming vec-
tors and any matching pattern is considered anomalous. 
There are a number of other research studies, including those of 
[7-8] which have attempted to explore ideas of mapping between 
malicious code detection and the Danger Theory [10]. The Danger 

Theory [11-12] involves algorithms such as the dendritic cells 
(DCs) [7] and Toll-like Receptor [13]. In [7], the authors adopted 
the functionality of DCs. Firstly, the DCs forward a collected pro-
tein (antigen) together with its environmental context to the effec-
tor’s T cells. When passed to the lymph node, a DC displays an 
antigen with context signals, and T cells that have a complemen-
tary receptor for the antigen are activated for immunisation. If a 
cell is stressed because danger is present within a particular tissue, 
nearby DCs will produce inflammatory cytokine. Then, the cell 

will undergo lysis or apoptosis. Additionally, the authors included 
the idea of pattern recognition receptors that are available on DCs 
and can detect certain well-known pathogens, such as bacteria, 
that have particular proteins called pathogen-associated molecular 
patterns (PAMPs) which are learnt over a long time. Mature DCs 
activate the immune response and semi-mature DCs suppress it. 
These activation and suppression processes regulate and balance 
the immune response activity.  

In [7], the PAMP can be assumed as a security policy violation. 
The Safe Signal is the same as normal behaviour whereas the 
Danger Signal is equivalent to a harmful symptom, such as a sharp 
spike in memory or Control Processing Unit (CPU) processes. 
Cytokine is equivalent to a system’s load average that can change 
as a result of one or more symptoms. An antigen is regarded as an 
exploited system call. 
In computer security, a better understanding and discovery of 

mechanism in HIS is important and a way forward to formulate 
new strategies towards a more sophisticated control of malware 
attacks. 

4. The Architecture of the Detection System 

and Methodology 

The method of malware detection in our study is via real-time 
monitoring of the API call sequences as execution begin. Our 
approach is inspired by the nature of Human Immune System (HIS) 
theories. The detection algorithm is mainly inspired by the role of 
the Natural Killer (NK) and Suppressor (S). The algorithm decides 

by relying upon Knowledge Based (KB) that evolve over time. 
The Negative Selection algorithm is used to produce several opti-
mal models of KB and find the most optimal, given several con-
straints. The KB, built via recent based data, is a collection of the 
behaviour of the old malware and benign profiles. KB is used to 
detect zero-day malware and good programs. Sequences of API 
calls are analysed in n-grams which are compared with KB. A 
decision is made based on a statistical measure, indicating similar-

ity represented in the n-grams against each of the profiles in the 
KB. Findings of the research is fundamental for a solid insight and 
capability to combat any zero-day attacks. 
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Fig. 1: Architecture of the detection system 

 
Figure 1 illustrates the general components in our detection archi-
tecture. The detection system contains detectors and one of it is 

the Process Detector. The running programs are subjected to 
monitoring by the process detector. As a new program launched, a 
hook agent is assigned to the process, capturing all the relevant 
API Calls for the purpose of detection. The detector will hook 
itself with the executable with the aim of finding anomalies in the 
API call sequences of each program. Hooking of this API Calls in 
this way are possible via the support of Deviare framework [14] or 
Detours software package [15]. This two software can quickly 

assist developers and researchers to intercept API calls of Win-
dows’ OSs. This software could be used to collect and establish 
benign and malware profiles which will be used by the Process 
Detector. There is also apimonitor software program [16] that can 
be used to gather API Calls in a controlled environment. 
An existing dataset is used, available at [17], to enable comparison 
with the results published in the work of Ahmed et al. [18] who 
used the same dataset. This dataset consists of sequences of API 

calls from 98 benign programs and 416 malware executables. The 
latter comprise 117 Trojans, 165 viruses and 134 worms, and in-
clude a number of malware that make use of obfuscation tech-
niques. Based on our checking of online databases describing 
malware [19-21], some malware implement polymorphism or 
encryption engines, e.g., Virus.Win32.Alman.a, Vi-
rus.Win32.Dream.4916, Virus.Win32.Crypto, Vi-
rus.Win32.Chop.3808 and Virus.Win32.Aris, and others packing 
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and unpacking engines, e.g., Worm.Win32.Lioten, Tro-
jan.Win32.AVKill.a, Trojan.Win32.AntiNOD.b, Tro-
jan.Win32.Ajim, Mytob and Zotob. We believe that the inclusion 
of these malware will provide some insight into the capability of 
our detection system to fight evasion attacks. As described by the 
original authors, this malware collection was obtained from [22], 
and proprietary software [16] was used to record the API calls of 
its benign programs and malware executables. The sizes of the 

executables used varied: in the benign category, the minimum and 
maximum were 4KB and 104588KB, respectively, and the aver-
age 1263KB; whereas in the malware category, the maximums of 
the Trojan, virus and worm types were comparatively small, being 
only 9,277KB, 5,832KB and 1,301KB, respectively, with an aver-
age of around 266.7KB and a minimum of approximately 2.7KB. 
Apparently, benign programs generate longer API sequences than 
malware. Below is an example of API call sequences generated by 

the Trojan horse Win32.Bancos.j.apm: 
“GlobalFree, RegOpenKeyExA, RegOpenKeyExW, HeapAlloc, 
HeapFree, RegQueryValueExW, HeapAlloc, HeapFree, 
RegCloseKey, GlobalSize…”. 
We examined the dataset and API classes on the Microsoft Devel-
oper Network (MSDN) website [23] and noted that the APIs ap-
pearing in the dataset fall into the 16 classes:  
Registry, Network, Network Share Management, Windows Net-

working Functions, Memory Management, Windows Native Sys-
tem Services Routine (Windows Driver Kit), File Management, 
Directory Management, Volume Management, 
Disk Management, Large Integer Functions, Winsock, Winsock 
Service Provider Interface (Winsock SPI), Process and Thread, 
Process Status API (PSAPI) Function and lastly Dynamic Link 
Libraries. 
We grouped them into seven classes: 1) registry; 2) network; 3) 
memory; 4) file directories and special functions; 5) socket; 6) 

process and thread; and 7) dynamic link libraries, as listed in Ta-
ble 1. Our exploratory analysis shows that there is a total of 237 
unique API calls generated by benign programs and malware 
executables, of which the benign use only 166 and the malware 
195. There are 71 API calls used only by malware executables of 
which 33 (46%) appear in all malware classes while 12.6%, 11.2% 
and 19.7% appear exclusively in Trojan, virus and worm, respec-
tively, as listed in Table 2. 

 
Table 1: API classes in [23] evaluated in study. 

Clas

s ID 
API Function/Routine Classes 

1 Registry 

2 
Network, Network Share Management and Windows Networking 

Functions 

3 Memory Management 

4 
File Management, Directory Management, Volume Management, 

Disk Management and Large Integer Functions 

5 Socket (Winsock and Winsock SPI) 

6 Process and Thread, and Process Status API Functions 

7 Dynamic Link Libraries 

 
Table 2: Statistics of targeted API calls invoked in the dataset 

Unique API Calls Category Total 

Total API Call category invoked 237 

Total uniquely invoked in benign 166 

Total uniquely invoked in malware 195 

Shared in malware and benign 124 

Exclusively invoked in benign 42 

Exclusively invoked in malware 71 

Mutually invoked in Trojan, virus and worm but not benign 33 

Total uniquely invoked in Trojan 159 

Total uniquely invoked in virus 147 

Total uniquely invoked in worm 140 

Exclusively invoked in Trojan 9 

Exclusively invoked in virus 8 

Exclusively invoked in worm 14 

 
 

Table 3: Shared or exclusive API call sequences in benign and malware 

Category Benign Trojan Virus Worm 
Total executables 98 117 165 134 

Total calls 2,210,786 635,989 612,808 43,3554 
Appear only in be-

nign 
2061 N/A N/A N/A 

Appear in benign & 

malware 
2,208,725 599,533 603,124 42,6604 

Appear in malware 

but not in benign 
N/A 3,6456 9,684 6,950 

 
The above-mentioned APIs are based on only unrepeated figures. 
A real API call sequence involves a mixed invocation of repetitive 
functions starting from the initial execution of the executable until 
it stops. Table 3 shows the total numbers of appearances of API 
calls in the dataset. Although there are fewer benign programs 
than malware executables, they carry 56.8% of the total API call 
invocations, followed by Trojan (16.3%), virus (15.7%) and worm 
(11.1%). The ratios of malware calls appearing exclusively in 

Trojan, virus and worm to the total malware calls are very small, 
being 0.03%, 0.01% and 0.02%, respectively.  
The benign programs in the dataset generate relatively more API 
calls than malware. The APIs used by benign, malware and both 
programs are shown in Table 3 in which it can be seen that a small 
proportion of the total APIs, 0.09%, is used exclusively by benign 
programs’ executions. Trojan, virus and worm types use APIs 
which do not exist in any benign applications and, regardless of 

whether the APIs exist exclusively in each malware category, we 
identify 5.7% of them in Trojan, 1.58% in virus and 1.6% in worm.  
In summary, to discriminate benign from malware programs is 
challenging because a large number of APIs are used by both, that 
is, 99.91% in benign, 94.27% in Trojan, 98.42% in virus and 
98.4% in worm. Based on this information, we expect that viruses 
will contain more n-grams similar to benign, followed by worms 
and Trojans. 

4.1. Features Selection and Data Reduction 

An API call sequence contains a number of features depending on 
the names of its functions. A sequence of API calls captured using 
the apimonitor [16] tool can contain comprehensive information, 
such as the executable’s profile, and the function’s name and its 
associated parameters. Although spatial and temporal information 
could be retrieved from a collection of API call sequences, using 

too many features will usually involve more complex detection 
algorithms in order to associate them and produce aggregated data. 
Therefore, we use only function names as a feature for detection 
purposes. 
We investigate the need to ignore certain API classes in the da-
taset and find that some which appear in benign, malware or both 
seem to have high concentrations of one type, as can be observed 
from the APIs in Classes 3, 4 and 7 shown in Table 4. 
As too many API calls are invoked from Memory Management, 

with many at a high frequency and yet co-existing in high propor-
tions in benign and malware, we propose that memory-related API 
calls not be used as a source of data due to their high frequency of 
variable declaration, invocation and re-invocation in modern pro-
grams. Based on this, and further evidence provided in the next 
section, we remove all memory-related API calls in the dataset. 
It is noted that the benign data does not use any API calls from 
Class 4 which is evidence that benign API calls are only partially 

collected, perhaps only those of the executables captured from the 
initial execution up to a certain time or condition (i.e., when the 
GUI is ready) and does not include those generated when an end-
user started interacting with the program. 
 

Table 4: Insight into reduction process for API classes 

No. 
API Function/Routine 

Classes 
Appear in 

Benign 
Appear 

in Both 
Appear in 

Malware 
1 Registry 15 34 n/a 
2 Network, Network 1 4 10 
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No. 
API Function/Routine 

Classes 
Appear in 

Benign 
Appear 

in Both 
Appear in 

Malware 
Share Management 

and Windows Net-

working Functions 

3 
Memory Manage-

ment 
1 33 1 

4 

File Management, 

Directory Manage-

ment, Volume Man-

agement, Disk Man-

agement and Large 

Integer Functions 

n/a n/a 50 

5 
Socket (Winsock and 

Winsock SPI) 
20 16 6 

6 
Process and Thread, 

and Process Status 

API Functions 
5 32 4 

7 
Dynamic Link Librar-

ies 
n/a 5 n/a 

4.2. The N-Grams 

An n-gram is a technique used in data mining [24-25] can be de-
fined as a sub-sequence of n items from a given stream or se-
quence of data which can come from various sources, such as text, 
graphic, audio and video. Concerning the dataset used in this pa-

per, the term sequence or stream refers to the API calls invoked by 
a running executable and an item refers to any API functions with-
in chosen classes of API in Windows Platform. Hence, an n-gram 
of an API call sequence refers to a sequence of functions the size 
of which is subject to the value of n. Usually, n-grams are non-
overlapping sequences of items but can be designed to be overlap-
ping. We apply non-overlapping sequences of API calls; for ex-
ample, a string of API call sequences generated by a Trojan horse 

named Win32.Bancos.j.apm is: 
“GlobalFree, RegOpenKeyExA, RegOpenKeyExW, HeapAlloc, 
HeapFree, RegQueryValueExW, HeapAlloc, HeapFree, 
RegCloseKey, GlobalSize …”. 
If the size of n = 5, it can be transformed into: 
n-gram1 = GlobalFree, RegOpenKeyExA, RegOpenKeyExW, 
HeapAlloc, HeapFree 
n-gram 2 = RegQueryValueExW, HeapAlloc, HeapFree, 

RegCloseKey, GlobalSize 
Further, these n-grams can be transformed into the simpler format 
of: 
n-gram 1 = 1,2,3,4,5 
n-gram 2 = 6,4,5,7,8 
Determining actual n-gram sizes is very important as two issues 
arise, as highlighted in [2, 26]. If n is small, the n-gram sequences 
will find it difficult to discriminate between benign and malware. 

Inversely, a large n will create a large number of unique sequences 
as they form a larger combinational matrix of APIs.  

 
Table 5: Unique n-grams of benign vs malware with removal of Memory 

Management Class APIs 

n Size Benign 
Malware  

(Redundant) 

Malware 

(Unique) 

1 132 161 70 

2 1237 1850 1188 

3 4460 5173 3385 

4 9477 8434 5651 

5 14220 10423 7552 

6 17530 11071 8621 

7 19080 11116 9135 

8 19408 10819 9209 

9 19423 10568 9190 

10 18854 10104 8929 

 
We investigate this issue and evaluate n sizes of 1 to 10. As shown 
in Table 5 it appears that the best setting for n is when n = 5 as any 
n values greater than five will have lesser reduction rates but larg-

er n-gram cardinality. Therefore, we set n = 5 in this experiment 
which means that there are five function names for every n-gram. 
The dataset contains 48472 benign and 19732 malware n-grams 
when n = 5. Removing the Memory Management class greatly 
reduce the numbers to only 14220 benign and 7552 malware n-
grams, a reduction of 70.66% and 61.73% respectively from their 
original numbers. Table 5 shows the number of n-grams in the 
benign and malware profiles based on all the 10-fold data for n-

gram sizes of 1 to 10, without the Memory Management class 
APIs. The last column shows the number of n-grams in the mal-
ware profile after removing redundant n-grams appearing in the 
benign dataset. 
We analyse the data which is partially displayed in Table 5 that we 
obtained using the paired-samples Wilcoxon test to see if there is 
evidence of a real difference with and without removing the 
Memory Management class APIs and if there are real differences 

between the three benign/malware columns. At the .05 signifi-
cance level, we conclude that with the Memory Management class 
APIs, there is a significant difference in the number of n-grams in 
the benign and malware (redundant) categories [V = 49, p-value = 
2.734E-02] as are those in the benign and malware (unique) cate-
gories [V = 55, p-value = 1.953E-03] and for malware (redundant) 
and malware (unique) categories [V = 55, p-value = 1.953E-03]. 
Similar results are also obtained when we remove the Memory 

Management class APIs for the number of n-grams in the benign 
and malware (redundant) categories [V = 51, p-value = 1.367E-02] 
as are those in the benign and malware (unique) categories [V = 55, 
p-value = 1.953E-03] and for malware (redundant) and malware 
(unique) categories [V = 55, p-value = 1.953E-03].  
 
Table 6: Percentage of n-gram reduction from the removal of the Memory 

Management class APIs 

n Size 
Benign 

(%) 

Malware   

(Redundant) (%) 

Malware 

(Unique) (%) 

1 20.5 17.4 1.4 

2 44.2 33.7 15.9 

3 59.0 51.6 38.2 

4 66.1 61.4 54.6 

5 70.7 66.1 61.7 

6 73.4 69.1 66.3 

7 75.5 70.9 68.8 

8 76.9 71.7 70.2 

9 77.5 72.1 71.2 

10 78.0 72.6 71.9 

Average 64.2 58.7 52.0 

Std. Dev. 18.6 19.0 25.3 

 
Statistical analysis shows that the removal of the Memory Man-
agement class APIs from the dataset significantly reduces the 
number of n-grams [F = 9.934, p < 5.520E-03] as are those for the 
malware (redundant) [F = 11.88, p < 2.870E-03] and malware 
(unique) [F = 8.734, p < 8.470E-03] categories. Table 6 shows 
that the amount of n-gram reduction is in an increase trend and 

proportional to the size of n.  

4.3. The NK and S Inspired Detection Algorithm 

In our study, we form an algorithm based on the Self/Non-self-
Theory. We have malware and benign profiles and identify a 
threshold that distinguishes between them. We adapt the roles of 
NK, which identifies the preferred threshold, and Suppressor, 
which controls its setting so that it will not overkill, to dynamical-

ly modify the threshold. We explain the profiles, threshold and its 
self-adjusted process in the following sub-sections. 
Figure 2 shows the general structure of API calls for trapping an 
executable. While an executable is running, the system captures its 
related sequences of API calls, which is processed and trans-
formed before being passed to the decision component as a block 
of n-grams. Statistical data are retrieved from this block, contain-
ing the n-grams’ degrees of closeness to both the malware and 
benign profiles. The decision component relies greatly on the in-
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formation learned from past data contained in these profiles and 
uses a threshold to make the decision. If the executable’s profile is 
above this threshold, it is deemed malware, otherwise benign. The 
process of selecting the threshold value is inspired by the roles of 
NK and Suppressor. 
 

API Calls Stream

Update

Decision

Sequences of n-grams

Benign & Malware 

Profiles

 
Fig. 2: General structure of API calls-trapping on single executable 

Although many programs can be hooked, some mature or trusted 
ones can be relaxed or ignored, thereby avoiding the need to hook 
too many safe executables which may include protected executa-

ble and standard services of the OS. 

4.4. Benign and Malware Profiles 

Benign and malware profiles maintain a system’s knowledge 
about its self and non-self. They were built based on knowledge of 
known benign and malware detected in the past.  
In a commercial environment, an antivirus company can obtain 
these two required profiles by collecting API calls of common 

software used by users worldwide. Then, which program profiles 
need to be included would depend on the programs installed or 
available on the relevant computers. Its malware profile could be 
generated from its existing malware collection or from several 
websites that offer already-detected malware. The results are two 
common profiles for use in detection during execution, updates to 
which can be made, as necessary, under the supervision of the 
antivirus company. Within this framework, each machine will 

have a unique profile of itself, very similar to the HIS which is 
unique to an individual, but updates could also be standardised by 
the antivirus company. To determine whether this approach will 
work requires further research. 

4.5. Detection Process 

Details of the proposed algorithm are presented in this section. 
Throughout this paper, we use the notations listed in Table 7. 
 

Table 7: Notations used for algorithm 

Nota-

tion 
Description 

B All benign files in training dataset 

M All malware files in training dataset 

Bn n-grams collected from all benign training files  

Mn 
n-grams collected from all malware training files in which Mn not 

subset of Bn 

m 

Mimics indicator 

 for MHC level in cell; process for obtaining m value described 

on next page; and m’ new value of m after adjustment influenced 

by NK and S 

X Current file to be evaluated and it is from testing data 

Xn n-grams of X testing data 

y Score value returned when Xn parsed into Mn and Bn 

NK Natural Killer cell 

S Suppressor cell 

 

As an executable run, its n-grams are monitored. Then, to make a 
decision, the collection of n-grams seen so far (Xn) is compared 
with the total sets of n-grams from the known malware (Mn) and 
known benign programs (Bn). Three counts are obtained: the 
numbers of n-grams in common with malware, benign and neither. 
From this, the ratio y is computed as y = (n-grams in common with 
malware) / (n-grams in common with malware + n-grams in 
common with benign); if it is at or above a threshold (m), the exe-

cutable is deemed to be malware.  
The main question is the reliability of the decision. Another ques-
tion of interest is how soon during execution can a reliable deci-
sion be made. 
The initial value of m is found by computing ratio y for each 
known malware in the training set (using all its n-grams) and se-
lecting the median of all of the y values. The value of m can be 
adjusted. Generally, the detection process undergoes the following 

two main stages.  

4.5.1. Stage 1: Preparation 

The n-grams of the malware (Mn) and benign programs (Bn) in 
the training set are obtained and gathered as two separate collec-
tions, with those that appear in both being removed from the Mn 
profile but retained in the Bn profile.  
Mn and Bn are used for two purposes: as part of the process for 
determining the decision threshold (m); and for describing whether 

each test executable is malware or benign. 
Then, for each file in M, its n-grams (Xn) are obtained and com-
pared with those of Mn and Bn. The idea is to determine how each 
malware compares with other malware and with benign programs. 
The outcome from that comparison is a y value for each file in M: 
y = (total n-grams in common with Mn) / (total n-grams in Mn + 
total n-grams in Bn). These y values are sorted and their median is 
the initial value for m, using which benign programs will most 
likely be correctly detected. However, this initial value of m is 

clearly too high: by definition, many malware will fall below this 
threshold, and thus not be detected. Therefore, before the testing 
phase begins, an adjustment for m is made by simply following 
the rule that, if (m > S) m = NK*S, else m = NK*m, so that a new 
m is obtained. 

4.5.2. Stage 2: Evaluation of Testing Set 

For each file (X) in the testing set, Xn is parsed into n-gram match-
ing Bn and n-gram matching Mn. From this, ratio y is computed as 

y = (total n-grams in common with Mn) / (total n-grams in Mn + 
total n-grams in Bn) and, if it is at or above the threshold (m), the 
executable is deemed malware.  

4.6. K-Fold Cross-Validation 

Cross-validation [27] is used to assess the results of a learning 
algorithm by dividing a dataset into two parts called training and 
testing sets. It is a common technique known as k-fold cross vali-

dation for which k is usually set to 10. Its objective is to provide 
each partition of a dataset with an equal chance of both validating 
other partitions and being validated. Thus, the k-fold aims to make 
use of all the data for both training and testing while avoiding the 
over-fitting that can arise if the same data is used in full for both 
training and testing. 
The experiment at this phase is conducted in a controlled envi-
ronment. We distribute the 98 benign and 416 malware files 

equally into 10 folds, following the standard k-fold (k = 10) cross-
validation scheme. The former is sorted alphabetically, with each 
sequentially placed in one-fold, thereby resulting in 8 folds with 
10 benign programs and 2 with 9. For the malware files, we first 
group them according to their malware types and sort them alpha-
betically. Then, those in the Trojan cluster are sequentially added 
to folds followed by those in the virus and worm clusters.  
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In each of these 10-fold data sets, one-fold is used as testing data 
and the other 9 form the training set. As one round of the k-fold 
begins, we pass the training set to the detection system, so it can 
begin learning it to find the values for Bn, Mn and m. Then, the 
testing folds are loaded for testing to begin. For each X file, the y 
value is obtained and compared against m which is moderated by 
NK and S. The TP and FP rates are calculated for each round of 
the folds and the normalised and averaged results representing the 

entire folds are obtained at the end of the experiment.  

4.7. Performance Measures 

We evaluate the performances of the detection system using: 

 TP: The percentage of malware executables correctly classi-

fied as malware 

 FP: The percentage of benign programs wrongly classified as 

malware 

5. Results and Discussion 

The aim of this experiment is to provide insight into the capability 

of this system to recognise malware and benign pre-emptively, 
which is useful for combatting most malware since they take the 
form of a single file or are embedded in a small program. Howev-
er, it is not intended to detect malware which is specially crafted 
and embedded within a large software application and those with 
time bomb features, i.e.; the execution of malicious payload is 
scheduled to occur at a specific time later. In this pre-emptive-
based detection, we attempt to determine how many n-grams are 

needed to reliably detect malware.  
First, we test system performances on a range of numerical values, 
from the first to first 1000th n-grams, and then identify which 
percentage point of the malware execution, based on the n-gram 
sequences, generates the best results.  
The size of each executable varies due to the operations pro-
grammed in it and its invocations of different patterns of API call 
sequences. While most executable in the dataset contain less than 

1000 n-grams, some have many more. However, we assume that 
evaluating the files beyond the 1000th n-gram is unnecessary as 
the results are predictably much earlier, as can be seen in Figure 3 
and 4. 
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Fig. 3: Detections based on 1st to 1000th n-grams with NK and S 
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Fig. 4: Detections based on 1st to 1000th n-grams without S 

It can be seen that pre-emptive detection achieves good perfor-
mances at a consistent rate from the 29th n-gram, yielding averag-
es of 95.19% for TP and 1.02% for FP with respective standard 
deviations of 3.0 and 3.2. To be more precise, most TP rates of the 
10-fold tests produce at least 92.7%, and the sixth 100%, detection. 
The system records 0% FP rates on all folds except the ninth 
which is 10%.  
When NK and S work in tandem, the peak performances appear in 

several places from the 113th to 135th n-grams, most of which 
record accuracy rates of 100% for TP and 0% for FP. This indi-
cates that the system is capable of recognising benign programs 
and malware executable quite early in their execution, even after 
only 113 n-grams, with high accuracy.  
We also evaluate the performance of the system with NK alone 
and find good performances still start at the 29th n-gram. Figure 3 
shows the overall performances of the detection system with this 

setting. The peak performances appear in several places from the 
113th to 135th n-grams. Within the range of these overall perfor-
mances, most record accuracy rates of at least 99.76% for TP and 
0% for FP, which at the 113th n-gram, reach 100% and 0%, re-
spectively. Overall, the system performs slightly better with NK 
and S integrated rather than with NK alone. 
How far through a malware’s execution is the 113th n-gram? Ta-
ble 8 shows details of each k-fold, and median and mean values of 

the percentage range for malware files; for example, for the mal-
ware in fold 1, when 113 n-grams are expressed as a percentage of 
malware total executions, the median value is 12.4%. This indi-
cates that a reliable decision could be made in the very early stage 
of program execution. 
 

Table 8: 113
th n-gram as percentage of total execution 

k-Fold 
Median of % 

Range for Malware 

Mean of % 

Range for Malware 

1 12.4 28.7 

2 10.0 28.8 

3 5.0 30.5 

4 10.3 31.9 

5 5.8 32.6 

6 10.3 32.3 

7 14.7 34.2 

8 9.2 35.7 

9 8.5 37.2 

10 10.6 39.4 

Average 9.7 33.1 

Std. Dev. 2.9 3.5 

5.1. Distinguishing Benign from Malware 

As can be seen in Figure 5, several benign programs are close to 
the decision threshold. We identify these files and find that MSN 
Messenger is the closest, followed by FreeCell, Word and Counter 
Strike. This indicates that, by following our API scheme, these 
executables generate n-gram patterns closer to malware profiles 
than do the rest of the benign program. Programs or executables 
that produce y values too close to the m line are at risk of being 
misclassified. 
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Fig. 5: Detection graph showing discrimination lines between malware 

and benign at 113
th
 n-gram 
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5.2. Execution Speeds 

The overall speed performances for pre-emptive detection as in 
Table 9 lists the average times taken to perform the evaluation 
tasks for the 10-fold data with their respective standard deviations, 

with and without the detection algorithm. 
 

Table 9: Times taken to perform detection 

Setting 
Average/Fold 

(in seconds) 

Std. 

Dev. 

Differences with-

out Detection 

Algorithm/Fold 

(in seconds) 

Std. 

Dev. 

NK+S at 29
th 149.84 5.71 3.63 5.71 

NK+S at 

113
th 

150.88 5.27 1.39 6.48 

NK+S on full 

execution 
166.39 5.86 16.94 4.74 

6. Conclusion  

In this section, we presented a malware detection approach that 
can correctly distinguish between malware and benign programs. 
Using a data mining technique and inspired by the immune system 
of NK and Suppressor, the results showed that this system is ro-

bust. Also, its correct selection of API call sequences and numbers 
of n-grams also helped to achieve promising results. 
The results suggested that we could effectively detect most of the 
malware executable and benign programs as early as the 29th n-
gram. We obtained stable performances over a range of n-gram 
blocks, and the peak and perfect performances were seen soon 
after the first hundred, i.e., as early as the 113th n-gram.  
Our future works include the evaluation against a bigger scale of 
the dataset and to include ransomware. Alongside with these ex-

periments, we will begin the development of the malware detec-
tion software tools. 
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