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Abstract 
 
Myocardial infarction is an irreversible damage of heart muscle caused by prolonged oxygen deficiency. As a result, the presence of 
damaged tissue will alter the normal sinus rhythm. Hence, the paper proposes to profile history of myocardial infarction from electrocar-
diogram using artificial neural network. Data for anterior and inferior myocardial infarction, as well as healthy control is acquired from 
PTB Diagnostic ECG Database. Subsequently, QRS power ratio features for different frequency zones are extracted from the pre-

processed electrocardiogram. Discriminative ability of the features is assessed using k-nearest neighbor. The best combination of features 
with 99.7% testing accuracy is the power ratio composite that combines both low-frequency and mid-frequency information. An intelli-
gent profiling model is successfully developed using the composite features and an optimized artificial neural network. The model was 
able to identify between different electrocardiogram groups with overall accuracy of 98.4% and mean squared error of less than 0.1. 
Conclusively, the proposed signal processing approach has provided an improved alternative to the established methods from literature. 
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1. Introduction 

Electrocardiogram (ECG) is non-invasive electrical recording of 
the heart. The bio-potential signal arises from propagation of ionic 
impulses throughout the cardiac conduction system. These can be 
detected using bio-potential electrodes attached to the arms and 
legs to form the limb lead systems. The bipolar configuration 

measures the potential difference between different pairs of elec-
trodes. Meanwhile, the augmented limbs are unipolar configura-
tions with common reference derived from Goldberger’s central 
terminal. The bipolar and augmented limb leads represents the 
frontal view of the heart. Implementation of multiple lead systems 
allows for localization of defects within the electrical conduction 
pathways [1]. The abnormalities manifest as deviations from nor-
mal sinus rhythms. Among the widely studied arrhythmias include 

premature ventricular contractions [2], bundle branch blocks [3], 
cardiomyopathy [4] and myocardial infarction (MI) [5]. 
Acute MI is the necrosis of heart tissue caused by prolonged is-
chemic conditions. Delay in treatment often results in cardiac 
arrest and death [6]. In the past, there has been an attempt to in-
vestigate the ECG of patients who survived acute MI. This was 
based on the assumption that the damaged myocardium would 
introduce irregularities to the sinus rhythm. The study focused on 
the power ratio features from the bipolar and augmented limb 

leads. Albeit the limited sample size, initial findings shows that 
the k-nearest neighbor model was able to classify between healthy 
ECG with those of anterior and interior MI survivors [7]. In this 
study however, a more thorough investigation is proposed by fo-
cusing on different frequency zones of the QRS complex; low-
frequency (5–15 Hz), mid-frequency (15–80 Hz) and high-
frequency (150–250 Hz) components [5]. 
The discriminative ability of the proposed features can be assessed 

using k-nearest neighbor (kNN). The technique relies on statistical 

principles in which instances from testing dataset are classified 
based on the largest occurrence of similarly labelled instances 
from the training dataset [8]. Meanwhile, the more advanced arti-
ficial neural network (ANN) is derived from biological function-
ing of neurons. The method is advantageous as it is capable of 

learning and can generalize solutions to a given problem [9]. Thus 
far, both kNN [10, 11] and ANN [12, 13] have been widely used 
to classify features and model complex non-linear relationships for 
various biomedical applications. 
By incorporating signal processing and intelligent modelling tech-
niques, the study evaluates the feasibility of QRS power ratio 
features in different frequency zones for profiling ECG with histo-
ry of MI. The investigation also compares the discriminative abil-

ity of the proposed features to that of the previous experiments [7] 
using larger sample size. The preceding analyses however, defined 
the behavior of QRS complex within a single frequency zone (1–
20 Hz) [14]. 

2. Methodology 

Essentially, the work is divided into three major experiments. The 
first part of the study involves data collection, pre-processing and 
extraction of QRS power ratio features for low-frequency (LF-
QRS), mid-frequency (MF-QRS) and high-frequency (HF-QRS) 
components. The features are then segregated into anterior MI, 
inferior MI and healthy samples based on the medical records. 
Subsequently, the discriminative ability of proposed features is 
analysed using kNN. Apart from individually assessing the per-
formance of bipolar and augmented limb leads, the work also 

includes feature composites in which various combination of fre-
quency components are tested to enhance discrimination between 
the control groups. The best combination of features is then im-
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plemented in the profiling of MI history using ANN. Figure 1 
shows the general framework of research methods.  
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Fig. 1: General framework of research methods. 

2.1. Data collection 

Raw signal is obtained from PTB Diagnostic ECG Database. The 
ECG is acquired using non-commercial, Physikalisch-Technische 
Bundesanstalt prototype recorder with sampling rate of 1 kHz [15]. 
Data is acquired for ECG with history of anterior MI and inferior 
MI, as well as healthy control. 

2.2. Pre-processing and feature extraction 

Signal pre-processing and extraction of QRS power ratio features 

are performed in MATLAB. The ECG is filtered into three fre-
quency zones using band-pass finite impulse response (FIR) filters; 
LF-QRS (5–15 Hz), MF-QRS (15–80 Hz) and HF-QRS (150–250 
Hz). FIR filters are adopted as it is inherently stable and have 
linear phase response [16]. Subsequently, the pre-processed signal 
is segregated into smaller 5 seconds segments. The signal is then 
converted to power spectral density (PSD) using Welch method 
with 50% overlapping epoch and length of 1024 [7]. 

Energy spectral density (ESD) is computed as the area under PSD 
curve. Information for bipolar limb leads is then normalized using 
in (1), (2) and (3). Notations I, II and III each represent infor-
mation for Lead I, Lead II and Lead III. 
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Similarly, the information for augmented limb leads are each nor-

malized through in (4), (5) and (6). Notations aVR, aVL and aVF 
each represents information for Lead aVR, Lead aVL and Lead 
aVF. 
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The extracted features are subsequently clustered into the anterior 
MI, inferior MI and healthy control. Table 1 shows the individual 
ECG cluster and their respective indexes. The labels are required 

by both kNN and ANN for modelling purposes. 
 

Table 1: ECG Clusters and the Assigned Index Labels 

Cluster Index 

Anterior MI 1 

Inferior MI 2 

Healthy 3 

A separate set of features based on methods adopted in the preced-
ing experiment has been replicated. The analysis aims to observe 
the effect of increased sample size on the discriminative ability of 
the previously proposed features [7]. 

2.3. Feature selection using kNN 

Classification of features using kNN algorithm is relatively unso-
phisticated.  The arrangement of data is initially randomized. 80% 
of the data is used for training and the remaining 20% for testing. 
The algorithm initially memorizes training features based on the 
corresponding ECG clusters. Consequently, the unlabelled fea-
tures from the testing set are identified by assigning the most fre-
quency class labels with k nearest training samples. Euclidean 
distance metric is adopted in this study and classification is per-

formed for k = 1 to k = 5 [7]. 
Discriminative ability of the features is assessed in terms of accu-
racy (Acc), positive predictivity (Pp) and sensitivity (Se). Each of 
the parameters is expressed in (7), (8) and (9). TP, TN, FP and FN 
each represent true positive, true negative, false positive and false 
negative classifications. 
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To avoid bias issues, true performance is assessed using k-fold 
cross-validation technique. The cross-validation estimate is the 
total correct classification that is averaged over the number of 
folds within the dataset. Therefore, features are considered stable 
for specific dataset if comparable predictions are being made with 
different sets of testing features [17]. 
The dataset is randomly divided into five disjointed folds. At each 

instant, four folds of feature sets are used for training and the re-
maining fold is used for testing. These correlates to the 80:20 split 
ratio that has been set for kNN classification. At varying iterations 
of k, different combination of folds will form dissimilar training 
and testing sets. The true classification performance is therefore 
averaged over five instances of k. 
To compare effectiveness of the proposed features for discriminat-
ing between healthy control and those with history of anterior MI 
and inferior MI, the initial assessment is performed separately for 

bipolar and augmented limb leads. An extended study is also con-
ducted on feature composites that combine different frequency 
zones of the QRS complex. The best power ratio composites will 
be used to develop an intelligent profiling model using ANN. 
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2.4. Intelligent ECG profiling model using ANN 

ANN is generally comprised of an input layer, single hidden layer 
and an output layer. The input is comprised of selected QRS pow-
er ratio features. Meanwhile, the output corresponds to the index 

labels of the ECG clusters. The study implements tangent sigmoid 
as activation function for the hidden layer. Meanwhile, the output 
neuron adopts pure linear function. Network training is performed 
using the Levenberg-Marquardt algorithm. Training, testing and 
validation dataset is randomly segregated with 70:15:15 split ratio. 
The optimum number of hidden neurons is assessed through ex-
haustive search algorithm. 
The algorithm generally implements a constructive approach [18], 

while considering the rules of thumb for selecting the minimum 
and maximum number of hidden neurons. The lower limit is se-
lected as 2/3 the number of input and output neurons, whereas the 
maximum threshold is less than twice the number of input neurons 
[19]. The algorithm implements the same set of features to train 
the network with different hidden neuron settings. As shown in 
Figure 2, training starts with minimum hidden neurons. For each 
of the hidden neuron settings, the process is repeated for 40 itera-

tions. Subsequently, the process restarts with increased number of 
hidden neurons until the maximum limit is reached.  

Average training Acc 

and MSE 

Minimum hidden 

neurons 

QRS power ratio 

dataset 

Increase hidden 

neurons 

Evaluation on optimum 

number of hidden neurons 

 End 

Start 

Maximum hidden 

neurons? 

Yes 

No 

 
Fig. 2: Exhaustive search algorithm. MSE = Mean Squared Error. 

 
Subsequently, the optimum number of hidden neurons is selected 

based on the highest average training accuracy with lowest MSE 
[20]. The network is then finalized and trained to achieve the best 
classification. Similar parameters on Acc, Pp and Se are used to 
assess model performance. 

3. Results and Discussion 

3.1. Data segregation and feature extraction 

ECG with history of anterior and inferior MI, as well as healthy 
control was downloaded in .mat format. Table 2 compares the 
number of subjects involved in current work and those of the pub-
lished literature. Data from a total of 87 subjects has been acquired 

for this study. This surpasses the preceding work that was based 
on 35 subjects [7]. 

 

Table 2: Comparison between Number of Subject in Current Work and 

Published Literature [7] 

Group Current Work Published Literature 

Anterior MI 27 8 

Inferior MI 36 7 

Healthy 24 20 

The raw ECG was pre-processed for noise removal. Subsequently, 
the signal is then filtered into the respective frequency zones be-
fore being segregated into 5 seconds signal segments. The feature 
extraction stage yielded 1206 samples for each ECG class. 

3.2. Discriminative ability of power ratio features 

Initially, the study performs separate analysis on bipolar and aug-
mented limb leads for LF-QRS, MF-QRS and HF-QRS compo-
nents. In addition, the approach in published literature has been 
replicated with larger sample size and performance of the features 
is observed. As summarized in Table 3, the performance between 
bipolar and augmented limb leads is comparable with LF-QRS 
yielding the highest testing accuracy. Slight reduction in perfor-

mance has been observed for MF-QRS component. The very low 
testing accuracy for HF-QRS indicates its poor discriminative 
ability. None of the proposed set of features exceeded testing ac-
curacy of 90.0%. An extended analysis with previous study shows 
comparable results. These are attributed to the overlapping fre-
quency ranges of the proposed 5–15 Hz for LF-QRS and 1–20 Hz 
from the established method [7]. 
 
Table 3: Five-Fold Average Accuracy for Power Ratio of Bipolar and 

Augmented Limb Leads (k = 2) 

Power Ratio 
Bipolar Limb Leads Augmented Limb Leads 

Training Testing Training Testing 

Literature [7] 100.0% 87.5% 100.0% 87.3% 

LF-QRS 100.0% 87.6% 100.0% 88.3% 

MF-QRS 100.0% 86.6% 100.0% 86.8% 

HF-QRS 100.0% 45.5% 100.0% 46.5% 

The work then shifts its focus on a different aspect by combining 
features from bipolar and augmented limb leads for the respective 
frequency zones. Even with increase in the number of features, the 
method was not able to significantly improve the testing accuracy. 
Hence, a study that focuses on composite features is required. 
 
Table 3: Five-Fold Average Accuracy for LF-QRS, MF-QRS and HF-

QRS components (k = 2) 

Power Ratio LF-QRS MF-QRS HF-QRS 

Training 100.0% 100.0% 100.0% 

Testing 88.2% 86.6% 46.4% 

3.3. Power ratio composites 

In an attempt to improve the discriminative ability of QRS power 
ratio features, combination between different frequency zones was 
evaluated. The study focused on the following composites; low-
frequency and mid-frequency (LF-MF), low-frequency and high-
frequency (LF-HF), as well as mid-frequency and high-frequency 
(MF-HF) combinations. The composites were tested separately for 
bipolar and augmented limb leads. Results in Table 4 indicate 

marked improvement on testing accuracy compared to the preced-
ing experiments. 
 
Table 4: Five-Fold Average Accuracy for Power Ratio Composites of 

Bipolar and Augmented Limb Leads (k = 2) 

Power Ratio 

Composites 

Bipolar Limb Leads Augmented Limb Leads 

Training Testing Training Testing 

LF-MF 100.0% 99.7% 100.0% 99.7% 

LF-HF 100.0% 96.7% 100.0% 96.4% 

MF-HF 100.0% 96.5% 100.0% 96.5% 

Generally, results between bipolar and augmented limb leads are 
comparable with LF-MF power ratio composite yielding the high-
est testing accuracy of close to 100.0%. 
Table 5 shows the Pp and Se measures that were obtained for both 
bipolar and augmented limb leads. Findings indicate marked im-
provement on the discriminative ability of the new feature compo-



International Journal of Engineering & Technology 279 

 
site. As both bipolar and augmented limb lead components yielded 
comparable results, only one will be used in the intelligent profil-
ing model. 
 
Table 5: Five-Fold Average Pp and Se for LF-MF Power Ratio Composite 

(k = 2) 

LF-MF Power 

Ratio Composites 

Bipolar Limb Leads Augmented Limb Leads 

Pp Se Pp Se 

Anterior MI 99.6% 99.6% 99.7% 99.6% 

Inferior MI 99.8% 99.6% 99.8% 99.7% 

Healthy 99.7% 99.8% 99.7% 99.8% 

By observing the resultant performance of different sets of power 
ratio features, it was evident that the proposed HF-QRS has the 
lowest discriminative capabilities. Findings were consistent with 
the combined feature settings where both LF-HF and MF-HF was 
not able to match the performance of LF-MF composites. 

3.4. Development of intelligent profiling model 

In the final part of the study, LF-MF power ratio composite for the 
bipolar limb leads and ANN was implemented to develop an intel-
ligent ECG profile model. Initial, the structure is comprised of six 
input and one output neurons. The optimum number of hidden 
neurons was assessed through the exhaustive search algorithm. 
The minimum and maximum number of hidden neurons was each 
set at five and 11. The average training accuracies and MSE for 

are shown in Figure 3 and Figure 4. From the obtained results, the 
optimum number of hidden neurons for the final network structure 
is 11. This was selected based on the highest training accuracy 
with lowest MSE.  
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Fig. 3: Average training accuracy. 
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Fig. 4: Average training MSE. 

 
The optimized network is then trained for best model performance. 

Table 6 shows the classification accuracies and MSE for training, 
validation and testing. 
 

Table 6: Classification Performance for Intelligent Profiling Model 

Performance Training Validation Testing 

Accuracy (%) 99.0% 98.3% 98.5% 

MSE 0.0415 0.0491 0.0353 

Correct Classifications 2,540 509 512 

Generally, the network model has successfully classified the LF-
MF power ratio composites into the respective ECG clusters with 
overall accuracy of 98.4%. The performance has been consistent 
throughout training, validation and testing stages and the obtained 
MSE is less than 0.1. Such performance is expected as kNN has 

demonstrated excellent discriminative capabilities of the selected 
feature composites. 

4. Conclusion  

The investigation has initially proposed QRS power ratio for pro-
filing ECG with history of anterior and inferior MI. The features 

were segregated into different frequency components. Findings 
demonstrate that performance of low-frequency information is 
comparable to the selected method from the literature. When as-
sessed separately, LF-QRS and MF-QRS component yielded satis-
factory performance for both bipolar and augmented limb leads. 
HF-QRS however, has demonstrated poor discriminative ability. 
By combining information from LF-QRS and MF-QRS compo-
nents, the discriminative ability of newly formed LF-MF power 

ratio composites is significantly improved. The selected set of 
features and ANN was successfully implemented in the develop-
ment of intelligent profiling model. Generally, the optimized net-
work was able to classify between ECG with history of anterior 
and inferior MI, as well as healthy control; yielding excellent ac-
curacy. 
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