

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (4.15) (2018) 59-62

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

A New Mobile Malware Classification for Audio Exploitation

Muhamad Nur Arif
1
, Azreena Abu Bakar

1
, Madihah Mohd Saudi

1,2
*

1Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), Malaysia

2CyberSecurity and Systems Research Unit, Islamic Science Institute (ISI), Universiti Sains Islam Malaysia (USIM), Malaysia
*Corresponding author E-mail: madihah@usim.edu.my

Abstract

Rapid growth and usage of Android smartphones worldwide have attracted many attackers to exploit them. Currently, the attackers used
mobile malware to attack victims’ smartphones to steal confidential information such as username and password. The attacks are also
motivated based on profit and money. The attacks come in different ways, such as via audio, image, GPS location, SMS and call logs in
the smartphones. Hence, this paper presents a new mobile malware classification for audio exploitation. This classification is beneficial
as an input or database to detect the mobile malware attacks. System calls and permissions for audio exploitation have been extracted by

using static and dynamic analyses using open source tools and freeware in a controlled lab environment. The testing was conducted by
using Drebin dataset as the training dataset and 500 anonymous apps from Google Play store as the testing dataset. The experiment re-
sults showed that 2% suspicious malicious apps matched with the proposed classification. The finding of this paper can be used as guid-
ance and reference for other researchers with the same interest.

Keywords: Audio Exploitation; Android Smartphone; Malicious Apps; Mobile Malware.

1. Introduction

With the proliferation of mobile devices, there is an increasing
threat from mobile malware such as worm, Trojan, spyware, ad-
ware, virus, spam and other malicious software. Exploited An-
droid devices by malware can be manipulated such as to retrieve
any crucial information like background process and services on
the device. Additionally, the device also can be used by the at-

tacker to record audio, send short messages service, make calls,
execute any malicious command and delete browser history [1].
There is 0.15% of devices infected with malware in 2014, and
some of them can steal bank account information via reviewing
emails in Gmail [2]. Furthermore, there is a Trojan that specializes
in accessing audio data and steal the audio data without the user’s
knowledge [3]. The Trojan uses a sensitive sensor which is a con-
text sensitive reference to monitor the Audio Flinger. From that

audio service, the Trojan changes the media data from the kernel
service. This Trojan can block other application from accessing
audio data when the call is being used. After that, the controller is
alerted from the system when the sensitive call is made.
Therefore, the objective of this paper is to develop a new mobile
malware classification for audio exploitation based on system call
and permission. Based on the experiment conducted, there are 32
patterns of classification for the audio exploitation and 10 out of
500 mobile apps matched with the proposed classification. The

scope of this paper is on Android smart phone only. This is due to
the worldwide usage of Android with 86.1% in the market and
Android has become the most targeted smartphone by the attack-
ers in the world [4-5].
Malware can be referred as virus, worm, Trojan, botnet, adware
and spyware. There are many techniques such dynamic analysis or
static analysis to analyse the malware. For dynamic analysis, the
malware sample is executed in a controlled environment to see the

payload [6]. As for static analysis, the malware dataset is being

reverse engineered, and the source code is being analysed to see
the command and payload inside the source code [7]. Examples of
works that are related to malware analysis are research work by
[8-13]. Each of the static and dynamic analyses has it owns
strength, but under certain condition where the malwares payload
is hard to be analysed, both analyses need to be combined. This is

known as hybrid analysis where it combines static and dynamic
analyses, which has been used by [8, 14]. The strength of the hy-
brid analysis is both conditions can be monitored for optimum
result. Therefore, our paper has implemented this technique for the
experiment conducted.
The rest of this paper is written as follows. Section 2 presents the
methodology used in this paper. Section 2 presents the experi-
mental result and Section 4 concludes this paper and discusses the

future work.

2. Methodology

The overall experiment for malware analysis processes is summa-
rized in Figure 1. It is beneficial to extract the system call and
permission from the mobile apps.

There are two types of dataset which are training and testing.
Drebin dataset with a total of 5560 was used as the training dataset
to produce the pattern of the classification, while the testing da-
taset was taken from 500 anonymous mobile apps from Google
Play Store for evaluation. The experiment was conducted in a
controlled environment, where no outgoing network is allowed to
avoid malware spreads. 80% of the software used are open source,
which includes SDK tool for dynamic analysis, Genymotion for
android emulator, apk tool to decompile apk resource file into a

folder and strace to capture system call behaviour. During the
experiment, hybrid analysis that combines dynamic and static
analyses was conducted. There is no standard sequence to run
dynamic or static analysis. As for this experiment, the dynamic

60 International Journal of Engineering & Technology

analysis was conducted earlier due to the time consuming and then
followed by static analysis to verify any hidden apps payload. The
dynamic analysis is conducted as follows:

 Run dataset in Genymotion

 The apps processes were identified

 The system calls ran were traced

 The system calls were captured and documented

Fig. 1: Malware Analysis Processes

While for static analysis, it is used to capture the permission that
runs in the apps. The extracted permissions were then being classi-
fied using the covering algorithm.

 Installed Dexplorer in the Genymotion

 Run dataset in Genymotion

 The permissions were traced

 The permissions were captured and documented.

Then, after permissions and system calls extraction were complet-
ed, percentage of occurrence was applied then followed by cover-
ing algorithm. Percentage occurrence was applied to calculate the
total number of system calls and permissions existence from the
extracted samples. The most used system calls and permissions
were identified based on the frequency and then the patterns were
developed using the covering algorithm. The covering algorithm is
summarized as follows [14]:

 If the system calls and permissions are covered by the set rule,
then remove it and continue until all the system calls and per-
missions were covered.

 The idea is to include as many instances of the desired permis-
sion and system call as possible and exclude as many instances
of other features as possible.

3. Findings

Thousands of system calls and permissions were extracted, but the
focus of this paper is only on those that generate bad activities for
audio exploitation. There are 58 system calls and 41 permissions
out of 5560 training dataset that are related to audio exploitation.

The extracted system calls and permissions are displayed in Table
1 and Table 2.

Table 1: System Calls Extraction and Representation

Nominal

Data

Syscall Nominal

Data

Syscall

c1 clock_gettime() c30 socket()

c2 epoll_wait() c31 bind()

c3 recvfrom() c32 getsockname()

c4 sendto() c33 unlinkat()

c5 futex() c34 madvise()

c6 gettimeofday() c35 pwrite64()

Nominal

Data

Syscall Nominal

Data

Syscall

c7 writev() c36 setsockopt()

c8 getuid32() c37 lseek()

c9 read() c38 nanosleep()

c10 ioctl() c39 getrlimit()

c11 write() c40 brk()

c12 close() c41 fchown32()

c13 open() c42 getpid()

c14 mmap2() c43 gettid()

c15 mprotect() c44 lstat64()

c16 dup() c45 recvmsg()

c17 fcntl64() c46 recv()

c18 epoll_ctl() c47 stat64()

c19 munmap() c48 sigprocmask()

c20 pread() c49 select()

c21 sched_yield() c50 umask()

c22 getsockopt() c51 getpaid()

c23 clone() c52 pread64()

c24 access() c53 rename()

c25 fstat64() c54 fdatasync()

c26 chmod() c55 mkdir()

c27 fsync() c56 uname()

c28 connect() c57 rt_sigreturn()

c29 sendmsg() c58 _llseek()

Table 2: Permissions Extraction and Representation

Nomi-

nal

Data

Permission

Nomi-

nal

Data

Permission

pr1 Access_Course_Location pr 22 Install_Packages

pr2 Access_Fine_Location pr 23 Install_Shortcut

pr 3 Access_Gps pr 24 Internet

pr 4

Ac-

cess_Location_Extra_Comma

nds

pr 25
Kill_Background_Pr

ocess

pr 5 Access_Network_State pr 26
Modi-

fy_Audio_Setting

pr 6 Access_Wifi_State pr 27 Read_Calendar

pr 7 Battery_Stat pr 28 Read_Call_Log

pr 8 Bluetooth pr 29 Read_Contact

pr 9 Bluetooth_Admin pr 30
Read_External_Stora

ge

pr 10 Call_Phone pr 31 Read_Logs

pr 11 Camera pr 32 Read_Phone_State

pr 12 Change_Network_State pr 33 Read_Settings

pr 13
Change_Wifi_Multicast_Stat

e
pr 34 Read_Sms

pr 14 Change_Wifi_State pr 35

Re-

ceive_Boot_Complet

e

pr 15 Clear_App_Cache pr 36 Receive_Mms

pr 16 Control_Location_Updates pr 37 Receive_Sms

pr 17 Delete_Packages pr 38 Record_Audio

pr 18 Disable_Keyguard pr 39 Restart_Packages

pr 19 Expand_Status_Bar pr 40
Write_External_Stor

age

pr 20 Get_Accounts pr 41 Write_Settings

pr 21 Get_Tasks

The system calls and permissions are presented in nominal data to
ease and fasten the pattern formation. Based on the pattern match-
ing conducted, 32 patterns of system call and permission classifi-
cations were developed as displayed in Table 3. These classifica-
tions need a high analysis expertise to ensure the pattern produced

is beneficial to detect any mobile malware attacks for audio ex-
ploitation. Furthermore, the pattern is formed based on the most
predicted features that might lead to the audio exploitation and
function analysis for each feature of the system calls and permis-
sions.

Install APK

Start Recording

Application In-
teraction

Uninstall Appli-

cation

Record

system call

and Per-

mission

Percentage

of Occur-

rence and

Covering

Algorithm
Result

Report & Doc-

umentation

International Journal of Engineering & Technology 61

Table 3: System Calls and Permission Patterns

Pattern

Representation
Pattern

Pattern1
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11 +c7

Pattern 2
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11 +c7+c28

Pattern 3
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11 + c7+c28+c30

Pattern 4
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11 +c7+c28+c30+c31

Pattern 5

pr10 +pr19+pr29+pr31+p39+

c1+c2+c9+c10+c11

+c7+c28+c30+c31+c46

Pattern 6
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c28+c30+c46

Pattern 7
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c28+c31

Pattern 8
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c28+c31+c46

Pattern 9
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c28+c46

Pattern 10
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c30

Pattern 11
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c30+c31

Pattern 12
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c30+c31+c46

Pattern 13
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c30+c46

Pattern 14
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c31

Pattern 15
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c31+c46

Pattern 16
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c7+c46

Pattern 17
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28

Pattern 18
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28+c30

Pattern 19
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28+c30+c31

Pattern 20
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28+c30+c31+c46

Pattern 21
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28+c30+c46

Pattern 22
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28+c31

Pattern 23
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28+c31+c46

Pattern 24
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c28+c46

Pattern 25
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c30

Pattern 26
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c30+c31

Pattern 27
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c30+c31+c46

Pattern 28
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c30+c46

Pattern 29
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c31

Pattern 30
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c31+c46

Pattern 31
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11+c46

Pattern 32
pr10 +pr19+pr29+pr31+pr39+

c1+c2+c9+c10+c11

To ensure the developed classifications in this paper are useful,
500 anonymous mobile apps were downloaded from Google Play
Store for testing and evaluation. As a result, 2% of the mobile
apps were identified as matched with the proposed classifications.

The evaluation result is summarized in Table 4, where the
matched mobile apps with the proposed patterns came from dif-
ferent categories. Based on the evaluation result, it can be con-

cluded that even genuine mobile apps have potential for audio
exploitation by the attackers. Therefore, end users must take extra
precaution about the privacy risk of the mobile apps when down-
loading it. Hence, as a prevention step from being infected or ex-
ploited via mobile apps, it is highly recommended for end users to
scan with anti-virus for any mobile apps, prior downloading it.

Table 4: Percentage of Pattern Matched

Pattern
Google

Play
Category Percentage

Pattern 1 4
Social, Simulator, Tool,

Communication
0.8%

Pattern 2 2
Music Game, Communica-

tion
0.4%

Pattern 3 1 Video 0.2%

Pattern 4 1 Simulator 0.2%

Pattern 5 1 Music Game 0.2%

Pattern 6 1 Communication 0.2%

4. Conclusion

As a conclusion, this paper has successfully developed 32 new
mobile malware classifications for audio exploitation based on

system call and permission features. The evaluation result shows
that even though the mobile apps were downloaded from the trust-
ed source, end users must remember that there is a possibility that
the genuine mobile apps can be exploited by the malwares and
audio is one of the surveillance features in smartphone that is most
targeted by many attackers. The work in this paper is a part of an
ongoing project in combating mobile malware attacks. The results
of this research paper will be used as an input for mobile malware
detection model. Researchers with the same interest could use this

paper as a guidance and reference in doing their research.

Acknowledgement

The authors would like to express their gratitude to Ministry of
Higher Education (MOHE), Malaysia and Universiti Sains Islam
Malaysia (USIM) for the support and facilities provided. This

project is funded under grant: USIM/FRGS/FST/32/50114.

References

[1] Soriano, A.,” A. Software, Avast Blog mobile malware”, (2016),

https://blog.avast.com/topic/mobile-malware.

[2] Lemos, R, “New malware threats emerge on mobile platforms”,

(2016), http://www.eweek.com/security/new-malware-threats-

emerge-on-mobile-platforms-studies-find.

[3] Schlegel, R. Zhang, K. & Zhou, X. “Soundcomber: A stealthy and

context-aware sound Trojan for smartphones”, Proceedings of the

18th Annual Network and Distributed System Security Symposium,

(2011), pp. 17–33.

[4] Alcatel-Lucent, “Mobile malware: A network view”, (2015),

https://www.blackhat.com/docs/ldn-15/materials/london-15-

McNamee-Mobile-Malware-A-Network-View-wp.pdf.

[5] Gartner, “Gartner says worldwide sales of smartphones grew 9 per-

cent in first quarter of 2017”, (2017),

http://www.gartner.com/newsroom/id/3725117.

[6] Junaid, M. Donggang, L. & David, K. (2016), Dexteroid: Detecting

malicious behaviors in android apps using reverse-engineered life

cycle models. Computers and Security, 59, 92–117.

[7] Ping, W. & Wang, Y.-S. (2015), Malware behavioural detection

and vaccine development by using a support vector model classifier.

Journal of Computer and System Sciences, 81(6), 1012–1026.

[8] Lindorfer, M., Neugschwandtner, M., Weichselbaum, L. Fra-

tantonio, Y., van der Veen, V. & Platzer, C. (2014), ANDRUBIS --

1,000,000 apps later: A view on current android malware behaviors.

Proceedings of the 3rd International Workshop on Building Analy-

sis Datasets and Gathering Experience Returns for Security, pp. 3–

17.

62 International Journal of Engineering & Technology

[9] Feizollah, A., Anuar, N. B., Salleh, R. & Abdul Wahab, A. W.

(2015), A review on feature selection in mobile malware detection.

Digital Investigation, 13, 22–37.

[10] Hashim, H. A.-B., Saudi, M. M., & Basir, N. “A systematic review

analysis of root exploitation for mobile botnet detection”, Proceed-

ings of the 1st International Conference on Communication and

Computer Engineering, (2015), pp. 925-938.

[11] Bhatt, M. S., Patel, H. & Kariya, S. (2015), A survey permission

based mobile malware detection. International Journal of Computer

Technology and Applications, 6(5), 852–856.

[12] Karim, A., Salleh, R. & Khan, M. K. (2007), SMARTbot: A behav-

ioral analysis framework augmented with machine learning to iden-

tify mobile botnet applications. PLoS One, 11(3), p. e0150077.

[13] Wu, S., Wang, P. Li, X. & Zhang, Y. (2016), Effective detection of

android malware based on the usage of data flow APIs and machine

learning. Information and Software Technologies, 75, 17–256.

[14] Saudi, M. M. & Husainiamer, M. A. (2017), Mobile malware clas-

sification via system calls and permission for GPS exploitation. In-

ternational Journal of Advanced Computer Science and Applica-

tions, 8(6), 277-283.

