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Abstract 
 
Rapid growth and usage of Android smartphones worldwide have attracted many attackers to exploit them. Currently, the attackers used 
mobile malware to attack victims’ smartphones to steal confidential information such as username and password. The attacks are also 
motivated based on profit and money. The attacks come in different ways, such as via audio, image, GPS location, SMS and call  logs in 
the smartphones. Hence, this paper presents a new mobile malware classification for audio exploitation. This classification is beneficial 
as an input or database to detect the mobile malware attacks. System calls and permissions for audio exploitation have been extracted by 

using static and dynamic analyses using open source tools and freeware in a controlled lab environment. The testing was conducted by 
using Drebin dataset as the training dataset and 500 anonymous apps from Google Play store as the testing dataset. The experiment re-
sults showed that 2% suspicious malicious apps matched with the proposed classification. The finding of this paper can be used as guid-
ance and reference for other researchers with the same interest. 
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1. Introduction 

With the proliferation of mobile devices, there is an increasing 
threat from mobile malware such as worm, Trojan, spyware, ad-
ware, virus, spam and other malicious software. Exploited An-
droid devices by malware can be manipulated such as to retrieve 
any crucial information like background process and services on 
the device. Additionally, the device also can be used by the at-

tacker to record audio, send short messages service, make calls, 
execute any malicious command and delete browser history [1]. 
There is 0.15% of devices infected with malware in 2014, and 
some of them can steal bank account information via reviewing 
emails in Gmail [2]. Furthermore, there is a Trojan that specializes 
in accessing audio data and steal the audio data without the user’s 
knowledge [3]. The Trojan uses a sensitive sensor which is a con-
text sensitive reference to monitor the Audio Flinger. From that 

audio service, the Trojan changes the media data from the kernel 
service. This Trojan can block other application from accessing 
audio data when the call is being used. After that, the controller is 
alerted from the system when the sensitive call is made. 
Therefore, the objective of this paper is to develop a new mobile 
malware classification for audio exploitation based on system call 
and permission. Based on the experiment conducted, there are 32 
patterns of classification for the audio exploitation and 10 out of 
500 mobile apps matched with the proposed classification. The 

scope of this paper is on Android smart phone only. This is due to 
the worldwide usage of Android with 86.1% in the market and 
Android has become the most targeted smartphone by the attack-
ers in the world [4-5].  
Malware can be referred as virus, worm, Trojan, botnet, adware 
and spyware. There are many techniques such dynamic analysis or 
static analysis to analyse the malware. For dynamic analysis, the 
malware sample is executed in a controlled environment to see the 

payload [6]. As for static analysis, the malware dataset is being 

reverse engineered, and the source code is being analysed to see 
the command and payload inside the source code [7]. Examples of 
works that are related to malware analysis are research work by 
[8-13]. Each of the static and dynamic analyses has it owns 
strength, but under certain condition where the malwares payload 
is hard to be analysed, both analyses need to be combined. This is 

known as hybrid analysis where it combines static and dynamic 
analyses, which has been used by [8, 14]. The strength of the hy-
brid analysis is both conditions can be monitored for optimum 
result. Therefore, our paper has implemented this technique for the 
experiment conducted. 
The rest of this paper is written as follows. Section 2 presents the 
methodology used in this paper. Section 2 presents the experi-
mental result and Section 4 concludes this paper and discusses the 

future work. 

2. Methodology 

The overall experiment for malware analysis processes is summa-
rized in Figure 1. It is beneficial to extract the system call and 
permission from the mobile apps. 

There are two types of dataset which are training and testing. 
Drebin dataset with a total of 5560 was used as the training dataset 
to produce the pattern of the classification, while the testing da-
taset was taken from 500 anonymous mobile apps from Google 
Play Store for evaluation. The experiment was conducted in a 
controlled environment, where no outgoing network is allowed to 
avoid malware spreads. 80% of the software used are open source, 
which includes SDK tool for dynamic analysis, Genymotion for 
android emulator, apk tool to decompile apk resource file into a 

folder and strace to capture system call behaviour. During the 
experiment, hybrid analysis that combines dynamic and static 
analyses was conducted. There is no standard sequence to run 
dynamic or static analysis. As for this experiment, the dynamic 
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analysis was conducted earlier due to the time consuming and then 
followed by static analysis to verify any hidden apps payload. The 
dynamic analysis is conducted as follows: 

 Run dataset in Genymotion 

 The apps processes were identified 

 The system calls ran were traced 

 The system calls were captured and documented 

 

 
Fig. 1: Malware Analysis Processes 

 
While for static analysis, it is used to capture the permission that 
runs in the apps. The extracted permissions were then being classi-
fied using the covering algorithm. 

 Installed Dexplorer in the Genymotion 

 Run dataset in Genymotion 

 The permissions were traced 

 The permissions were captured and documented. 
 

Then, after permissions and system calls extraction were complet-
ed, percentage of occurrence was applied then followed by cover-
ing algorithm. Percentage occurrence was applied to calculate the 
total number of system calls and permissions existence from the 
extracted samples. The most used system calls and permissions 
were identified based on the frequency and then the patterns were 
developed using the covering algorithm. The covering algorithm is 
summarized as follows [14]: 

 If the system calls and permissions are covered by the set rule, 
then remove it and continue until all the system calls and per-
missions were covered.  

 The idea is to include as many instances of the desired permis-
sion and system call as possible and exclude as many instances 
of other features as possible. 

3. Findings 

Thousands of system calls and permissions were extracted, but the 
focus of this paper is only on those that generate bad activities for 
audio exploitation. There are 58 system calls and 41 permissions 
out of 5560 training dataset that are related to audio exploitation. 

The extracted system calls and permissions are displayed in Table 
1 and Table 2. 

 

Table 1: System Calls Extraction and Representation 

Nominal  

Data 

Syscall Nominal  

Data 

Syscall 

c1 clock_gettime() c30 socket() 

c2 epoll_wait() c31 bind() 

c3 recvfrom() c32 getsockname() 

c4 sendto() c33 unlinkat() 

c5 futex() c34 madvise() 

c6 gettimeofday() c35 pwrite64() 

Nominal  

Data 

Syscall Nominal  

Data 

Syscall 

c7 writev() c36 setsockopt() 

c8 getuid32() c37 lseek() 

c9 read() c38 nanosleep() 

c10 ioctl() c39 getrlimit() 

c11 write() c40 brk() 

c12 close() c41 fchown32() 

c13 open() c42 getpid() 

c14 mmap2() c43 gettid() 

c15 mprotect() c44 lstat64() 

c16 dup() c45 recvmsg() 

c17 fcntl64() c46 recv() 

c18 epoll_ctl() c47 stat64() 

c19 munmap() c48 sigprocmask() 

c20 pread() c49 select() 

c21 sched_yield() c50 umask() 

c22 getsockopt() c51 getpaid() 

c23 clone() c52 pread64() 

c24 access() c53 rename() 

c25 fstat64() c54 fdatasync() 

c26 chmod() c55 mkdir() 

c27 fsync() c56 uname() 

c28 connect() c57 rt_sigreturn() 

c29 sendmsg() c58 _llseek() 

 
Table 2: Permissions Extraction and Representation 

Nomi-

nal  

Data 

Permission 

Nomi-

nal  

Data 

Permission 

pr1 Access_Course_Location pr 22 Install_Packages 

pr2 Access_Fine_Location pr 23 Install_Shortcut 

pr 3 Access_Gps pr 24 Internet 

pr 4 

Ac-

cess_Location_Extra_Comma

nds 

pr 25 
Kill_Background_Pr

ocess 

pr 5 Access_Network_State pr 26 
Modi-

fy_Audio_Setting 

pr 6 Access_Wifi_State pr 27 Read_Calendar 

pr 7 Battery_Stat pr 28 Read_Call_Log 

pr 8 Bluetooth pr 29 Read_Contact 

pr 9 Bluetooth_Admin pr 30 
Read_External_Stora

ge 

pr 10 Call_Phone pr 31 Read_Logs 

pr 11 Camera pr 32 Read_Phone_State 

pr 12 Change_Network_State pr 33 Read_Settings 

pr 13 
Change_Wifi_Multicast_Stat

e 
pr 34 Read_Sms 

pr 14 Change_Wifi_State pr 35 

Re-

ceive_Boot_Complet

e 

pr 15 Clear_App_Cache pr 36 Receive_Mms 

pr 16 Control_Location_Updates pr 37 Receive_Sms 

pr 17 Delete_Packages pr 38 Record_Audio 

pr 18 Disable_Keyguard pr 39 Restart_Packages 

pr 19 Expand_Status_Bar pr 40 
Write_External_Stor

age 

pr 20 Get_Accounts pr 41 Write_Settings 

pr 21 Get_Tasks   

 
The system calls and permissions are presented in nominal data to 
ease and fasten the pattern formation. Based on the pattern match-
ing conducted, 32 patterns of system call and permission classifi-
cations were developed as displayed in Table 3. These classifica-
tions need a high analysis expertise to ensure the pattern produced 

is beneficial to detect any mobile malware attacks for audio ex-
ploitation. Furthermore, the pattern is formed based on the most 
predicted features that might lead to the audio exploitation and 
function analysis for each feature of the system calls and permis-
sions. 
 
 
 

 

Install APK 

Start Recording 

Application In-
teraction 

Uninstall Appli-

cation 

Record 

system call 

and Per-

mission 
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Covering 

Algorithm 
Result 

Report & Doc-
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Table 3: System Calls and Permission Patterns 

Pattern 

Representation 
Pattern 

Pattern1 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11 +c7 

Pattern 2 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11 +c7+c28 

Pattern 3 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11 + c7+c28+c30 

Pattern 4 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11 +c7+c28+c30+c31 

Pattern 5 

pr10 +pr19+pr29+pr31+p39+ 

c1+c2+c9+c10+c11 

+c7+c28+c30+c31+c46 

Pattern 6 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c28+c30+c46 

Pattern 7 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c28+c31 

Pattern 8 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c28+c31+c46 

Pattern 9 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c28+c46 

Pattern 10 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c30 

Pattern 11 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c30+c31 

Pattern 12 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c30+c31+c46 

Pattern 13 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c30+c46 

Pattern 14 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c31 

Pattern 15 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c31+c46 

Pattern 16 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c7+c46 

Pattern 17 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28 

Pattern 18 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28+c30 

Pattern 19 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28+c30+c31 

Pattern 20 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28+c30+c31+c46 

Pattern 21 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28+c30+c46 

Pattern 22 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28+c31 

Pattern 23 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28+c31+c46 

Pattern 24 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c28+c46 

Pattern 25 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c30 

Pattern 26 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c30+c31 

Pattern 27 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c30+c31+c46 

Pattern 28 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c30+c46 

Pattern 29 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c31 

Pattern 30 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c31+c46 

Pattern 31 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11+c46 

Pattern 32 
pr10 +pr19+pr29+pr31+pr39+ 

c1+c2+c9+c10+c11 

 
To ensure the developed classifications in this paper are useful, 
500 anonymous mobile apps were downloaded from Google Play 
Store for testing and evaluation. As a result, 2% of the mobile 
apps were identified as matched with the proposed classifications. 

The evaluation result is summarized in Table 4, where the 
matched mobile apps with the proposed patterns came from dif-
ferent categories. Based on the evaluation result, it can be con-

cluded that even genuine mobile apps have potential for audio 
exploitation by the attackers. Therefore, end users must take extra 
precaution about the privacy risk of the mobile apps when down-
loading it. Hence, as a prevention step from being infected or ex-
ploited via mobile apps, it is highly recommended for end users to 
scan with anti-virus for any mobile apps, prior downloading it. 

 
Table 4: Percentage of Pattern Matched 

Pattern 
Google 

Play 
Category Percentage 

Pattern 1 4 
Social, Simulator, Tool, 

Communication 
0.8% 

Pattern 2 2 
Music Game, Communica-

tion 
0.4% 

Pattern 3 1 Video 0.2% 

Pattern 4 1 Simulator 0.2% 

Pattern 5 1 Music Game 0.2% 

Pattern 6 1 Communication 0.2% 

4. Conclusion  

As a conclusion, this paper has successfully developed 32 new 
mobile malware classifications for audio exploitation based on 

system call and permission features. The evaluation result shows 
that even though the mobile apps were downloaded from the trust-
ed source, end users must remember that there is a possibility that 
the genuine mobile apps can be exploited by the malwares and 
audio is one of the surveillance features in smartphone that is most 
targeted by many attackers. The work in this paper is a part of an 
ongoing project in combating mobile malware attacks. The results 
of this research paper will be used as an input for mobile malware 
detection model. Researchers with the same interest could use this 

paper as a guidance and reference in doing their research. 
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