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Abstract 
 
Android applications may pose risks to smartphone users. Most of the current security countermeasures for detecting dangerous apps 
show some weaknesses. In this paper, a risk assessment method is proposed to evaluate the risk level of Android apps in terms of confi-

dentiality (privacy), integrity (financial) and availability (system). The proposed research performs mathematical analysis of an app and 
returns a single easy to understand evaluation of the app’s risk level (i.e., Very Low, Low, Moderate, High, and Very High). These 
schemes have been tested on 2488 samples coming from Google Play and Android botnet dataset. The results show a good accuracy in 
both identifying the botnet apps and in terms of risk level. 
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1. Introduction 

In recent years, there has been a tremendous growth of 
smartphone users around the world. According to a report by the 
International Data Corporation (IDC), the global shipment of 
smartphones grew 3.4% in first quarter of 2017 compared to the 
year 2016 [1]. Among others smartphone’s operating software 
(OS), Android operated smartphone had dominated the market 

with 85% of market shares. The combination with other software 
or an application (app), smartphone users now can conveniently 
store and process sensitive information such as pictures, personal 
credentials and online banking transaction in their smartphones. 
As a result, they became an ideal target for cyber-criminal activi-
ties by malicious person. Currently, the cyber-criminal incidents 
of Android operated smartphone occurred frequently compared to 
other OS operated smartphone [2].  

Users are supposed to download and install Android application 
(app) from Google official applications market named Google 
Play Store; however, users also can download an application from 
other third party market. These unofficial markets provide free or 
non-paying apps and games in which if users download from 
Google Play Store, they have to pay for those apps. This attracts 
users to the unofficial market [3] and possibly exposes smartphone 
users to download and install malicious applications (malware), 

which camouflaged as benign software from these markets. Fur-
thermore, anybody can upload any type of app to this unofficial 
app market which is low in security implementation [4], thus it is 
easier for malware authors to upload their malware app to this 
market. By default, Android app has limited capabilities in using 
smartphone resources, sensitive data and system functions and 
needs to request permissions to do so. To perform certain tasks on 
the smartphone such as sending messages through Short Message 
System (SMS), an app must request specific permission from a 

smartphone user during installation.  

 
Fig. 1: Permission request during app installation 

 

For example, as shown in Figure 1, an Android app can only send 
text messages if it has the SEND_SMS permission granted (AC-
CEPT button) by smartphone user during installation. In this pro-
cess, smartphone user will be prompted with a list of the permis-
sions required by an app just before the installation. The permis-
sion system purpose is to help users avoid privacy or security 

invasive applications. However, many users do not pay attention 
to or understand this permission system [5], thus blindly grant 
permissions to possibly a malware app. As an example, a calcula-
tor app which request SEND_SMS or READ_SMS probably is a 
suspected malicious app because by mean this kind of app need 
neither send SMS nor read SMS for normal behaviour. Granting 
such permission to this kind of request possibly expose the user to 
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subscribe to a premium rate number without their knowledge until 
they received the phone bill. 
 
The malware apps payload of smartphone come in various forms, 
such as viruses, Trojans, worms and mobile botnet. However, 
mobile botnet is more dangerous as they pose serious threats [6-8]. 
The effect of mobile botnet attacks is disastrous as credential in-
formation is exposed to an attacker, user activities and location are 

leaked, a smartphone user being overbilled because of unauthor-
ized Short Message System (SMS) used, a smartphone can be 
remotely control by an attacker for other various malicious deeds 
and smartphone resources are overloaded by malicious activities. 
In short, privacy and financial of user will be compromised while 
the performance of the user’s smartphone system possibly will be 
downgraded.  
Fortunately, many researches on Android malware detection had 

been done recently. However, only few research contributions 
dealt with Android botnet analysis and detection. Furthermore, 
most of these researches concentrated on numbers of features 
(permission and API) appearances in Android malware rather than 
associating these features with their risk to smartphone users. The-
se are the motivation of this research in filling the gap which is not 
covered by previous research. 

2. Related Work 

Plenty of research has been made to lessen the increasing threat to 
the Android system brought by malware. Kirin detected Android 
malware based on dangerous permission combinations or suspi-
cious action strings [9]. Another research approach by [10] ex-
tended Kirin method by increasing the number of permissions to 

define more permission combinations. However, as there are a few 
differences in requested or used permissions between benign apps 
and malware, permission-based approaches suffer the problem of 
low detection rate. 
To overcome the shortcomings of permission based approaches, 
multi-category feature based approaches were proposed by re-
searchers. This method extracted other static features other than 
permissions such as an application imported package, application 
programming interface (API) call, Java code, intent, string, data 

flow, control flow and hardware components. DroidAPIMiner 
performed frequency analysis and data flow analysis to all APIs 
used in an app to calculate most frequently used APIs [11]. Other 
research that used multi-category features is Drebin which per-
formed a broad static analysis to extract Android application fea-
tures consists of permissions, sensitive APIs, network address and 
application hardware components [12]. Although more features 
are extracted to overcome the shortcoming of permission based 

approaches, multi-category feature approaches still suffered same 
shortcoming which is these features cannot associate Android 
application risk to smartphone users. 
Due to permission based and multi category based shortcomings, 
some researchers attempted to detect Android malware from the 
viewpoint of Android application risks. In [13] observed that An-
droid apps in the same category usually request similar permis-
sions. They proposed Rare Critical Permission (RCP), which is a 

set of permission that less requested by same app category. They 
concluded that an Android app is suspicious to be malware if its 
request permissions, which matched the RCP list, thus will trigger 
the Rare Pairs of Critical Permissions (RPCP). RPCP functions is 
to calculate the app’s risk and the threshold to determine if the app 
if benign or malicious. In [14] propose probabilistic generative 
models to rank risks of Android apps including the simple Naive 
Bayes, Mixture of Naive Bayes, and Hierarchical Mixture of Na-

ive Bayes models. Each model estimates the probability that an 
application would request the permissions. They concluded that 
the Naive Bayes model gives a promising risk scoring by proving 
it with real-world datasets. However, both [13-14] approaches 
have limitation as their approaches cannot state what threat an 

Android application may cause such as financial losses, leakage of 
user privacy, or degrading the operating system to smartphone 
users. This research on the other hand motivated by works done in 
[15-16]. Both works used permission as features and calculate the 
requested permission (by an application) risk towards 
smartphone’s user based on risk impact to financial, privacy and 
smartphone system. As discussed earlier, the differences of the 
requested permissions between benign apps and malware are rela-

tively small, the above approaches are deficient inherently thus 
can further be improved. To solve such problem, this research 
added an additional feature which is API calls to gain better result. 

3. Methodology 

In this section, the process of risk assessment and the botnet detec-

tion scheme based on permission requested and API call is pre-
sented. To detect whether an application is benign or botnet, it 
requires a thorough analysis of features (permission and API call) 
of applications. This research employed static analysis towards 
Android APK files from two datasets: botnet and benign Android 
applications. This process is illustrated in Figure 2 and outlined in 
the following section. 
 

 
Fig. 2: Features extraction and risk computation phase and process 

3.1. Dataset 

a) Botnet Dataset: The Android botnet dataset used in this re-
search is downloaded from [17]. The dataset consists of 1929 
Android botnet samples in 14 different Android botnet fami-
lies. These samples cover the majority of existing Android 

botnet from year from 2010 (the first appearance of Android 
botnet) to 2014. For the purpose of this research, 1500 An-
droid botnet samples were randomly selected and analyzed. 

b) Benign Dataset: A total of 1000 benign apps were down-
loaded from Google Play Store, an official market that host 
Android application. It is reasonable to assume that all apps 
from Google Play Store perform no malicious activities and 
can be used to construct the benign app dataset. The reason 

is a malicious app detection system, called Google Bouncer, 
had deployed by Google to detect the malicious apps up-
loaded by developers [18]. Any malicious app found by 
Google Bouncer that may be harmful to users will be re-
moved by Bouncer from Google Play Store. The collected 
benign apps belong to different categories such as games, 
applications, education, health, fitness and communications. 

3.2. Features Extraction 

In this phase, an APK file is unzipped. An APK is an acronym 
word for Android Application Package, a compressed (zipped) file 
of any Android application. Generally, an APK file contains .dex 
files, resources, assets, certificates, and Android manifest file. The 
Android manifest file contains Android application package’s 
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name, permission request and the minimum API version that the 
application needs. APKTool is used to unzip the APK file [19]. 
Once the APK file is unzipped, the AndroidManifest.xml is trans-
formed into readable format. The readable manifests for each 1500 
Android botnet and 1000 benign applications are then recorded to 
a new document format and used for features extraction works. 
Features that being extracted are requested permissions and API 
calls of 2500 Android applications (botnet and benign). The re-

quested permissions of each of these applications are then com-
pared with 138 Android permission in Android system [20] using 
string similarity method. For each sample, if requested permission 
matches with the Android permission that permission is noted as 1 
to indicate its presence in the sample while 0 indicate the absence 
of the permission. 
Let R be a vector containing set of 138 Android permission. For 
every ith application in the Android application dataset (botnet 

and benign), RRiR = {rR1R, rR2R, rR3R,…rj} and r is deter-
mined by Equation (1): 
 

 

if jRthR permission exist 
Otherwise                                         (1) 

 
The process to detect for the API call presence in Android apps on 
the other hand is slightly different from the process of permission 

occurrence detection. There are hundreds of API calls of Android 
app however, it is not documented systematically. Thus, in this 
research, an extensive analysis of each 2500 class.dex is done to 
search for suspicious API call and generated an API call list of the 
Android botnet. The list is compared with research done by [3, 21-
25]. The API calls of each 2500 Android applications are then 
compared with the cumulative API call list using the same method 
as permission occurrence detection above and with the changes of 
permission to the API call in Equation (1). Further in this phase, 

the number of botnet apps is reduced to 1499 and the number of 
benign apps is reduced to 989 because 12 samples are found cor-
rupted and cannot be processed. The result from this phase is used 
in botnet features selection process. 

3.3. Botnet Features Selection 

As previously mentioned, android system has a total of 138 per-
missions and hundreds of API calls. However, not all of these 

features are requested and being called by the applications in the 
dataset. The feature selection plays an import role in risk assess-
ment of Android botnets. In this research, the relevance of selected 
features is based on their impact to privacy and financial of 
smartphone users and smartphone system. Through a comprehen-
sive analysis on the applications, 20 permissions and 20 API calls 
which are of interest for botnet writers are presented in Table 1.  

Table 1: Selected Feature 

Feature Category Feature Name 

PERMISSION 

 

ACCESS_COARSE_LOCATION 

ACCESS_FINE_LOCATION 

ACCESS_NETWORK_STATE 

CALL_PHONE 

DISABLE_KEYGUARD 

INSTALL_PACKAGES 

INTERNET 

MOUNT_UNMOUNT_FILESYSTEMS 

PACKAGE_USAGE_STATS 

READ_CONTACTS 

READ_EXTERNAL_STORAGE 

READ_LOGS 

READ_PHONE_STATE 

READ_SMS 

REBOOT 

RECEIVE_BOOT_COMPLETED 

RECEIVE_SMS 

RESTART_PACKAGES 

SEND_SMS 

SET_ALARM 

UPDATE_DEVICE_STATS 

WRITE_APN_SETTINGS 

WRITE_CONTACTS 

WRITE_EXTERNAL_STORAGE 

API CALLS invalidateAuthToken  

android/app/Activity;->setContentView  

startActivityForResult  

openInputStream  

sendOrderedBroadcast  

startService  

android/media/MediaPlayer;->stop  

isConnectedOrConnecting  

sendMultipartTextMessage  

sendTextMessage  

getDeviceId  

getDeviceSoftwareVersion  

getLine1Number  

getSimSerialNumber  

getSubscriberId  

getVoiceMailNumber  

Cipher(AES/CBC/PKCS5Padding)  

getSystemService  

java/net/URL;->openStream  

sendSMS 
 

 

The most frequent permission requested is the INTERNET while 

the frequent APIs used by botnet are getSystemService, get 
DeviceId, and getSubscriberId. Table 2 lists the top 10 of the fea-
tures frequently called and used by Android botnet with their pos-
sible threat. 
 
 

 
Table 2: Top 10 of Features, Description and Possible Threat 

Feature Description Possible Threat 

INTERNET Allows an app to open network sockets An app can connect to Internet and communicates with malicious 

remote server. 

READ_PHONE_STATE Allows an app read only access to phone 

state. 

An app can read the phone number of the device, current cellular 

network information and the status of any ongoing calls 

getSystemService Allow an app to access to system services An app can access phone system service capabilities 

getDeviceId Allow an app to get unique device ID such 

as the IMEI 

An app can access sensitive data 

startService Allow an app to request to be started An app can be executed when phone booting 

ACCESS_NETWORK_STATE Allows app to access information about 

networks 

An app can view information about device communication  

RECEIVE_BOOT_COMPLETED Allows an app to receive the broadcast 

after the system finished booting 

An app to run itself every time smartphone is started 

getSubscriberId Allow an app to get unique subscriber ID An app can access sensitive information 

SEND_SMS Allows an app to send SMS messages An app can send SMS to premium rate number or spam another user 

in smartphone contact list 

READ_SMS Allows an app to read SMS messages An app can read SMS received including Transaction Authorization 

Code (TAC) sent by bank 
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Table 3: Features Patterns (Partial List) 

Feature Representation Patterns 

P1 ACCESS_COARSE_LOCATION 

P2 ACCESS_FINE_LOCATION 

P3 ACCESS_NETWORK_STATE 

P4 CALL_PHONE 

P5 DISABLE_KEYGUARD 

P6 INSTALL_PACKAGES 

P7 INTERNET 

P8 MOUNT_UNMOUNT_FILESYSTEMS 

P9 READ_CONTACTS 

P10 READ_EXTERNAL_STORAGE 

P11 READ_LOGS 

P12 READ_PHONE_STATE 

P13 READ_SMS 

P14 REBOOT 

P15 RECEIVE_BOOT_COMPLETED 

P16 RECEIVE_SMS 

P17 RESTART_PACKAGES 

P18 SEND_SMS 

P19 UPDATE_DEVICE_STATS 

P20 WRITE_APN_SETTINGS 

P21 WRITE_CONTACTS 

P22 WRITE_EXTERNAL_STORAGE 

 

AP1 invalidateAuthToken 

AP2 setContentView 

AP3 startActivityForResult 

AP4 openInputStream 

AP5 sendOrderedBroadcast 

AP6 startService 

AP7 MediaPlayer;->stop 

AP8 isConnectedOrConnecting 

AP9 sendMultipartTextMessage 

AP10 sendTextMessage 

AP11 getDeviceId 

AP12 getDeviceSoftwareVersion 

AP13 getLine1Number 

AP14 getSimSerialNumber 

AP15 getSubscriberId 

AP16 getVoiceMailNumber 

AP17 Cipher(AES/CBC/PKCS5Padding 

AP18 getSystemService 

AP19 java/net/URL;->openStream 

AP20 sendSMS 

1. P3, P4, P5, P7, P10, P12, P13, P14, P16, P17, P18, 

P19, P22, P23, AP6, AP11, AP15, AP18 

2. P3, P7, P11, P13, P14, P16, P17, P19, P24, AP6, 

AP9, AP10, AP11, AP18, AP20 

3. P3, P7, P16, AP6 

4. P3, P4, P7, P8, P10, P13, P14, P16, P17, P19, P24, 

AP3, AP4, AP6, AP10, AP11, AP13, AP15, AP18, 

AP20 

5. P3, P4, P7, P10, P11, P12, P13, P14, P16, P17, 

P19, P24, AP6, AP9, AP10, AP11, AP13, AP18, 

AP20 

6. P1, P2, P3, P4, P5, P7, P8, P10, P13, P14, P16, 

P17, P18, P22, P24, AP2, AP3, AP4, AP5, AP6, 

AP7, AP8, AP11, AP17, AP18, AP19 

7. P1, P2, P3, P4, P5, P7, P8, P11, P12, P13, P14, 

P16, P18, P22, P24, AP3, AP4, AP5, AP6, AP7, 

AP8, AP11, AP14, AP15, AP17, AP18 

8. P1, P2, P3, P4, P5, P7, P8, P9, P10, P11, P12, P13, 

P14, P16, P17, P18, P22, P23, P24 

9. P1, P2, P3, P4, P5, P7, P8, P9, P10, P13, P14, P16, 

P17, P18, P19, P21, P22, P23, P24, AP3, AP4, 

AP6, AP7, AP8, AP11, AP15, AP18, AP19 

10. P1, P2, P3, P4, P5, P7, P9, P10, P11, P13, P14, 

P16, P17, P24, AP3, AP4, AP6, AP7, AP8, AP11, 

AP14, AP15, AP17, AP18 

  

3.4. Joint Feature Vector and Pattern 

Based on the result in features extraction and features selection, 
each of the botnet and benign app features are transferred to the 
feature vector table to view their features pattern. After removing 
duplicates patterns, there are 348 unique features patterns (from 
1499 patterns) of Android botnet and 548 unique features pattern 
(from 989) of benign apps. Table 3 shows a partial list of both 

botnet and benign apps pattern. The patterns are used to calculate 
the risk score and risk level of each app. 

3.5. Features Threat Score 

In particular, the Android malware and botnet distribution by ma-
licious persons are always motivated by privacy exposure of vic-
tim, financial profit to attacker and degrading operating system of 
smartphone [16, 26, 27, 15]. Thus, this research had classified the 

app features into three risks which are privacy risk, financial risk 
and system risk. 
Privacy risk refers to potential leakage of user privacy when fea-
tures are granted (permission) by the user during Android app 
installation and used (API calls) during app execution. Financial 
risk refers to the potential financial losses of the victim. System 
risk refers to potential smartphone system components perfor-
mance degrading and unauthorized modification to storage and 
files of smartphone. These classifications are presented in Table 4. 

 
Table 4: Risk Classification and Threat Score 

Risk  

Classification 

Features Threat 

Score 

Privacy READ_EXTERNAL_STORAGE 

setContentView 

ACCESS_COARSE_LOCATION 

INTERNET 

UPDATE_DEVICE_STATS 

openInputStream 

ACCESS_FINE_LOCATION 

READ_LOGS 

READ_CONTACTS 

READ_PHONE_STATE 

READ_SMS 

RECEIVE_SMS 

getDeviceId 

getDeviceSoftwareVersion 

getLine1Number 

0.2 

0.2 

0.4 

0.4 

0.4 

0.4 

0.8 

0.8 

1 

1 

1 

1 

1 

1 

1 

Risk  

Classification 

Features Threat 

Score 

getSimSerialNumber 

getSubscriberId 

getVoiceMailNumber 

1 

1 

1 

Financial ACCESS_NETWORK_STATE 

CALL_PHONE 

SEND_SMS 

sendMultipartTextMessage 

sendTextMessage 

sendSMS 

0.6 

1 

1 

1 

1 

1 

System invalidateAuthToken 

startActivityForResult 

MediaPlayer;->stop 

isConnectedOrConnecting 

Cipher(AES/CBC/PKCS5Padding) 

DISABLE_KEYGUARD 

RESTART_PACKAGES 

sendOrderedBroadcast 

java/net/URL;->openStream 

INSTALL_PACKAGES 

MOUNT_UNMOUNT_FILESYSTEMS 

WRITE_CONTACTS 

WRITE_EXTERNAL_STORAGE 

startService 

REBOOT 

RECEIVE_BOOT_COMPLETED 

WRITE_APN_SETTINGS 

getSystemService 

0.2 

0.2 

0.2 

0.2 

0.2 

0.4 

0.4 

0.4 

0.4 

0.6 

0.6 

0.8 

0.8 

0.8 

1 

1 

1 

1 

 
Each of the features in Table 4 is given a threat score value constructed 
from works done in [16] and also adapted from the NIST Special Publi-
cation 800-30 Revision 1 [28] based on impact towards privacy, financial 
and system as shown in Table 5. 
 

Table 5: Impact Level and Threat Score 

Likehood of 

Impact 
Capabilities Threat Score 

Very Low Features as risk sources do not have any 

capabilities to perform threat 

0.2 

Low The capabilities of risks sources to per-

form a threat are low 

0.4 

Moderate The capabilities of risks sources to carry 

out a threat are moderate 

0.6 

High The capabilities of risk sources to carry 

out a threat are real and high 

0.8 

Very High The capabilities of risk sources to carry 

out a threat are definite and very high 

1 
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3.6. Computation of Apps Risk and Level 

In this phase, each Android app risk score and level is calculated. 
The first step is to calculate each app’s risk toward privacy, finan-
cial and system based on Equation (2)-(4):  

 

                                                                                (2) 
 

                                                                                (3) 
 

                                                                                 (4) 
 
where RSP = risk score for privacy, RSF = risk score for financial, 

RSS = risk score for system, Fp = privacy related features, ff = 
financial related features, fs = system related features, tsp = threat 
score for privacy, tsf = threat score for financial, tss = threat score 
for system and F = frequency of features in an app. 
Further, the Total Risk Score (TRS) of an application is calculated 
based on the Equation (5): 
 

                                               (5) 

 
An app Total Risk Score (TRS) is the normalization of risk score 
of privacy, financial and system of the given app. The TRS value 
is then compared with NIST Risk Score Guide in [28] as shown in 
Table 6. 
 

Table 6: Risk Score and Risk Level 

Risk Score  Risk Level 

0 - 20 Very Low 

21 - 40 Low 

41 - 60 Moderate 

61 - 80 High 

81 - 100 Very High 

4. Results and Discussion 

The proposed risk assessment is evaluated within two datasets 
previously mentioned. The graph in Figure 3 shows the results of 
the evaluation.  
 

 
Fig. 3: Android app Risk. 

From 1499 Android botnet samples, it is found that 1440 is cate-
gorized as High Risk (96.06%), 58 samples are in Medium Risk 
(3.87%) and only 1 sample in Very Low Risk Category (0.07%). 
Whereas, for 989 Android benign samples, only 172 samples cat-

egorized in High Risk (17.39%), 808 samples in Medium Risk 
(81.70%) and 9 samples in Low Risk (0.91%).  

5. Conclusion  

This research has presented a risk-based approach to differentiate 
a botnet app and benign. Features of the app are extracted to de-
scribe on how an application can manipulate user granted permis-
sions and coded API call. This research classifies an application 
risks into privacy risk, financial risk and system. The results show 
that this proposed risk assessment is capable of detecting Android 
botnet at a satisfying accuracy rate. In addition, a pattern that is 

generated can also be used in the Android botnet detection. 
For future work, to improve detection rate, this research is plan-
ning to conduct a hybrid Android botnet analysis such as combin-
ing a static analysis with dynamic analysis, to solve the problems 
entangled with static analysis. Further, this research is going to 
implement a response mechanism after detection using the Apop-
tosis Immune System in the future. 
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