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Abstract 
 

The purpose of this analytical work is to investigate the Dufour-Soret effects on three dimensional unsteady boundary layer flows, mass 

and heat transfer of a viscoelastic fluid upon a stretched surface in the existence of internal heat generation/absorption. The equations 

governing the flow are converted using similarity variables into a set of non-linear ordinary differential equations. The series solution is 

obtained by homotopy analysis. The results are analyzed for the influences of the various pertinent constants involving in the study. The 

mass and heat transfer rates are calculated by the localized Sherwood and Nusselt numbers along the surface. 
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1. Introduction 

Boundary layer investigation of the flow upon a stretched surface 

has been an active area for the researchers in recent years due to 

the plenty of applications in engineering industries. These types of 

flows have appeared widely in continuous casting, hot rolling, 

fiber spinning, glass blowing, rolling and manufacturing plastic 

films. The pioneering work by Sakiadis [1] analyzed the character-

istics of the flow upon the boundary layer of a stretched surface. 

Later, Crane [2] made an extension to this idea for the problem of 

two dimensional flows upon a stretching sheet. Wang [3] focused 

attention on steady incompressible three-dimensional viscous fluid 

flow due to a stretched flat surface. It appears that he was the first 

to derive an accurate similarity solution for the Navier-Stokes 

equations. The influence of radiation in steady combined convec-

tive hydro magnetic viscous incompressible fluid flow upon expo-

nentially stretched sheet was analyzed by El-Aziz and Nabil [4]. 

Eswaramoorthi et al. [5] examined the consequences due to radia-

tion in hydrodynamic convection of viscoelastic liquid upon a 

stretched area. Bhuvaneswari et al. [6] probed the influence of 

radiation together with generation of heat on convection flow 

upon an inclined surface surrounded by a porous material by ap-

plying the theory of Lie groups. 

 

Even though Dufour-Soret effects seldom exist, they are relevant 

in areas such as geosciences or hydrology. There has always been 

a renewed interest in incorporating Dufour-Soret effects in con-

vective processes in clear liquids as well as porous materials. 

Combined transfer of mass and heat by natural convection in a 

stagnating point flow of a liquid saturated porous material, incor-

porating the model of Darcy-Boussinesq, having blowing or suc-

tion, Dufour-Soret effects were deliberately analyzed by Poste-

lnicu [7]. The influences of flow, mass-heat transfer on hydro 

magnetic chemically reacting flow in a two-dimensional irregular 

channel under radiation and Dufour effect was researched by 

Ruchi Kumar and Sivaraj [8]. The hydro magnetic combined con-

vection stagnating liquid approaching an upright plate surrounded 

by a strongly porous space with mass and heat transport in the 

influence of radiation, heat generation, Dufour-Soret effects was 

investigated by Karthikeyan et al [9].  

 

The homotopy analysis method (HAM), suggested by Liao [10] is 

one of the most efficient methods to construct approximate solu-

tions of differential equations which are highly nonlinear. This 

solution method has been adapted to a variety of nonlinear differ-

ential equations. In this paper, we analyze the Dufour-Soret effects 

on 3D boundary layer heat and mass transfer upon a stretched 

expanse in the presence of chemical reaction, radiation and heat 

generation. The series solution is got by homotopy analysis meth-

od. 

2. Mathematical Formulation 

An unsteady incompressible 3D laminar flow of a viscoelastic 

fluid upon a stretched surface is examined. yx, -axes has been 

fixed along the stretched plane and the z -axis is chosen in per-

pendicular direction. The boundary is maintained with fixed tem-

perature 
wT  and fixed concentration

wC . These are higher than the 

surrounding fluid temperature 
T  and concentration

C . The 

influences of radiation, chemical reaction and internal heat absorp-

tion/generation and Dufour-Soret effects are considered. Genera-

tion or consumption of the diffusing species due to the homogene-

ous chemical reaction is considered. The equations depicting this 

model are given by 
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where u , v , w  are respectively the components of velocity in x , 

y , z  directions, t  is the time, T  is the temperature, C  is the 

concentration species of the fluid,   is the kinematic viscosity, 
0k  

is the material fluid parameter, D  is the coefficient of diffusion, 

  is the thermal diffusivity, Q  is the internal heat absorp-

tion/generation, 
mT is mean temperature,   is the density of the 

fluid, 
TK is the thermal diffusion, 

sc is the susceptibility of con-

centration and 
pc  is the specific heat. 

 

The boundary conditions are 
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Here a , b  are positive constants. The similarity variables are used 

as given below.   
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Then the governing equations (1)-(5) become, 
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Where  

( )tvakK −= 1/0
 - Dimensionless viscoelastic parameter, 

a/ =  - Unsteady parameter,  

abc /=  - Stretching ratio,  

DvSc = - Schmidt number, 

( ) ( ) vTCCTKTTDSr
mwmTw 

−−= - Soret number, 

( ) ( )vTTccCCDKDf wpswT  −−=  - Dufour number, 

 v=Pr - Prandtl number and 

 S - Heat absorption/generation parameter. 

 

One can notice that the two-dimensional case ( )0=g  is retained 

when 0=c . For 1=c , we can find an axisymmetric case ( )gf = . 

The localized Nusselt and localized Sherwood numbers are repre-

sented by 
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where 
wq  denotes heat flux and 

wj denotes mass flux. Then, the 

dimensionless expressions of Nusselt and Sherwood numbers are 
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Where vxuw=Re is the local Reynolds Number? 

3. Homotopy Analysis Method 

The system of equations with boundary conditions is solved by 

Homotopy analysis method. We can choose the starting guesses as 

follows 
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Besides, we choose the auxiliary linear operators as 

 

,,

,,

2

2

2

2

3

3

3

3









 −



=−




=




−




=




−




=

f
L

f
L

gg
L

ff
L gf

 

 

which has the following properties, 
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Where 
987654321

,,,,,,,, mmmmmmmmm and 
10

m  are inte-

gral constants. 

The series solution depends upon the non-zero parameters 

hhh gf ,, and
h . In order to see the range of 

hhh gf ,, and 
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h which depend on ( ) ( ) ( )0,0,0  gf and ( )0 , the H-curves of 

,, gf and  are plotted. Figure 1(a) points out that the admissi-

ble limits of 
fh and 

gh are 5.03.1 −− fh and 

6.05.1 −− gh respectively. Figure 1(b) represents that the 

limits of 
h and 

h  are 5.01.1 −− h  and 5.00.1 −− h . 

We get a better accuracy in our results if we select the values of 

auxiliary parameter h from this range. It is observed from the 

Figure 1 that 9.0−====  hhhh gf
gives the better solution. 

4. Results and Discussion 

The governing nonlinear equations for the mass and heat transfer 

of a viscoelastic liquid over a stretched surface in the existence of 

internal heat generation/absorption, chemical reaction and radia-

tion under the effect of Dufour-Soret parameters are solved by 

HAM. The influence of viscoelastic term K on the velocity com-

ponents are depicted in Figure 2 (a-b). One can observe from these 

graphs that the velocity components decline for the ascending 

values of K. Figure 3 (a-b) portrait the trends of temperature and 

concentration upon the action of K and we see that a rise in K 

results in the rise of both profiles. Figure 4 (a-b) illustrate the in-

fluence of Dufour parameter and the heat generation/absorption 

parameter upon temperature. We notice here that the temperature 

soars for rising values of both Df and S. The change in concentra-

tion field due to Soret parameter is exhibited in Figure 5. We no-

tice that the concentration rises as Sr ascends. The change in ve-

locity field due to the stretching ratio is given in Figure 6. This 

figure indicates that the velocity rises for ascending values of the 

stretching ratio. 

5. Conclusion  

The changes due to Dufour-Soret effects on 3D boundary layer 

flow mass and heat transfer of a viscoelastic liquid upon a 

stretched surface is probed under the existence of chemical reac-

tion, radiation and heat absorption/generation. The solution corre-

sponding to this flow is attained by the application of HAM. The 

inferences can be summed up as follows. 

• Rise in viscoelastic parameter (K) results in deceleration 

of velocity components, whereas we can observe a rise 

in concentration and temperature because of the increase 

in the strength of viscosity.  

• Temperature soars due to the rise in both Dufour (Df) 

and heat source parameter (S).  

• As Soret parameter (Sr) takes higher values, there is a 

rise in concentration observed.  

• Velocity rises rapidly as the stretching ratio (c) ascends. 
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Fig. 1(a): h curves of ).0(),0( gf   
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Fig. 1(b): h curves of  ).0(),0(    

 

 
Fig. 2: Velocity profiles f   for different K  values 
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Fig. 3: Velocity profiles g   for different K  values 

 

 
Fig. 4: Temperature profiles for dirrerent K  values 

 
Fig. 5: Concentration profiles for dirrerent K  values 

 

 
Fig. 6: Temperature profiles for dirrerent values of Df  

 

 
Fig. 7: Temperature profiles for dirrerent values of S  

 

 
Fig. 8: Concentraction profiles for different values of Soret parameter 

 

 
Fig. 9: Velocity profiles for different valures of c  

 


