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Abstract 
 

In this article we have introduced Minimum majority domination energy graph. A set S V  is called a majority dominating set if at 

least half of the vertices either in S or adjacent to the vertices S . That is  
 

2

V G
N S

 
  
  

,  
2

p
N S

 
  
 

. The minimum car-

dinality of a majority dominating set is called majority domination number  M G . We defined majority dominating matrix and its 

energy values for some classes of graphs. Also some boundaries of Energy value of graph G are obtained. 

 
Keywords: Majority Domination matrix; Minimum majority domination Energy value. 

 

1. Introduction 

In this paper   ,G V E  means finite simple graph with p  

vertices and q  edges. A set D  of vertices of a graph  G  is 

dominating set if every vertex in  V D is adjacent  to some 

vertex  in D . The domination number M   of G is the mini-

mum cardinality of all dominating sets of G . A set 
 
S V  is 

called a majority dominating set if at least half of the vertices ei-

ther in S  or adjacent to the vertices S . That is

 
 

2

V G
N S

 
  
  

,  
2

p
N S

 
  
 

. The minimum cardinality 

of a majority dominating set is called majority domination number

 M G  . This concept was introduced by Jose-line Monora 

Swaminathan [6]. The concept of energy graph was introduced 

Ivan Gutman [3]. Let G be the graph with P vertices and q edges 

and  ijA a be the adjacency matrix of the graph. i  are the 

Eigen values of the graph G . The energy  E G  of G is de-

fined as  
1

n

i

iE G 


   

2. Minimum Majority Dominating Energy 

2.1 Definition  

Let ‘G’ be a simple graph with vertex set  1 2 3, ,  ... nV v v v v  

and the edge set   1 2 3, ,  ... nE e e e e  and D is the minimum 

majority dominating set it is denoted by M - set. The minimum 

majority dominating matrix G is denoted by MMD (G) is the 

n n  matrix defined as follows 

 

2.2 Definition  

 
For any graph ‘G’ the energy the characteristic polynomial  

defined by     , detMD G I MMD G    and 

 
1

n

MMD i

i

E G 


  where 1 2, ,.... n    are the Eigen val-

ues of the matrix. 

 

Example: 

For the graph G = C7,  

With the vertex set    1 2 3 4 5 6 7, , , , , , V G v v v v v v v  , then  

the M - set are  1 1 3,D v v  and  2 2 4,D v v

  2M G  .Therefore  MMD Matrix of  1D is 

   

1

, 1 ,

0

i j

i

if v v E

MMD G mmd i j if i j and v D

otherwise




   


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 

1 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 1 1 0 0 0

, 0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

1 0 0 0 0 1 0

mmd i j

 
 
 
 
 

  
 
 
 
 
 

 

 

The characteristics equation is 
7 6 5 4 3 22 6 10 11 12 6 0              

 

The Eigen value of the matrix MMD of  D1 are  

 

1 2 3 4 5 6 70, 2 1, 2 1, 2, 2, 3, 3                   

Energy value of D1 is  

  1 2 3 4 5 6 7

1

9.1210
n

MMD i

i

E G        


          

2.3. Theorem   

For the Graph  , 2nG K n   is complete graph,   

Then      22 2 5MMDE G n n n      

 

Proof:  

Let G complete graph with the  2n   and the vertex set  

 

 

   deg iv G   

Therefore     1i MD v G   . 

The minimum majority dominating energy value is  

    22 2 5MMDE G n n n     . 

Since    D n nA K MMD K . 

 

2.4. Theorem  

For the star graph   1, 1nK  ,  1, 1 4 3MMD nE K n    

2.5. Theorem  

If the graph G is a complete bipartite with  , 2m n   then the 

minimum majority dominating energy value is  

   
 

4 1MMD

m n
E G mn

n


  

.

 

 

Proof: 

Let G be the graph with , 2m n   and m n  and the vertex 

set are    1 2 3 1 2 3 ...u,u ,u ,  ...,m nV G u v v v v   iu  

covers  n  vertices. 

 
2

i

m n
d u n

 
    

 
 

The minimum majority domination set iu . 

 

1 0 0 0 1 1

0 0 0 0 1 1

0 0 0 0 1 1

,
0 0 0 0 1 1

1 1 1 1 0 0

1 1 1 1 0 0

mmd i j

 
 
 
 
 
 
 
 
 
 
 
  

 

 

 

1 0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 1 0

1 1 1 1 0

MD G

















 

 

The characteristics equation of  m,nK  is 

 3 3 2 1 0m n mn m n             

   
 

0 3 , 4 1
n m

n times mn
n

 


      

   
 

4 1MMD

n m
E G mn

n


     

2.6. Theorem  

For the friendship graph   nF  with 2n  , the minimum majority 

dominating energy graph    2 2 1MMD nE F n n    . 

 

Proof: 

Let nG F  friendship graph   with  2n   and the vertex set 

   1 2 3 1, , ,  ... nV G u v v v v  , u  has  G  and  u  

forms  a  M - set. Hence  MMD  matrix is 

 

1 1 1 1 1 1 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 1 0 0
,

1 0 0 1 0 0 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0

mmd i j

 
 
 
 
 
 
 
 
 
 
 
  

 

Characteristic polynomial is 

 

   1 2 3, ,  ... nV G v v v v
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1 1 1 1 1 1 1

1 1 0 0 0 0

1 1 0 0 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 0 0 0 0 1

1 0 0 0 0 1















      

 

 

 

 

 

 

 

The characteristics equation is 

     
4 5 21 1 2 2 0

n n
n   

 
         

 

The minimum majority dominating Eigen values are 

   1 4 , 1 5 , 1 1n times n times n           

   2 2 1MMDE G n n     . 

 

2.7. Theorem  

 

If a graph G  be a crown graph  with 2n  , then 

     4 2 1 1 1MMDE G n n n       

Proof: 

Let G  be a crown graph 
0

nS  with vertex  

   1 2 3 1 2 3 ...u,u ,u ,  ...,n nV G u v v v v  

The minimum majority dominating set is  1D u
 

 

 

1 0 0 ... 0 0 1 1 ... 1

0 0 0 ... 0 1 0 1 ... 1

0 0 0 ... 0 1 1 0 ... 1

0 0 0 ... 0 1 1 1 ... 1

...

0 0 0 ... 0 1 1 1 ... 0

0 1 1 ... 1 0 0 0 ... 0

1 0 1 ... 1 0 0 0 ... 0

1 1 0 ... 1 0 0 0 ... 0

1 1 0 ... 1 0 0 0 ... 0

... ...

1 1 1 ... 0 0 0 0 ... 0

MMD G

 
 
 
 
 
 
 
 
 

 








 











 

 

 

1 0 0 ... 0 0 1 1 ... 1

0 0 0 ... 0 1 0 1 ... 1

0 0 0 ... 0 1 1 0 ... 1

0 0 0 ... 0 1 1 1 ... 1

...

0 0 0 ... 0 1 1 1 ... 0

0 1 1 ... 1 0 0 0 ... 0

1 0 1 ... 1 0 0 0 ... 0

1 1 0 ... 1 0 0 0 ... 0

1 1 0 ... 1 0 0 0 ... 0

... ...

1 1 1 ... 0 0 0 0 ... 0

MMD G


































 

The characteristics equation is 

 

           
2 2 24 3 21 1 2 1 1 2 1 1 0

n n
n n n n n   

               
 

 

The minimum majority dominating Eigen values are 

 

      1 2 , 1 2 , 2 1 1 1n times n times n n                
 

 

     4 2 1 1 1MMDE G n n n        

2.8. Theorem  

Let G  be a graph with order n , size m , majority domination 

number  M G . 

If   1 2

0 1 2, .....n n n

nMD G a a a a          be 

the Characteristic polynomial of minimum majority of dominating 

matrix of  G  then      0 11 Mi a ii a G    

2.9. Theorem  

For any graph G with vertex set    1 2 3, ,  ... nV G v v v v , 

edge set E  and M -set  1 2 3,u ,u  ...ukD u .If 

1 2, ,....., n   are the Eigen values of the matrix  MMD G  

then 

(i) 
1

n

i

i

D


  

(ii) 2

1

2
n

i

i

E D


   

 

2.10. Theorem 

 

For any graph G  of order n , size m then 

      2 2M MMD Mm G E G n m G      

 

Proof: 

 

By Cauchy Schwartz inequality 

   
2 2 2

1 1 1

n n n

i i i i

i i i

a b a b
  

   
           

    

 

Let 1i i ia and b   , 

    
2 2

MMD iE G   

                           2

1 1

1
n n

i

i i


 

  
   
  
   

                             2n m D   

                               2 Mn m G   

Also  

         
2

2

1 1

n n

i i

i i

 
 

   
   

   
 

                   

                           
2

1

n

i

i




 
  
 
  

 2m D   
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  2 Mm G   

  2 Mm G   

3. Conclusion  

In this article we have introduced the concept of minimum ma-

jority dominating energy graph and its energy value. We have ob-

tained minimum majority dominating energy value for some clas-

ses of graph. Also some bounds of the energy value are achieved.  
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