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Abstract 
 

This research article primarily focuses on the estimation of parameters of a linear regression model by the method of ordinary least 

squares and depicts Gauss-Mark off theorem for linear estimation which is useful to find the BLUE of a linear parametric function of the 

classical linear regression model. A proof of generalized Gauss-Mark off theorem for linear estimation has been presented in this memoir.  

Ordinary Least Squares (OLS) regression is one of the major techniques applied to analyse data and forms the basics of many other tech-

niques, e.g. ANOVA and generalized linear models [1]. The use of this method can be extended with the use of dummy variable coding 

to include grouped explanatory variables [2] and data transformation models [3]. OLS regression is particularly powerful as it relatively 

easy to check the model assumption such as linearity, constant, variance and the effect of outliers using simple graphical methods [4]. J.T. 

Kilmer et.al [5] applied OLS method to evolutionary and studies of algometry. 

 
Keywords: BLUE, OLS estimation, mean vector, Covariance matrix, linear regression model. 

 

1. Introduction 

This Regression analysis is a statistical method to establish the 

relationship between variables. Regression analysis has a wide 

number of applications in almost all fields of science, including 

Engineering, Physical and Chemical Sciences; Economics, Man-

agement, Social, Life and Biological Sciences. In fact, regression 

analysis may be the most frequently used statistical technique in 

practice. Suppose that there exists a linear relationship between a 

dependent variable Y and an independent variable X. In the scatter 

diagram, if the points cluster around a straight line then the math-

ematical form of the linear model may be specified as 

 

i 0 1 iY X , i 1,2,...n.                                                      (1.1) 

 

Where 0 is the intercept and 1  is the slope.   

Generally the data points in the scatter diagram do not fall exactly 

on a straight line, so equation (2.1.1) should be modified to ac-

count for this. Let the difference between the observed value of Y 

and the straight line 
 0 1X 

be an error . It is convenient to 

think of   as a statistical error; that is, it is a random variable that 

accounts for the failure of the model to fit the data exactly. The 

error may be made up of the effects of other variables, measure-

ment errors and so forth. Thus, a more plausible model may be 

specified as 

 

i 0 1 i iY X ,i 1,2,...,n.     
                                       (1.2) 

 

Equation (1.2) is called a Linear Regression Model or Linear Sta-

tistical Model. Customarily X is called the independent variable 

and Y is called the dependent variable. However, this often causes 

confusion with the concept of statistical independence, so we refer 

to X as the Predictor or Regressor variable and Y as the Response 

variable. Since the equation (2.1.2) involves only one Regressor 

variable, it is called a „Simple Linear Regression Model‟ or a 

„Two-Variable Linear Regression Model‟. A Three – variable 

Linear Regression Model may be written as  

 

i 0 1 1i 2 2i iY X X ,i 1,2,...,n       
                            (1.3) 

 

This linear regression model contains two regressor variables. The 

term linear is used because eq. (1.3) is a linear function of the 

unknown parameters 0 1, 
and 2.

 

In general, the response variable Y may be related to k regressor 

or predictor variables. The model  

 

i 0 1 1i 2 2i k ki iY X X ... X ,i 1,2,...n          
        (1.4) 

 

is called a „Multiple Linear Regression Model‟ with k independent 

variables. The parameters βj, j=0, 1, 2.., k are known as regression 

coefficients. This model describes a hyperplane in the k – dimen-

sional space of the independent variables Xj‟s. The parameter βj 

represents the expected change in the dependent variable Y per 

unit change in Xj, when all of the remaining predicted variables 
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Xq‟s (qj) are held constant. Thus, the parameters βj, j = 1, 2… k 

are often known as „Partial Regression Coefficients. 

2. Ordinary Least Squares Estimation of Pa-

rameters of Linear Model 

An Consider the Classical Linear Regression model 

 

1 1 1  nx nxk kx nxY X
                                                       (2.1) 

 

with usual assumptions such as  

 
2( ) 0, ( )    nE E

                                                   (2.2)  

 

Write the residual sum of squares as  

 

   ˆ ˆ 


   e e Y X Y X
                                                       (2.3) 

 

=

^ ^' '
ˆ ˆY Y X Y Y X X X        

^ ^ ^' ' '
ˆ ˆe e Y Y 2 X Y X X Y X X Y

 
              

    

Where 
̂

 is the least squares estimator of


. 

By the least squares estimation method, 
̂

 minimizes the residu-

al sum of squares e e . 

 

First order condition:  

  ˆe e O 2X Y 2X X O
ˆ


      




  
 

ˆX X X Y  
                                                                       (2.4) 

 

The system (2.7.4) contains „n‟ simultaneous linear equations, 

which is called the „System of Normal Equations‟. Since, the sys-

tem of normal equations is always consistent, these exists at least a 

non-zero solution of 
̂

, which gives the ordinary least squares 

(OLS) estimator of 


. 

 

i.e. 
 

1
̂


  X X X Y

                                                                 (2.5) 

 

Further, consider the OLS residual vector 

 

̂ e Y X
                                                                          (2.6) 

 

 
1

X X X X X (X )   


    
 

 
1

X X X X 


  
 

  1

nI X X X X 


  
     [In is a unit matrix of order n] 

 

 e M                                                                              (2.7) 

 

where  

  1
  nM I X X X X

 is a symmetric idempotent matrix such 

that M M=M , 
M=M and MX=O. 

Now, consider the OLS residual sum of squares 

        e e M M M
 

       

 

E e e E M E trace M M is a scalar

E trace M

     



     



 

     2 2

ntrace M E trace M E I          

  12

ntrace I X X X X


  
 

   
12

ntrace I trace X X X X
   

   

 2  kn trace I
 

   2  E e e n k
 

 

2
 

 
 

e e
or E

n k                                                                    (2.8) 

 

Or 

 2 2E S 
, where 

2 




e e
S

n k  is an unbiased estimator of 
2 . 

3. Gauss-Mark-Off Theorem for Linear Esti-

mation 

This theorem is useful to find the Best Linear Unbiased Estimator 

(BLUE) of a linear parametric function of the classical linear re-

gression model. 

 

Statement:  

In the Gauss-Mark off linear model, 
  Y X

 with usual 

assumptions; the BLUE of a linear parametric function 
C

 is 

given by
̂C

, where
̂

 is the ordinary least squares estimator of 


. Here, C is a (kx1) vector of known coefficients. 

 

Proof:   
Consider the Gauss-Mark-off linear model 

 

1 1 1  nx nxk kx nxY X
                                                               (3.1) 

 

Such that 

    2

nE O,E I    
 and

 2

nN O, I 
. Suppose that 

the linear parametric function 
C

 is estimable. Then, there 

exists a linear function of observations vector P Y  such that  

   E P Y C
, P is a vector of unknown coefficients. 

 

 P X C E Y X          or X P C
                    (3.2) 

 

One may have  

      Var P Y P P Var Y
 

2 ( )  P P
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The BLUE of 
C

 can be obtained by minimizing the 

 Var P Y
with respect to P subject to the restriction  X P C . 

Write the constrained minimization function as  

 2     P P X P C
                                                     (3.3) 

 

Where  is a (kx1) vector of unknown as Lagrangian multipliers 

First order condition:  

0 2P 2X 0
P





   

  or  

 

P X                                                                                   (3.4) 

 

From (3.2) and (3.4), one may obtain  

 

 X X C                                                                              (3.5) 

 

The BLUE of 
C

 is given by  

 

  P Y X Y                                                                         (3.6) 

 

It can be shown that
ˆX Y C   

. Here, 
 

1ˆ X X X Y


 
 is the 

OLS estimator of 


. 

From the ordinary least squares estimation method, one may write 

the system of normal equations as 
ˆX X X Y 

. One may ob-

tain,  

 ˆ ˆX Y X X C X XC C          
 

Hence, the BLUE of linear parametric function 
C

  is given 

by
̂C

, where
 

1
̂


  X X X Y

. 

4. Mean Vector and Covariance Matrix of 

Blue 

Consider the Gauss-Mark-off linear model 

 

nx1 nxk kx1 nx1Y X   
                                                           (4.1) 

 

such that  

 E Y X
 and 

  2

nVar Y I
. Suppose that a linear para-

metric function 
C 

 is estimable. Then, there exists a linear 

function of observation vector Y  such that 

 

 E Y C or X C

or X C

    



    

 
                                            (4.2) 

 

By the condition for the existence of BLUE, one may have 

 

X XP C                                                                                 (4.3) 

 

or 

   

   

1

g

X X C P, if X k

X X C P, if X k






  

  
                                            4.4) 

 

Further, one may write the BLUE for 
C 

 as 

 

ˆC Y P X Y                                                                       (4.5) 

 

Consider, 
         2Var Y Var Y XP          

 

 

 2 P X XP  
                                                                         (4.6) 

 

(i) 
        

1 12Var Y C X X X X X X C if X k  
       

               (4.7) 

 

 

 

(ii) 
        

g g2Var Y C X X X X X X C if X k        
   

 

     
g2Var Y C X X C if X k       

                                    (4.8) 

 

Thus, the mean vector and covariance matrix of BLUE 
ˆC   are 

given by 

 

(i)
 ˆE C C  

                                                                    (4.9) 

 

and 

 
     

12ˆ(ii) Var C C X X C if X k  
    

   

     
g2ˆand Var C C X X C if X k      

                          (4.10) 

 

Remarks:  
By taking C as a (kx1) vector of one‟s one may obtain, 

 

(i) 
 ˆE  

                                                                           (4.11) 

 

And 

 

 (ii) 
     

12ˆVar X X if X k  


 
  

     
g2ˆand Var X X if X k   

                              (4.12) 

5. Generalized Gauss-Mark-Off Theorem for 

Linear Estimation 

One may obtain the Generalized Gauss-Mark-off linear model by 

violating the assumption
  2

nE I  
, in the Gauss- Mark-off 

Linear model. 

Consider the linear regression model, 

 

n 1 n k k 1 n 1Y X      
                                                         (5.1) 

 

such that  

 

      2

2

E O or E Y X and E

or Var(Y)

   

 

   

                     (5.2) 

 

Where 
2  is known and   is a known positive definite sym-

metric matrix. The linear regression model (5.1) along with as-

sumptions (5.2) is known as the Generalized Gauss- Mark-off 

linear model, which was first given by Aitken in year 1932. 

 

     
12Var Y C X X C if X k  
     

 
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Statement:  

In the Generalized Gauss-Mark-off linear model 

nx1 nxk kx1 nx1Y X     such that 
 E O,

 
  2E    

; the 

BLUE for a linear parametric function 
C 

 is given by C  , 

where 


 is the unique Generalized Least Squares (GLS) estima-

tor for 


, which can be obtained by solving a system of General-

ized Normal Equations 
   1 1X X X Y    

. Also an unbi-

ased estimator of  
2  is given by 

 

1~
2

'e e
,

n r





  

Where 
ˆe Y Y  is OLS residual vector and

 X r 
.  

Here   is a known positive definite symmetric matrix. 

 

Proof:  
Consider the Generalized Gauss-Mark-off linear regression model, 

 

nx1 nxk kx1 nx1Y X   
                                                            (5.3) 

 

Such that
    2E O and E     

. Since,  is known 

positive definite symmetric matrix, these exists a non-singular 

matrix M such that 

 

 1MM or M M I    
                                                    (5.4)  

 

Pre-multiplying on both of sides (2.10.3) by 
1

M


gives 

 
1 1 1M Y M X M 
     or  

* * *Y X                                   (5.5) 

 

Where   
* 1 * 1 * 1Y M Y, X M X and M       

 

Consider (i) 
     * 1 1E E M M E O     

                         (5.6) 

 

  (ii) 
  * * 1 1'

E E M M                  
12 1M M
    

 
1

2 1M M


   

 

* * 2E I
'

  
 

  
                                                                            (5.7) 

 

Thus, the Generalized Gauss-Mark -off linear regression model 

reduces to an ordinary Gauss-Mark-off linear model given in 

(5.5), (5.6) and (5.7). Now, the unique GLS estimator of 


 can 

be obtained by solving the system of normal equations, 

* * * *' '
X X X Y   

       1 1 1 1M X M X M X M Y    
 

 

   
1 1

X MM X X MM Y
      

   
 

 1 1X X X Y     
                                                      (5.8) 

 

One BLUE of 
C 

 is given by C  .  

Where  
     

1
1 1X X X Y , if X k 


     

   

or 
     

g
1 1X X X Y , if X k      

 

Also an unbiased estimator of error variance 
2  is given by 

* *~
2 * * *

'
e e ˆ, where e Y X
n r

   
  

 

or 
     1

1~
2

ˆ ˆY X MM Y X e e
,

n r n r

 






  

 
 

                 (5.9) 

 

 where r X  

6. Properties of OLS Estimators 

Following are some important properties of the OLS estimators 

̂
 and

^
2 : 

The OLS estimator 
̂

 is the BLUE for


. The mean vector and 

the covariance matrix are respectively given by 


 

and
 

12 X X



. 

The OLS estimator 
̂

 is the maximum likelihood estimator for 


 and hence, it is consistent. 

The OLS estimator 
̂

 follows multivariate normal distribution 

with mean vector 


 and the covariance matrix
 

1
2 'X X



. 

One OLS estimator 

^
2 e e

n k





 is an unbiased and consistent esti-

mator of
2 . 

2

e e



 
 
   or 

 
^

2

2

n k 



 
 

 
    follows 

2
-distribution with (n-k) degrees of 

freedom. 

The variance of 

^
2  is given by 

 
4^

2 2
Var

n k



 

 
  .                                                                         (6.1) 

 

The OLS estimators 
̂

 and 

^
2  are the efficient estimators of 


 and 

2  respectively. 

The OLS estimators 
̂

 and 
 

^
2n k 

 are two joint sufficient 

statistics of 


 and 
2 . 

^
2n k

n


 
 
   is the maximum likelihood estimator for 

2 . 

The Rao – Cramer lower bounds for the variances of ̂  and 

^
2  

are respectively given by 
 

4
12 2

X X and
n







. 

The OLS estimators 
̂

 and 

^
2  are asymptotically efficient esti-

mators of  


 and 
2  respectively. 
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 
1

asy
2

n

X Xˆn N O, Lim
n





   
         

  

 
and  

^ asy
2 2 4n N O,2

 
    

 
  

. 

7. Problems of Linear Model by Violating the 

Assumptions 

Several problems can be arised by violating the crucial assump-

tions about the linear regression model such as: 

1. Problems of biased and Inconsistent estimators for 


 will 

be arised if 
 E 0 

; 

2. Problems of heteroscedasticity and autocorrelation will be 

arised if 
  2

nE I  
; 

3. Problem of  multicollinearity will be arised if 
 X k 

; 

4. Problem of stochastic regressors will be arised if the data 

matrix X is a stochastic  matrix; 

5. Problem of errors in variables will be arised if there are errors 

in the independent variables; 

6. Problems of non-normal errors and non-parametric linear 

regression analysis will be arised if   does not follow mul-

tivariate normal distribution; and Problem of Random Coef-

ficient Regression (RCR) models will arise if the regression 

coefficients governed by some probability distribution.  

8. Conclusion  

In The above discourse presented OLS estimation method of a 

classical linear regression model and the BLUE of a linear para-

metric function of the v model. In addition to these mean vector 

and covariance matrix of BLUE have been derived in this article. 

Properties of OLS estimators have been proposed and the prob-

lems which can be arised by violating the crucial assumptions 

about the linear regression model have been exhaustively dis-

cussed. 
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