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Abstract 
 

In order to model the blood flow through an artery in presence of catheter, we considered a steady, laminar, incompressible, Poiseuille 

flow of a Herschel-Bulkley fluid between two horizontal parallel elastic walls. The power law index ( n ) and yield stress ( 0 ) are the 

two parameters of the Herschel - Bulkley fluid. By giving different values for the above mentioned parameters, we get the Newtonian, 

Bingham and Power-law fluids as special cases. The exact solutions for the flow quantities such as velocity, plug flow velocity and flux 

are derived. The flux is determined as a function of inlet, outlet, external pressures and the elastic property of the channel. The effect of 

elastic parameters on flux variation is analyzed. Further when 1n  and 0 0  our results qualitatively agree with those of Rubinow and 

Keller [2]. In addition, velocity of the Herschel- Bulkley fluid flow is expressed in terms of elastic parameters.  
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1. Introduction 

In recent days, the flow of Newtonian and non-Newtonian fluids 

through channels/tubes contributes significant attention due to 

their wide applications in engineering and medical sciences. The 

flow geometry plays an important role in understanding the char-

acteristics of different fluid flows. Most of the earlier studies are 

concentrated on rigid channels and tubes. In biological systems, 

the flow geometries with elastic nature is more adequate when 

compared to the rigid boundaries. Since, most of the physiological 

systems are elastic in nature. So the non-Newtonian fluid flow 

through elastic walls gives some important applications like blood 

flow in a small blood vessel, lymphatic vessel and cardiovascular 

systems to understand the evolution of pathogen due to vessel 

deformation. To understand the rheological properties of physio-

logical fluids in living organisms, the elastic properties of flow 

geometries are taken in to the consideration. The experimental 

studies reveal that velocity in blood vessels largely depends on the 

elastic nature of the wall.  

Roach and Burton [1] conducted an experiment on human external 

iliac artery to study the static pressure-volume relation as tension 

versus length curve. Rubinow and Keller [2] explained the de-

tailed analysis applications blood flow by considering viscous 

fluid flow through elastic tubes. The non-Newtonian behaviour of 

blood at lower shear rates was analysed by Pedley and Fung [3]. 

Newtonian fluid flow in an elastic tube was discussed by Fung [4]. 

Mazumdar [5] presented the analysis of non-Newtonian fluid flow 

through elastic tube by expressing the tension relation as an expo-

nential curve. Taha and Sochi [6] discussed the lubrication ap-

proximation to interpret the flow behaviour of Newtonian fluid 

and Power-Law fluids in elastic tubes. Scott Blair et al. [7] report-

ed that Herschel-Bulkley fluid behaves like cow’s blood. Non-

linear analysis for oscillatory flow through elastic tube and its 

applications are derived by Sankar and Jayraman [8]. The un-

steady flow of a viscous, incompressible fluid in a tube with an 

elastic insertion is studied by Pedrizzetti [9]. Vajravelu et al. [10] 

investigated the peristaltic transport of a Herschel- Bulkley fluid 

in a channel. Mathematical model is proposed by Vajravelu et al. 

[11] to understand the Herschel- Bulkley fluid flow in an elastic 

tube. Ali et al. [12] presented a numerical study creeping flow of 

Herschel-Bulkley fluids in collapsible channels. Creeping flow of 

a Herschel–Bulkley fluid with pressure-dependent material moduli 

is discussed by Fusi and Rosso [13]. 

In this paper we consider the flow of Herschel - Bulkley fluid in a 

plane analogue with elastic walls. The flux of the channel is ob-

tained as a function of elastic parameters. The influence of various 

pertinent parameters on variation of flux along the walls of the 

channel for a Herschel – Bulkley fluid in an elastic walls are cal-

culated and interpreted through graphs. 

2. Mathematical Formulation: 

The governing equations for the flow are  

 

0divV                                                                                      (1) 

 

dV
div f

dt
                                                                      (2) 

 

Where V  is the velocity, f  is the body force per unit mass,  is 

the density, 
d

dt
 the material derivative and  is the Cauchy stress 

defined by 
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pI T                                                                                  (3) 

 

2T D S                                                                               (4) 

 

2S D                                                                                      (5) 

 

D is the symmetric part of the velocity gradient, which is defined 

by
1

2

TD L L      and gradL V also, pI denotes the in-

termediate part of the stress due to the constraint of incompressi-

bility.  and   are the viscosities.  

3. Flow Geometry and Governing Equations: 

 
Fig. 1: Physical Model 

 

Consider the steady, laminar, incompressible, Poiseuille flow of a 

Herschel - Bulkley fluid in a horizontal channel with elastic plane 

analogue. L  and  a x be the length and half width of the chan-

nel respectively.  is the viscosity of the Herschel- Bulkley fluid 

and yx is the shear stress. The region between 0y  and 0y y  

is called a plug flow region,
0xy  . In the region between 

0y y and  y a x , we have
0xy  . The momentum equa-

tion governing the flow is  

 

 yx

p

y x


 


 
                                                                             (6) 

 

where 0

n

yx

u

y
  

 
   

 
                                                      (7) 

 

here u is the axial velocity and p  is the pressure. The corre-

sponding boundary conditions are   

 

at  y a x :  0u
y


 


                                                      (8a) 

 

at 0y  : 

2

2
0yu

y


 


                                                          (8b) 

 

at  y a x : q                                                                   (8c) 

 

at 0y  : 0                                                                          (8d) 

 

at 0y  : 0yx                                                                        (8e) 

 

where  is the stream function and 0 is the yield stress. 

To solve equations (6) and (7) subject to the boundary conditions 

in (8), we use the following non-dimensional quantities: 
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
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 



    

   
   
   
   

      (9) 

 

Here U is the average velocity, 0a  is the width of the channel in 

the absence of elasticity and n is the power law index.  

By using the non-dimensional quantities given in equation (9), the 

momentum equation become (after removing the bars) 

 

 yx P
y



 


                                                                          (10) 

 

where 
p

P
x


 


and 

0

n

yx

u

y
 

 
   

 
                                 (11) 

 

The dimensionless boundary conditions are as follows: 

 

at  y a x : 0u
y


 


                                                     (12a) 

 

at 0y  : 

2

2
0yu

y


 


                                                        (12b) 

 

at  y a x : q                                                                 (12c) 

 

at 0y  : 0                                                                        (12d) 

 

at 0y  : 0yx                                                                      (12e) 

4. Solution of the Problem:  

Solving equation (10) with the boundary conditions (12), we ob-

tain the velocity as  

 

   
1 1

1 1

0 0

1

1
1

n nu Pa Py

P
n

 
  

       
 

 

                       (13) 

 

By using the boundary condition 0yy  at 0y y , the upper 

limit of the plug flow region is derived as 

 

0

0y
P


                                                                                      (14) 

 

Using the condition yx h   at  y a x , we get 

 

hP
a


                                                                                       (15) 

 

Hence 0 0

h

y

a





     where 0 1                                      (16) 
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By taking 0y y in equation (13), we get velocity for the plug 

flow regions as 

 

 
1

1

0

1

1
1

n
pu Pa

P
n




 
 

 
 

                                                   (17) 

 

The flux q is given by  

 

 
0

0

1
1

1 1
2

0

1
1 1

1 1
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n
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n n
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n
q u dy udy a P
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 
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  

           (18) 

 

Due to the pressure difference between the outside of the walls 

and fluid, there is a corresponding change in width of the chan-

nel  a x . This shows that the flow follows the famous Poiseuille 

law which states the flux is expressed as a linear function of pres-

sure difference between inlet and outlet of the channel. Thus, we 

have 

 

 
1

1 0
nq p p P                                                                    (19) 

 

From equations (18) and (19), we get the conductivity of the 

channel as  

 
1

2

1 0( ) np p Ga


                                                                  (20) 

 

where 

 
1

1 1
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n

n
G
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                                        (21) 

 

Integrating the equation (19) w.r.t. x  from 0x  and applying 

inlet condition   10p p , we get 

 

 
  0

0

p

1

p(0)

( )

x p

nn

p

q x p dp





                                                       (22) 

 

where   0p p x p    

To find flux Q , we set 1x  and   21p p , hence we get 

 

  
1 0

2 0

p

1 0

p

p
nn

p

q p p dp





                                                    (23) 

 

1 0

2 0

p

2 1

p

p

n n n

p

q G a dp







                                                                (24) 

 

If the stress or tension ( )T a  in the walls of the channel is known 

as a function of a , then ( )a p  can be found by the equilibrium 

condition, 

 

0

( )T a
p p

a
                                                                           (25) 

Now, it is necessary to know how the radius of a tube varies with 

pressure. Roach & Burton [1] determined the static pressure-

volume relation of a 4 cm long piece of the human external iliac 

artery, and converted it into a tension versus length curve. Using 

least squares method Rubinow and Keller [2] gave the following 

equation: 

 
5

1 2( ) ( 1) ( 1)T a t a t a                                                        (26) 

 

where 1 13t   and 2 300t   

From equations (25) and (26), we get 

 

3 21

2 2

2

1
[ (4 15 20 10 )]

t
dp t a a a da

a a
                         (27) 

 

By substituting the equation (27) in equation (24) and then solving 

the integral, we get the flux of the fluid as 

 

 1 0

2 0

2 1 2 4 2 3p
1 2

2 2 2 1 2 1
p
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  

  
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p
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 
1

1 2( ) ( ) nq G g a g a                                                             (29) 
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1 1 0 2 2 0where (p ), (p )   a a p a a p  

From equation (10), we get 

 
4

4
0

y
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                                                                                  (31) 

 

Integrating equation (31) by using the boundary conditions given 

in equation (12), we get the stream function as 
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                                        (32) 

 

Hence the velocity field in terms of elastic parameter 1t  and 2t  is  

 

1 1
1 1

1
2

1
2

1
1

n n

n

q
n

u a y

a
n

 



 
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  
    
 

                                             (33) 

5. Results and Discussions: 

In the present paper, the flow of Herschel-Bulkley fluid in a chan-

nel with elastic walls is studied. The analytic expressions for axial 

velocity and stream function are derived. The relation between 

volume flow rates is obtained. The influence of various pertinent 

parameters on flow quantities are analysed through graphs.  

The effect of physical parameters such as power-law index n , 

yield stress , elastic parameters 1t  and 2t  on variation of flux is 

represented in Figures 2 to 7 respectively.  To calculate flux, we 

used the fixed values for different parameters 
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1 213, 300, 1.2, 0.2t t n      except for varied values as 

shown in figures. Figure 2 shows the variation in flux along the 

channel width for different types of biofluids. It is noticed that the 

flux is more for Newtonian case when compared to non-

Newtonian case. Figure 3 denotes the influence of yield stress on 

flux. It is clear that increasing yield stress reduces the flux. 

Figure 4 and 5 illustrates the variation of flow rate for different 

values of elastic parameters 1t  and 2t respectively. It is found that 

the flux enhances with growing values of elastic parameters. Fig-

ure 6 represents that the flux decreases with increasing n for shear 

thinning case where the opposite behavior is observed in the case 

of shear thickening which is shown in Figure 7. Figures 8 and 9 

denotes change in flux for different values of  2 0p p  and 

1 0p p respectively. It is found that the flux reduces for increas-

ing outlet and external pressure difference where it increases for 

increasing inlet and external pressure difference. 

The effect of physical parameters such as power-law index n , 

yield stress , elastic parameters 1t  and 2t  on axial velocity is 

represented in Figures 10 to 13 respectively. To calculate velocity 

we used the fixed values for different parameters 

1 213, 300, 0.8, 0.5t t n      except for varied values as 

shown in figures. The variation in velocity for different values of 

1t  and 2t  are presented in Figures 10 and 11 respectively. It is 

clear that increasing elastic parameters decreases the velocity of 

the fluid. The effect of fluid behavior index n on fluid velocity is 

illustrated in Figure 12. That is the fluid velocity gets reduced with 

increasing n . The effect of yield stress on velocity is shown in 

Figure 13. It is observed that fluid velocity decreases with increas-

ing yield stress. 

6. Conclusions:  

In the present paper, the flow of Herschel-Bulkley fluid in a chan-

nel with elastic walls is investigated. The solutions for axial veloc-

ity, stream function and flux are obtained analytically. The influ-

ence of different parameters on flow quantities are analyzed 

graphically. 

i) The flux of Newtonian fluids in a channel with elastic walls is 

more when compared to non- Newtonian fluids. 

ii) The flux of Herschel-Bulkley fluid decreases with increasing 

yield stress where it is decreases with higher values of elastic 

parameters. 

iii) The effect of power-law index on flux for both shear thinning 

and shear thickening fluids are analyzed. 

iv) The flux decreases with increasing outlet and external pressure 

difference where the opposite behavior is observed in the case 

of inlet and external pressure difference. 

v) The fluid velocity increases with increasing elastic parameters 

and decreases for increasing power-law index and yield stress. 

 

 
Fig. 2: The flux vs channel width for different fluids. 

 
Fig. 3: The flux vs channel width for different values of yield stress. 

 

 

Fig. 4: The flux vs. channel width for different values of 1t  

 

 

Fig. 5: The flux vs. channel width for different values of 2t  

 

 
Fig. 6: The flux vs. channel width for different values of n  (shear thin-

ning fluid) 
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Fig.7: The flux vs channel width for different values of n  (shear thicken-

ing) 

 

 
Fig. 8: The flux vs. inlet pressure for different values of outlet pressure 

 

 
Fig. 9: The flux vs. outlet pressure for different values of inlet pressure 

 
Fig. 10: The velocity vs  y  for different values of 1t  

 

 
Fig. 11: The velocity vs. y   for different values of 2t  

 

 
Fig. 12: The velocity vs. y  for different values of n  
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Fig. 13: The velocity vs. y   for different values of   
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