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Abstract 
 

This work deals with M/M/1 queue with Vacation and Vacation Interruption Under Bernoulli schedule. When there are no customers in 

the system, the server takes a classical vacation with probability p or a working vacation with probability 1-p, where 0 1p  . At the 

instants of service completion during the working vacation, either the server is supposed to interrupt the vacation and returns back to the 

non-vacation period with probability 1-q or the sever will carry on with the vacation with probability q. When the system is non empty 

after the end of vacation period, a new non vacation period begins. A matrix geometric approach is employed to obtain the stationary 

distribution for the mean queue length and the mean waiting time and their stochastic decomposition structures. Numerous graphical 

demonstrations are presented to show the effects of the system parameters on the performance measures. 

 
Keywords: M/M/1 queue Working vacation Vacation  Vacation Interruptions Matrix-geometric solution. 

 

1. Introduction 

Queuing Models under vacation policy have been studied 

extensively with regard to their application in computer, computer 

systems and production management. Numerous vacation policy 

enrich the adaptability for optimal design of the queuing systems. 

Queuing models with server vacations or working vacation have 

been studied by various researchers during the last two decades. 

The literature may be divided into two groups (i) when the server 

is on a vacation and (ii) when the server is on a working vacation. 

When the server is on a vacation, the survey paper by Doshi 

(1986) and the monograph of Takagi (1991) act as the reference 

for the readers. The research work done by Takagi (1991) and 

Doshi (1986) stresses on a single server. As far as the case of 

multiple-server system with vacations is concerned, Levy and 

Yechiali (1976) first studied the / /M M c  queue with 

asynchronous vacation policy. Later, Chao and Zhao (1998) 

analyzed the / /M M c  with both synchronous and asynchronous 

vacation policies and computed the stationary probability 

distribution by providing some algorithms. Zhang and Tian (2003a, 

2003b) recently contributed enough analysis of / /M M c  queue 

with synchronous multiple/single vacations of partial servers.   

/ / 1M M  queuing models with multiple working vacations was 

first studied by Servi and Finn (2002), where inter-arrival times, 

service times during service period, service times during vacation 

period and vacation times are all exponentially distributed (Such 

model is denoted by / / 1 /M M WV  queue). Later 

/ / 1 /M M WV  model was also studied by Liu et al. (2007) to 

obtain explicit expressions of the performance measures and their 

stochastic decomposition by using the quasi-birth death and 

matrix-geometric method. Servi and Finn (2002) queue extended 

to / / 1 /M G WV  queue by Wu and Takagi (2006). They 

assumed that service times during service period, service times 

during vacation period as well as vacation times are all generally 

distributed. Further, they assumed that at the end of the working 

vacation, if the system has customers, the server switches to 

another service rate, where a different distribution is followed by 

the service times. The / / 1 /GI M WV  queue is the advanced 

form of Servi and Finn (2002), extended by Baba (2005). Not only 

assuming general independent arrival, they also considered service 

times during service period, service times during vacation period 

as well as vacation times following exponential distribution. The 

analysis of single working vacation in / / 1 /GI M N  and 

/ / 1 / 1GI M  queuing systems was done by Banik (2010) by 

assuming that the service time and vacation time was distributed 

exponentially. Laxmi and Yesuf (2011) recently presented an 

/ / 1GI M  batch service queue with a policy of exponential 

working vacation. Lin and Ke (2009) analyzed the / /M M c  

queue with single working vacation. A short survey on recent 

developments in vacation queuing models has been also given by 

Ke et al. (2010).  

Generally, in working vacation policy, the server starts again his 

work at regular service rate after the end of vacation, only if the 

customers are waiting at the system. Definitely such speculations 

appears much more limited in real world situations. To come out 

of this restriction, Li and Tain [1] introduced the vacation 

interruption schedule in an M/M/1 queue with working vacations. 

In this vacation policy, a server at the completion of vacation 

instantly ends his vacation and comes back to its normal working 

level if customers are waiting in the queue, instead he will 

continue his vacation till the system is non empty after vacation 

ends. Due to its strong application in the stochastic service models, 

it gives productive theoretical results in this area. Li et al. [2], 
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Baba [3], Zhang and Hou [4], Gao and Liu [5], and Lee and Kim 

[6] are those who gave eminent papers in this area. 

This paper is organized as follows. In section 2, we present the 

discription of the model and discuss the model as quasi birth and 

death process. In section 3, we derived the stationary distribution 

of the queue length and the state probabilities of the server. 

Section 4, we present the stochastic decomposition structures of 

the stationary queue length and Sojourn time. Finaly, numerical 

demonstrations are given in section 5. 
Model description: We consider an M/M/1 queueing system where 

the customers arrive according to Poisson process with rate  . 

The server begins to serve the customers at a rate   which is 

exponentially distributed. When there are no customers in the 

system, the server takes a classical vacation with probability p or a 

working vacation with probability 1-p, where 0 1p  . During 

the working vacation, customers are served at an exponential rate 

  where <   i.e. the customer is served at a reduced service 

rate. Moreover, at the instants of service completion during the 

working vacation, either the server is supposed to interrupt the 

vacation and returns back to the non-vacation period with 

probability 1-q or the sever will carry on with the vacation with 

probability q. When the system is non empty after the end of 

vacation period, a new non vacation period begins. The classical 

vacation times and the working vacation times are also assumed to 

be exponentially distributed with parameters   and  , 

respectively. 

Let Q(t) be the number of customers in the system at time t and 

J(t) be the status of the server, which is defined as follows  

0, when the server is in working vacation period at time t,

( ) 1, when the server is in classical vacation at time t,

2, when the server is in non-vacation period at time t.

J t










 

Then  ( ( ), ( )), 0Q t J t t  defines a Markov Process with continuous 

time state space 

 ( , ) : 0,1,2,..., 0,1S k j k j    

Using the lexicographical sequence for the states, the infinitesimal 

generator can be written as 

0 0

0

=

B A

C B A

C B A
Q

C B A

 
 
 
 
 
 
 
  
 
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0
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 
 
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A






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 
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0 (1 )

0 0 0

0 0

q qv v

C

b

 






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 

         

 The matrix structure of Q indicates that the Markov Chain 

 ( ( ), ( )), 0Q t J t t  is a quasi birth and death process. To analyze 

the QBD process, we need to obtain the minimal non negative 

solution of the matrix quadratic equation which is said to be the 

rate matrix and it is denoted by R,  

 
2 = 0 (1)R B RA C    

 

The following lemma presents the explicit solution of R. 

 

Lemma 1. 

If = < 1


  , the minimal non-negative solution of matrix 

quadratic equation (1) has the following expression  

 

0

= 0 (2)

0 0

r

R
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 



 
 
 
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Where     

2
( ) ( ) 4
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2

[(1 ) ]

=
(1 )

=

q
v v v

r r
q

v

r q r
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 
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




 

     

 
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Proof.  
Since A, B and C of (1) are all upper triangular matrices, we can 

consider that the solution matrix R has the same structure as  

11 12 13

22 23

33

= 0

0 0

r r r

R r r

r

 
 
 
 
 

 

Substituting the value of 
2R  and R into (1) leads to  

 

11 11

2
( ) 0 (3)q r rv v        

 

2

33 33( ) 0 (4)r rb b      

 

22( ) 0 (5)r    

 

2

11 11 13 13 33 11

13

(1 ) ( )

( ) 0 (6)

b

b

q r r r r r rv

r

  

 

   

  

 

22 23 22 23 23 33( ) ( ) 0 (7)r r r r r rb b       

 

From the above set of equation we can obtain the minimal non-

negative solution of (1) by using the fact that (3) has a unique 

solution r  

2
( ) (( ) 4

=
2

qv v v
r

q v

       



     
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in interval (0,1). Substituting 11 =r r and 33 =r  into (6), we get 

13

[(1 ) ]
= =

(1 )

r q rv
r

r
b

 




 


.Substituting the value  

22 = =r



 

 and 33 =r   into (7), we get 23 =r   

 

Theorem 1.  

The Quasi Birth-Death process { ( ), ( )}Q t J t  is positive recurrent 

if and only if < 1 . 

 

Proof.  
Based on the lemma.1 of neuts (1981) the Quasi Birth death 

process { ( ), ( )}Q t J t  is positive recurrent if and only if the 

spectral radius SP(R) of the rate matrix R is less than 1, and set of 

equation ( , , ) [ ] = 00 1 2x x x B R  has positive solution where  

0 0

0

[ ]
B A

B R
C RC B




 
  

 

 

0 0 0

0 0 0

0 ( (1 ) ) 0 (1 )

0 0 0 ( ) ( )

(1 ) 0 0

(8)

rq r q
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p p
b b b

 

 
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   
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


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  

 



 
 
 
 

  

B[R] is an irreducible and aperiodic generator with finite state. 

Therefore ( , , ) [ ] = 00 1 2x x x B R  has positive solution (for 

example, the balance probability vector of B[R] is positive 

solution). Thus, process { ( ), ( )}Q t J t  is positive recurrent if and 

only if  

( ) = ( , ) <1SP R max r 
 

Stationary distribution of queue length: If < 1 , let (Q,J) be the 

stationary limit of the QBD process  ( ( ), ( )), 0Q t J t t   and 

define  

 

0 00 01

0 1 2

= ( , )

= ( , , ),    1

= = , =   0,   = 0,1

k k k k

kj

k

P Q k J j k J

  

   






 

 

Theorem 2.  

If < 1 , the Stationary probability distribution of (Q,J) is  

0

1

2

1
= ,   0,

(1 )

( ) 1
= ,   0

( )(1 ) (1 )

1 1
=

=0(1 )

1( ) 1

=0(1 )( (1 ) )

1
( )

( (1 ) )

(9)

k

k

k

K k
r k

rqv
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k

p rqv
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r
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kpK qr j k jv

jp rqv

k
K qrK v

r rqv




  

   
 

    

 
 

  

  
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  

   
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


  

  

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  


  

   
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
 
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( (1 ) )

k

k

rqv



  


  

where 

(1 )

( ) ( )
[ ]

(1 ) (1 )(1 )(1 ) (1 )(1 ) 1

rqv
K

p qr qrv v

r r p r

  
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  
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Proof.  
Using the matrix geometric solution method by Neuts (1981), we 

get  
1

0 1 2 10 11 12= ( , , ) = ( , , ) ,   1 (10)
k

k k k k R k      




 and 00 01 10 11 12( , , , , )      satisfies the following set of 

equations  

00 01 10 11 12( , , , , ) [ ] = 0B R      

 Substituting B[R] in (8) into the above relation, we have  

 

00 10 12(1 ) = 0 (11)bpv       

 

01 12 = 0 (12)bp   

 

00 01( (1 ) ) = 0 (13)v rq       

 

01 11( ) = 0 (14)    

 

10 11( (1 ) ) ( ) = 0 (15)v br q           

 

Taking 00 = K  and solving the above equations in terms of  K, 

we obtain 
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v

v

pK qr
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K
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

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v

v

pK qr

p qr

   


    

 

    
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(1 ) ( (1 ) )

v
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   

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 
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From (2), we obtain  

1 1

0

1 1

0

0

0 ,      1

0 0
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j

kk k j k j

j

k

r r
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Similarlly, 

21 2

=0
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1

0
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0 0
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j

kk k j k j

j

k

r r
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   


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   





 

 
 
 
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Substituting ( 10 11,  ) and the matrix expression 
1k

R


 into (10), 

we obtain (9) and noting that constant factor K can be determined 

by utilizing the normalization condition. 

The probabilities of the server in various state are as follows, 

respectively.  
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0

{J=0} = {The server is in working vacation period}

1
= = ( )

=0 (1 ) (1 )
k

v

P P

K

k rq r r




  




     

1
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

   
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Stochastic decompositions: To achieve a better comparison with 

the queuing models already existing, we often attempt to 

decompose the quantities of interest into various factors. In 

vacation queuing models, the stochastic decomposition structures 

plays a significant role and underlines the influence of system 

vacation on system performance indices such as mean queue 

length and mean sojourn times. For the system under investigation, 

we strive to do a similar decomposition. 

 

Theorem 3.  

If < 1  and >b v  , the number of customers Q in system can 

be decomposed into the sum of two independent random variable 

0= dQ Q Q , where 0Q  is the number of customers of a classic 

/ / 1M M  queue in steady state and follows a gementric 

distribution with parameter (1 ) , dQ  is the additional number 

of customer has a modified geometric distribution 
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Proof.  
From (9), the probability generating function of Q can be written 

as  
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The above equation indicates.  

1
( ) = ( )

1
dQ z Q z

z








 

is a probability generating function. Expanding ( )dQ z  into power 

series of z . We get the distribution of additional number of 

customers dQ . 

With the stochastic decomposition structure in theorem 4,we can 

easily get means.  
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Theorem 4.  

If < 1  and >b v  , the stationary waiting time W of an 

arrival can be decomposed into the sum of two independent 

variables: 0= dW W W , where 0W  is the waiting time of an 

arrival in a corresponding classical M/M/1 queue and is 

exponentially distributed with parameter (1 )b   and dW  is 

the additional delay with the LST given by  
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Proof.  
The classical relation between the probability generating function 

of L and LST of waiting time W (Keilsen and servi) is 
*

( ) = ( (1 ))Q z W z   

From theorem 3, the probability generating function of the number 

of customers Q can be written as, 

* ( )1
( ) = [( )(1 )(1 )

1 1

[ ( ) ](1 )(1 )

v

v

p qr
Q z K r

z r p

qr r z
r

   





    

 
  

 

     

 

1
(1 )[ ( ) ]

1

( )( )
(1 )[

1

( ) 1
] ]

1 1

v

v

r
r z

r r rz

p qr
r

p

p qr
z

p z

 
 

    

    




   



  
 



  


 

 

Taking = 1
s

z


  in (12), we get 

(1 )1 1
= ,   = ,     

1 (1 ) 1

1
 =
1

b

b

r r

z s rz
s

r

z
s




 

  





 







 

   
 





 

 

Substituting the above result into (12), we get  
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The proof the theorem 4, we give the equivalent expression of 
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Hence, this proves that 
*( )dW s  is a LST. 

Based on the above stochastic decomposition structure, we get 

easily obtain the means as follows  
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Numerical Results: In this section, we illustrate the influence of 

the system parameters on the performance measures by presenting 

some numerical examples. The various parameters of the model 

are chosen as = 1 , = 2 , = 1 , = 0.6 , =0.3p  and 

= 0.5q  The main findings in this study are itemized as   

• Fig. 1 presents the effects of   on E[L] for different values of 

 . Clearly, E[L] decreases as   increases. This is due to the fact 

that larger the service rate   during working vacation, higher is 

the probability that the customers are served during this period 

which leads to the decrease in E [L]. Also, the queue length 

increases as we increase the value of  .  

• Fig. 2 presents the effects of   on E [L] without VI (q=0) and 

with Vacation Interruptions (q=1). As expected, for any q, E [L] 

deceases with the increase of normal service rate  . It is 

observed that models without VI (q=0) gives higher queue lengths 

as compared to models with VI (q=1). This is because of the fact 

that in models without VI, the server stays in working vacation for 

the entire duration of the vacation which resulted in the increase in 

queue length E [L].  

• Figs. 3 and 4 presents the state probability of the server and the 

probability that the server remains in normal working period, i.e., 

P(J=2), evidently decreases with the increase in   . The 

probability that the server remains in working vacation period 

P(J=0) increases, thus, the utilization level of the system idle time 

also become larger. Note that the working vacation rate   also 

has some impact on the state probability of the server. For instance, 

when  = 1.5, P (J=2) are evidently smaller when compared to 

= 0.5 .  

• Fig 5. illustrates the impact of arrival rate   on mean queue 

length E[L]. As expected, E [L] increases with the increase in  . 

 

 
Figure 1: Impact of    on E(L) 

 

 
Figure 2: Impact of    on E(L) 

 

 
Figure 3: The state probability of the server against   
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Figure 4: The state probability of the server against   

 

 
Figure 5: Impact of    on E[L] 
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