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Abstract 
 

In this paper the Neutrosophic ordinary differential equation of first order via neutrosophic numbers is epitomized. We also intend to 

define the neutrosophic numbers and their (α, β, γ)-cut. Finally a numerical example is given to demonstrate its practicality and             

effectiveness of the differential equation involving neutrosophic numbers. 
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1. Introduction 

Smarandache [14]-[16] initiated the notion of neutrosophic set 

which is generalization of classical set, fuzzy set , intuitionistic 

fuzzy set, and so on. In the neutrosophic set, for an element x of 

the universe, the functions independently   expresses the truth-

membership degree, indeterminacy-membership degree, and false 

membership degree of the element x. This indeterminacy imports 

more information than fuzzy and intuitionistic fuzzy logic. Hence 

the application of neutrosophic logic would lead to better perfor-

mance than fuzzy logic. In modeling science and engineering prob-

lems there arise some parameters which is uncertain or imprecise. 

When the model is uncertainty with differential equations then the 

concepts of imprecise differential equations emerge. Many re-

searchers [1] - [13] have solved in fuzzy and intuitionistic fuzzy 

sense. But these  two logic does not have the term  indeterminacy. 

To handle such situation Neutrosophic set were developed. The 

multifaceted factors of neutrosophic sets have been applied in the 

differential equations. In this paper the first order homogeneous 

ordinary differential equation via   neutrosophic numbers have been 

proposed. The solution of the equation is discussed and applied in 

bacteria culture model. 

2. Preliminaries 

Definition 1. [14]   

Let X be a universe set. A  neutrosophic set A on X is defined as 

A = {<TA(x), IA(x), FA(x)> : x  X} where TA(x), IA(x), FA(x) : X 

–]0,1[+ represents the degree of    membership, degree of inde-

terministic and degree of non-membership respectively of the 

element x  X such that   – 0  TA(x), IA(x), FA(x)  3+. 

 

Definition 2. [18]  

Let X be a universe set. A single valued neutrosophic set A on X 

is defined as A = {<TA(x), IA(x), FA(x)> : x  X} where TA(x), 

IA(x), FA(x) : X [0,1] represents the degree of membership, 

degree of indeterministic and degree of non-membership respec-

tively of the element x  X such that  0  TA(x), IA(x), FA(x)  3. 

 

Definition 3.  

 (,,)-cut: The (,,)-cut Neutrosophic set is denoted by F(,,), 

where , ,   [0,1] and are fixed numbers such that   +  +   

3 is defined as  by F(,,)= {<TA(x), IA(x), FA(x)> : x  X, TA(x)  

 , IA(x)   , FA(x )   }. 

 

Definition 4.  

A neutrosophic set A defined on the universal set of real numbers 

R is said to be neutrosophic number if it has the following proper-

ties. 

(i)  A is normal it there exist x0  R such that TA(x0) = 1. ( IA(x0) =     

FA(x0) = 0). 

(ii) A is convex for the truth function TA(x) ie.,   

TA(x1 + (1 –  )x2)  min (TA(x1), TA(x2))  x1, x2  R &  

 [0,1].  

(iii) A is concave set for the indeterministic  function IA(x)   and  

false  function FA(x) ie., 

IA(x1 + (1 –  )x2)  max (IA(x1), IA(x2))  x1, x2  R &  

 [0,1].  

TA(x1 + (1 –  )x2)  max (FA(x1), FA(x2))  x1, x2  R &  

 [0,1].  

 

Definition 5. [6] 

A triangular neutrosophic number A is a subset of neutrosophic 

number in R with the following truth function, indeterministic 

function and falsity function which is given by: 
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Where a  b  c   and a triangular neutrosophic number is denoted 

by .,,);,,( AAATN cbaA   

 

Note 1:  

Here TA(x) increases with constant rate for x [a,b]  and decreases 

for x  [b,c]$ but IA(x) and FA(x) decreases with constant rate for 

x  [a,b] and increases for x [b,c]. 

 

Definition 6. [6]  

A trapezoidal neutrosophic number A is a subset of neutrosophic 

number in R with the following truth function,                      inde-

terministic function and falsity function which is given by: 
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where a  b  c   d and a trapezoidal  neutrosophic number is 

denoted by .,,);,,,( AAATRN dcbaA   

 

Note 1:  

Here TA(x) increases with constant rate for x [a,b]  and decreases 

for x  [c,d] but IA(x) and FA(x) decreases with constant rate for x 

 [a,b] and increases for x [c,d]. 

3. First Order Neutrosophic Ordinary Differ-

ential Equation 

Definition 7.   

If A is neutrosophic number then (,,)-cut  is given by 
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If ),,;,,( AAAcbaA   then (,,)-cut is given by  
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Definition 8.   
Consider the first order linear homogeneous Neutrosophic Ordi-

nary Differential Equation: ky
dx

dy
  with the initial condition 

y(x0) = y0 where k and y0 are triangular neutrosophic numbers. Let 

the solution of the above neutrosophic differential equation be y(x) 

and its  (,,)-cut be  
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The solution is strong if  
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Otherwise the solution is weak solution. 

4. Solution of Differential Equation with Tri-

angular Neutrosophic Number 

Consider the first order linear homogeneous Neutrosophic Ordi-

nary Differential Equation: ky
dx

dy
  with the initial condition 

y(x0) =  .,,);,,( AAATN cbaA                                               (1) 

 

Case I:  
If k > 0 

Taking  (,,)-cut of the equation (1) we get  
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With the initial condition 
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Then the solution of the above equation is given by  
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Case II: 

If  k < 0 

Let k = -p. Taking  (,,)-cut of the equation (1) we get  
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Then the solution of the above equation is given by  
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5. Application: 

Consider a colony of bacteria in a rich environment. In such an 

environment, the population P of the bacteria reproduce via binary 

fission.The rate at which such a population increases will be pro-

portional to the number of bacteria. We can express this rule as a 

differential equation: kP
dt

dP
  

If the initial population is a neutrosophic number                           

(3, 4, 5; 0.8, 0.2, 0.3). What is the population of bacteria after two 

days.(The constant proportional k = 1/3). 

 

Solution: 
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Hence the solution is strong.  

The solution for t = 2 and different values for (,,) is given in 

the following table. 

 

 
 

The graphical interpretation of the above table is shown below 

 

 

 



International Journal of Engineering & Technology 425 

 

 

6. Conclusion  

In this paper the first order differential equation involving neutro-

sophic numbers have been solved. To solve this equation the 

(,,) -  cut  method were used for the neutrosophic numbers. To 

show the effectiveness of proposed method it has been applied in 

the field of bacteria culture model and the solution is given for the 

truth, indeterminacy and falsity function using MATLAB and the 

graphical representation is also interpreted. This will promote the 

future study on higher order differential equations with neutro-

sophic numbers.  
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