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Abstract 
 
Semiconductor production efficiency is closely related to the defect rate in the production process. The temperature and humidity control 
in the production line are very important because these affect the defect rate. So many smart factory of semiconductor production uses 
sensor. It is installed in the semiconductor process, which send huge amounts of data per second to a central server to carry out tempera-

ture and humidity control in each production line. However, big data processing systems that analyze and process large-scale data are 
subject to frequent delays in processing, and transmitted data are lost owing to bottlenecks and insufficient memory caused by traffic 
concentrated in the central server. In this paper, we propose a real-time big data processing system to improve semiconductor production 
efficiency. The proposed system consists of a production line collection system, task processing system and data storage system, and 
improves the productivity of the semiconductor manufacturing process by reducing data processing delays as well as data loss and dis-
carded data. 
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1. Introduction 

New services based on artificial intelligence platforms, which are 
the core of the fourth industrial revolution currently being imple-
mented industry-wide, are distributing a large amount of data and 
promoting the consumption of media content. As a result, the de-

mand for various memories and other semiconductors in the glob-
al semiconductor industry has surged by at least 25% over the past 
three years. Furthermore, global semiconductor companies are 
investing in research and development as well as facility expan-
sion to improve semiconductor production [1]. 

Semiconductor production efficiency[1, 2] is closely related to the 
defect rate in the production process. Hence, temperature and 
humidity control in the production line are very important because 

these affect the defect rate. Hundreds of sensors are installed in the 
semiconductor process, which send huge amounts of data per sec-
ond to a central server to carry out temperature and humidity con-
trol in each production line. However, big data processing systems 
that analyze and process large-scale data are subject to frequent 
delays in processing, and transmitted data are lost owing to bottle-
necks and insufficient memory caused by traffic concentrated in 
the central server. In this respect, big data processing systems are 
not suitable for real-time data processing and analysis. Big data 

processing techniques can solve these problems and reduce delays 
in data processing, unlike conventional methods. However, be-
cause of the frequent occurrence of missing data due to transmis-
sion losses between clusters, such techniques are difficult to apply 
in semiconductor manufacturing, where the reliability of data 
transmission as well as real-time data processing are important. 

This study proposes a real-time big data processing system to 
improve semiconductor production efficiency. The proposed sys-

tem consists of a production line collection system (MCS), task 
processing system (TPS), and data storage system (DSS), and 
improves the productivity of the semiconductor manufacturing 
process by reducing data processing delays as well as data loss 

and discarded data. 

The structure of the paper is organized as follows: Section 2 de-
scribes Flume-based big data processing system, Spark-based big 
data processing system and Clustering-based big data processing 
system; Section 3 proposes the big data processing system; Sec-
tions 4 analyzes the data throughput and data loss rate; and Sec-
tion 5 concludes this paper. 

2. Previous studies 

2.1. Flume-based big data processing system  

Flume[3] is a big data collection technology that collects the logs 

which are loaded onto servers that provide various services, and 
onto a log collection server. Flume is based on stream-oriented 
data flow, collecting logs from all designated servers and loading 
them into the central storage, such as the Hadoop Distributed File 
System. Flume is suitable for building a Hadoop-based big data 
processing system. Fig. 1 illustrates a Flume-based big data pro-
cessing system. 
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Fig. 1: Flume-based big data processing system 

A Flume-based big data processing system has a hierarchical 
structure that reduces data processing delays by decreasing bottle-
necks compared to conventional big data processing techniques. 
However, it is difficult to apply the Flume-based big data pro-
cessing system in a large-scale environment such as the semicon-
ductor manufacturing process. Because a Flume-based big data 

processing system centrally manages the data received from nodes 
and has more data collected than processed, the discard data phe-
nomenon occurs frequently. 

2.2. Spark-based big data processing system  

Although Spark [4, 5] is a technology developed for real-time big 
data analysis, it is frequently used because Spark processes data 
using the memory of the nodes. Fig. 2 illustrates a Spark-based big 
data processing system. 

 
Fig. 2: Spark-based big data processing system 

Because Spark-based big data processing technology uses memory 
to process large-scale data, the data processing speed is faster than 
the Flume-based big data processing system. However, it requires 
a large amount of memory, leading to high infrastructure man-
agement costs. Furthermore, because a Spark-based big data pro-

cessing system installs a Spark daemon in each node that collects 
data, the system requires large memory size and high-performance 
micro control unit (MCU) for the data collecting nodes. However, 
since the nodes used in semiconductor manufacturing simply 
transmit the sensing results, the Spark-based big data processing 
system is difficult to apply. 

2.3. Clustering-based big data processing system  

A clustering-based big data processing system[6-8] is a big data 
processing system that applies the clustering technique to conven-
tional big data processing systems, such as the Flume-based and 
Spark-based big data processing systems. The clustering technique 
is used to group multiple big data processing techniques, improve 
the speed of big data processing, and increase scalability by con-
necting them in parallel. The clustering technique can be easily 
applied to various big data processing systems and is suitable for 

big data processing in large-scale environments. Fig. 3 illustrates 
clustering-based big data processing system. 

 
Fig. 3: Clustering-based big data processing system 

A clustering-based big data processing system reduces data pro-
cessing delays due to bottlenecks and insufficient memory by 
applying the clustering method. However, because the missing 
data phenomenon due to data transmission losses between clusters 
frequently occurs, it is difficult to apply the system in semicon-
ductor manufacturing, where the reliability of data transmission as 
well as real-time data processing are important. 

3. Proposed system 

Since the productivity of the semiconductor manufacturing pro-
cess is sensitive to temperature and humidity, the temperature and 
humidity control in the production line are important. Thus, sen-
sors that control temperature and humidity are installed and man-
aged in order to improve productivity. Sensors for temperature and 

humidity control in a single production line transmit thousands of 
data per second. Thus, this study proposes a real-time big data 
processing system to improve semiconductor production efficien-
cy by real-time data processing. Fig. 4 illustrates proposed big 
data processing system. 

 
Fig. 4: An illustration of proposed big data processing system 

As shown in Fig. 4, the proposed system consists of the MCS, 
TPS, and DSS. The main role of the MCS is to collect data from 
the production line in the manufacturing process, cleanse the data, 
and transfer the data to the TPS in accordance with the work pro-

cess. The main role of the TPS is to validate whether the data re-
ceived from the production line collection system are transferred 
according to the work process, cleanse the data according to the 
process, and transmit information to the data storage system. The 
main role of the DSS is to store the transmitted data in a memory-
based database (DB), create links with other systems, and transmit 
the information.  

3.1. Data structure 

Fig. 5 illustrates data structure commonly used in proposed big 
data processing system. 
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1 //Memory Database Object 

2 struct memory Object 

3 int nodeSeq; 

4 int lineSeq; 

5 int taskType; 

6   struct validHumidity; 

7 struct validTemperature; 

8 } 

9  

10 //Humidity 

11 struct validHumidity{ 

12 float min; 

13 float max; 

14 } 

15  

16 //Temperature 

17 struct validTemperature{ 

18 float min; 

19 float max; 

20 } 

21  

22 //ValidDataDictionary 

23 struct dataDictionary{ 

24 int taskType; 

25 int lineSeq; 

26   struct validHumidity; 

27 struct validTemperature; 

28 } 

Fig. 5: Data structure commonly used in proposed big data processing 

system 

The data structure shown in Figure. 5 is commonly used in the 

proposed big data processing system. The memoryObj was used as 
a data structure to store the structure of the data received from the 
production line, as well as the data cleansed through the primary 
and secondary data cleansing algorithms. The nodeSeq was used 
to identify a node with a unique, nonredundant value of the data 
collecting node. The lineSeq is a nonredundant value for easy 
access to the production line of the data collecting node, which 
enables faster search than the values in node identification. The 

maskType was used as a delimiter for the production line process. 
MemoryObj uses validHumidity and validTemperature as sub-
structures to manage the valid humidity and temperature data. 

3.2. Production line collection system 

The MCS for each production line collects data and performs the 
primary data cleansing. The MCS consists of a production line 
collection module, memory storage module, coordinator module, 

and primary data cleansing module. The production line collection 
module is responsible for receiving data from the production line. 
The memory storage module stores the data collected from the 
production line collection module in a memory. The coordinator 
module manages the status of the MCS. The primary data cleans-
ing module determines the validity (normal temperature and hu-
midity) of the data transmitted through the primary data cleansing 
algorithm to cleanse the data. Among the data collected from the 
production line, the primary data cleansing algorithm discards the 

data included in the validity range of the predefined data, and 
transmits only invalid data to the TPS suitable for the work pro-
cess. Fig. 6 illustrates the primary data cleansing algorithm using 
the data structure described above. 
 
 
 
 

 
 
 
 
 
 

1 getReceivedNodeData(pNodeObj){ 

2 while(true){ 

3  

4 //Humidity 

5   if(getDataVaildAlgorithm(pNodeObj.validHumidity.min) && 

6       getDataVaildAlgorithm(pNodeObj.validHumidity.max)) 

7       return sendNodeInfo(pNodeObj); 

8   else 

9 return false; 

10   } 

11  

12 // Temperature 

13   if(getDataVaildAlgorithm(pNodeObj.validTemperature.min) && 

14  getDataVaildAlgorithm(pNodeObj. validTemperature.max)) 

15       return sendNodeInfo(pNodeObj); 

16   else 

17 return false; 

18   } 

19 } 

Fig. 6: The primary data cleansing algorithm 

The primary data cleansing algorithm compares the temperature 

and humidity data transmitted from the production line collection 
module via getReceivedNodeData, and the predefined validity 
range through getDataVaildAlgorithm, and stores only the valid 
data through the memory storage module. All invalid data are 
discarded to minimize the data stored in the memory storage mod-
ule. Furthermore, the primary data cleansing algorithm must min-
imize the memory and CPU usage used in the computation to 
reduce data processing delays as well as data losses due to bottle-
necks in collecting and cleansing large-scale data transmitted from 

the production line. Therefore, the data validation by the primary 
data cleansing algorithm cleanses the temperature and humidity 
data by predefining the temperature and humidity valid for various 
production lines. 

3.3. Task processing system 

The TPS collects the data transmitted from the MCS and performs 
secondary processing. The TPS consists of a work process collec-

tion module, memory storage module, coordinator module, and 
secondary data cleansing module. The work process collection 
module is responsible for collecting the primarily processed data 
transmitted from the MCS. The memory storage module stores the 
data collected from the work process collection module into a 
memory. The coordinator module manages the status of the TPS. 
The secondary data cleansing module determines the validity 
(normal temperature, humidity) of the data transmitted through the 

secondary data cleansing algorithm to cleanse the data. The sec-
ondary data cleansing algorithm checks whether the cleansed data 
transmitted from the primary data cleansing module are included 
in the predefined validity range of the data for each work process 
in order to transmit only the invalid data to the DSS, and to dis-
card the valid data. Fig. 7 illustrates the secondary data cleansing 
algorithm. 
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1 TaskProcessSystem(){ 

2 while(true){ 

3    memoryObj = getNotValidNodeData(pNodeObj); 

4   if (getDataValidValue(‘h’, memoryObj) && 

5          getDataValidValue(‘t’, memoryObj)){ 

6       MemoryStoreModule(memoryObj) 

7   } 

8     CordinatorModule(); 

9   } 

10 } 

11  

12 //Store Collecting Data 

13 MemoryStoreModule(pData){ 

14   memoryObj = pData; 

15 } 

16  

17 //Data Valid Range / pType values(h:humidity / t: temperature) 

18 getDataValidValue(pType, pNodeObj){ 

19   //if humidity; 

20   if (pType=‘h’){ 

21     validHumidity=getValidDictionary(pNodeObj.taskType); 

22     if (validHumidity.min > pNodeObj.min &&  

23          validHumidity.max < pNodeObj.max) 

24       return true; 

25     else 

26       return false; 

27  

28   //if temperature; 

29   else if (pType=‘t’){ 

30   validTemperature=getValidDictionary(pNodeObj.taskType); 

31     if (validTemperature.min > pNodeObj.min &&  

32          validTemperature.max < pNodeObj.max) 

33       return true; 

34 else 

35       return false; 

36   } 

37 } 

Fig. 7: the secondary data cleansing algorithm 

The secondary data cleansing algorithm receives the abnormal 
temperature and humidity data transmitted from the MCS through 
getNotValidNodeData, and further validates the data by accessing 
the valid value range in the data validity dictionary through get-
DataVaildAlgorithm. The valid value range in the data validity 
dictionary is retrieved from the DataDictionary structure de-

scribed above through getDataVaildDictionary. The secondary 
data cleansing algorithm transmits only invalid data to the DSS 
and discards all valid data. As a result, the DSS stores only the 
minimized abnormal data that have undergone two data cleansing 
processes. 

3.4. Data storage system 

The DSS stores abnormal temperature and humidity data transmit-

ted from the TPS into a memory DB, linking it to other systems 
and transmitting it to users. The DSS consists of an in-memory 
storage module, link system module, and coordinator module. The 
in-memory storage module stores abnormal temperature and hu-
midity data into the memory DB. The link system module is re-
sponsible for transmitting information to the system and users 
connected to the memory DB. The coordinator module manages 
the status of the DSS. 

4. Performance evaluation 

The performance of the proposed system (Proposed BPS) was 
analyzed using JMeter to measure the data processing and data 
loss rates of the proposed system, Flume-based big data pro-
cessing system (FBPS), and clustering-based big data processing 
system (CBPS), respectively. The assumptions for performance 

evaluation are described as follows.  
 

Assumption 1: The number of nodes communicating with one evaluation 

target system is defined as 1,000. 

 

Assumption 2: Each node communicates with the evaluation target sys-

tem for 100 s, once per second. 

4.1. Data Throughput  

The data throughput of the proposed BPS was obtained by meas-
uring the time between the data transmission of the nodes installed 

in the production line and the storage of abnormal data by the 
secondary data cleansing algorithm of the TPS through MCS. The 
data throughput of the FBPS was obtained by measuring the time 
between the data transmission of nodes installed in the production 
line and the storage of abnormal data in the storage layer through 
the agent layer and collector layer. The CBPS was clustered by 
dividing the FBPS by production line. The data throughput of the 
CBPS was obtained by measuring the time between the data 

transmission of nodes and the storage of abnormal data in the 
clustered storage layer. Fig. 8 illustrates the r Results from meas-
urement of data throughput for proposed BPS, FBPS, and CBPS. 

 
Fig. 8: Results from measurement of data throughput for proposed BPS, 
FBPS, and CBPS 

According to the results shown in Figure 8, the data processing 
rates of the proposed FBPS and CBPS were not significantly dif-
ferent from those of the proposed big data processing system at 
the 0–16 s interval. However, after 17 s, the rate of the proposed 

BPS started to show a sharp difference from that of the compared 
subjects, and also showed approximately 15.2% difference from 
the FBPS at 20 s. The difference in data processing rates of CBPS 
and the proposed BPS gradually decreased from approximately 50 
s. The results can be attributed to the characteristics of the cluster-
ing technique that the data processing in each cluster starts at the 
initial stage, before the data are transferred and stored in the clus-
ter responsible for storing the data. 

4.2. Data loss rate  

The data loss rate of the Proposed BPS was measured by summing 
up the data loss rate at which the MCS failed to receive the data 
transmitted from the node installed in the production line, and the 
data loss rate at which the TPS failed to receive the data transmit-
ted from the MCS. The data loss rate of the FBPS was measured 
by summing up the data loss rate at which the collector layer 
failed to receive the data transmitted from the agent layer, and the 

data loss rate at which the storage layer failed to receive the data 
transmitted from the collector layer. The data loss rate for the 
clustering-based big data processing system was measured by the 
data loss rate at which the storage layer failed to receive the data 
transmitted from each cluster. Fig. 9 illustrates the results from 
measurement of data loss rate for proposed BPS, FBPS, and 
CBPS. 
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Fig. 9: Results from measurement of data loss rate for proposed BPS, 
FBPS, and CBPS 

According to the results shown in Fig. 9, the data loss rate of the 
proposed BPS had little change, and its data loss rate decreased by 
approximately 11.35% compared to that of FBPS. In comparison, 
the data loss rate of CBPS increased over time and its data loss 
was 21.18% greater than that of the proposed BPS. Furthermore, 
at the 0–5 s interval, the data loss rate of the proposed BPS did not 

show much difference compared to FBPS and CBPS. However, 
after 23 s, the data loss ratio of the proposed BPS and CBPS be-
gan to diverge rapidly, especially at approximately 85.8 s. The 
results were attributed to the characteristics of the clustering tech-
nique, where data communication in each cluster occurs frequent-
ly at the initial stage, and then the transmission of the collected 
data concentrates on the cluster responsible for storing data. 

5. Conclusion  

In this paper, we propose a real-time big data processing system to 
improve semiconductor production efficiency. The proposed sys-
tem consists of a production line collection system, task pro-
cessing system, and data storage system.  
In order to evaluating the performance of proposed system, we 

have compared the data throughput and data loss rate. Through the  
performance evaluation, we showed that our proposed system has 
more improved the data throughput and data loss rate than the 
FBPS and CBPS. 
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