

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (3.33) (2018) 243-247

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

 Real-time Big Data Processing System to Improve Semiconduc-

tor Production Efficiency in Smart Factory

Hyeopgeon Lee
1
*, Young-Woon Kim

2
, Ki-Young Kim

3

1,2Department of Data Analysis, Seoul Gangseo Campus of Korea Polytechnic

3Department of Computer Software, Seoil University
*Corresponding author E-mail: hglee67@kopo.ac.kr

Abstract

Semiconductor production efficiency is closely related to the defect rate in the production process. The temperature and humidity control
in the production line are very important because these affect the defect rate. So many smart factory of semiconductor production uses
sensor. It is installed in the semiconductor process, which send huge amounts of data per second to a central server to carry out tempera-

ture and humidity control in each production line. However, big data processing systems that analyze and process large-scale data are
subject to frequent delays in processing, and transmitted data are lost owing to bottlenecks and insufficient memory caused by traffic
concentrated in the central server. In this paper, we propose a real-time big data processing system to improve semiconductor production
efficiency. The proposed system consists of a production line collection system, task processing system and data storage system, and
improves the productivity of the semiconductor manufacturing process by reducing data processing delays as well as data loss and dis-
carded data.

Keywords: Real-time Big data, Big data Processing System, Smart Factory, Spark, Memory DB

1. Introduction

New services based on artificial intelligence platforms, which are
the core of the fourth industrial revolution currently being imple-
mented industry-wide, are distributing a large amount of data and
promoting the consumption of media content. As a result, the de-

mand for various memories and other semiconductors in the glob-
al semiconductor industry has surged by at least 25% over the past
three years. Furthermore, global semiconductor companies are
investing in research and development as well as facility expan-
sion to improve semiconductor production [1].

Semiconductor production efficiency[1, 2] is closely related to the
defect rate in the production process. Hence, temperature and
humidity control in the production line are very important because

these affect the defect rate. Hundreds of sensors are installed in the
semiconductor process, which send huge amounts of data per sec-
ond to a central server to carry out temperature and humidity con-
trol in each production line. However, big data processing systems
that analyze and process large-scale data are subject to frequent
delays in processing, and transmitted data are lost owing to bottle-
necks and insufficient memory caused by traffic concentrated in
the central server. In this respect, big data processing systems are
not suitable for real-time data processing and analysis. Big data

processing techniques can solve these problems and reduce delays
in data processing, unlike conventional methods. However, be-
cause of the frequent occurrence of missing data due to transmis-
sion losses between clusters, such techniques are difficult to apply
in semiconductor manufacturing, where the reliability of data
transmission as well as real-time data processing are important.

This study proposes a real-time big data processing system to
improve semiconductor production efficiency. The proposed sys-

tem consists of a production line collection system (MCS), task
processing system (TPS), and data storage system (DSS), and
improves the productivity of the semiconductor manufacturing
process by reducing data processing delays as well as data loss

and discarded data.

The structure of the paper is organized as follows: Section 2 de-
scribes Flume-based big data processing system, Spark-based big
data processing system and Clustering-based big data processing
system; Section 3 proposes the big data processing system; Sec-
tions 4 analyzes the data throughput and data loss rate; and Sec-
tion 5 concludes this paper.

2. Previous studies

2.1. Flume-based big data processing system

Flume[3] is a big data collection technology that collects the logs

which are loaded onto servers that provide various services, and
onto a log collection server. Flume is based on stream-oriented
data flow, collecting logs from all designated servers and loading
them into the central storage, such as the Hadoop Distributed File
System. Flume is suitable for building a Hadoop-based big data
processing system. Fig. 1 illustrates a Flume-based big data pro-
cessing system.

http://creativecommons.org/licenses/by/3.0/

244 International Journal of Engineering & Technology

Fig. 1: Flume-based big data processing system

A Flume-based big data processing system has a hierarchical
structure that reduces data processing delays by decreasing bottle-
necks compared to conventional big data processing techniques.
However, it is difficult to apply the Flume-based big data pro-
cessing system in a large-scale environment such as the semicon-
ductor manufacturing process. Because a Flume-based big data

processing system centrally manages the data received from nodes
and has more data collected than processed, the discard data phe-
nomenon occurs frequently.

2.2. Spark-based big data processing system

Although Spark [4, 5] is a technology developed for real-time big
data analysis, it is frequently used because Spark processes data
using the memory of the nodes. Fig. 2 illustrates a Spark-based big
data processing system.

Fig. 2: Spark-based big data processing system

Because Spark-based big data processing technology uses memory
to process large-scale data, the data processing speed is faster than
the Flume-based big data processing system. However, it requires
a large amount of memory, leading to high infrastructure man-
agement costs. Furthermore, because a Spark-based big data pro-

cessing system installs a Spark daemon in each node that collects
data, the system requires large memory size and high-performance
micro control unit (MCU) for the data collecting nodes. However,
since the nodes used in semiconductor manufacturing simply
transmit the sensing results, the Spark-based big data processing
system is difficult to apply.

2.3. Clustering-based big data processing system

A clustering-based big data processing system[6-8] is a big data
processing system that applies the clustering technique to conven-
tional big data processing systems, such as the Flume-based and
Spark-based big data processing systems. The clustering technique
is used to group multiple big data processing techniques, improve
the speed of big data processing, and increase scalability by con-
necting them in parallel. The clustering technique can be easily
applied to various big data processing systems and is suitable for

big data processing in large-scale environments. Fig. 3 illustrates
clustering-based big data processing system.

Fig. 3: Clustering-based big data processing system

A clustering-based big data processing system reduces data pro-
cessing delays due to bottlenecks and insufficient memory by
applying the clustering method. However, because the missing
data phenomenon due to data transmission losses between clusters
frequently occurs, it is difficult to apply the system in semicon-
ductor manufacturing, where the reliability of data transmission as
well as real-time data processing are important.

3. Proposed system

Since the productivity of the semiconductor manufacturing pro-
cess is sensitive to temperature and humidity, the temperature and
humidity control in the production line are important. Thus, sen-
sors that control temperature and humidity are installed and man-
aged in order to improve productivity. Sensors for temperature and

humidity control in a single production line transmit thousands of
data per second. Thus, this study proposes a real-time big data
processing system to improve semiconductor production efficien-
cy by real-time data processing. Fig. 4 illustrates proposed big
data processing system.

Fig. 4: An illustration of proposed big data processing system

As shown in Fig. 4, the proposed system consists of the MCS,
TPS, and DSS. The main role of the MCS is to collect data from
the production line in the manufacturing process, cleanse the data,
and transfer the data to the TPS in accordance with the work pro-

cess. The main role of the TPS is to validate whether the data re-
ceived from the production line collection system are transferred
according to the work process, cleanse the data according to the
process, and transmit information to the data storage system. The
main role of the DSS is to store the transmitted data in a memory-
based database (DB), create links with other systems, and transmit
the information.

3.1. Data structure

Fig. 5 illustrates data structure commonly used in proposed big
data processing system.

International Journal of Engineering & Technology 245

1 //Memory Database Object

2 struct memory Object

3 int nodeSeq;

4 int lineSeq;

5 int taskType;

6 struct validHumidity;

7 struct validTemperature;

8 }

9

10 //Humidity

11 struct validHumidity{

12 float min;

13 float max;

14 }

15

16 //Temperature

17 struct validTemperature{

18 float min;

19 float max;

20 }

21

22 //ValidDataDictionary

23 struct dataDictionary{

24 int taskType;

25 int lineSeq;

26 struct validHumidity;

27 struct validTemperature;

28 }

Fig. 5: Data structure commonly used in proposed big data processing

system

The data structure shown in Figure. 5 is commonly used in the

proposed big data processing system. The memoryObj was used as
a data structure to store the structure of the data received from the
production line, as well as the data cleansed through the primary
and secondary data cleansing algorithms. The nodeSeq was used
to identify a node with a unique, nonredundant value of the data
collecting node. The lineSeq is a nonredundant value for easy
access to the production line of the data collecting node, which
enables faster search than the values in node identification. The

maskType was used as a delimiter for the production line process.
MemoryObj uses validHumidity and validTemperature as sub-
structures to manage the valid humidity and temperature data.

3.2. Production line collection system

The MCS for each production line collects data and performs the
primary data cleansing. The MCS consists of a production line
collection module, memory storage module, coordinator module,

and primary data cleansing module. The production line collection
module is responsible for receiving data from the production line.
The memory storage module stores the data collected from the
production line collection module in a memory. The coordinator
module manages the status of the MCS. The primary data cleans-
ing module determines the validity (normal temperature and hu-
midity) of the data transmitted through the primary data cleansing
algorithm to cleanse the data. Among the data collected from the
production line, the primary data cleansing algorithm discards the

data included in the validity range of the predefined data, and
transmits only invalid data to the TPS suitable for the work pro-
cess. Fig. 6 illustrates the primary data cleansing algorithm using
the data structure described above.

1 getReceivedNodeData(pNodeObj){

2 while(true){

3

4 //Humidity

5 if(getDataVaildAlgorithm(pNodeObj.validHumidity.min) &&

6 getDataVaildAlgorithm(pNodeObj.validHumidity.max))

7 return sendNodeInfo(pNodeObj);

8 else

9 return false;

10 }

11

12 // Temperature

13 if(getDataVaildAlgorithm(pNodeObj.validTemperature.min) &&

14 getDataVaildAlgorithm(pNodeObj. validTemperature.max))

15 return sendNodeInfo(pNodeObj);

16 else

17 return false;

18 }

19 }

Fig. 6: The primary data cleansing algorithm

The primary data cleansing algorithm compares the temperature

and humidity data transmitted from the production line collection
module via getReceivedNodeData, and the predefined validity
range through getDataVaildAlgorithm, and stores only the valid
data through the memory storage module. All invalid data are
discarded to minimize the data stored in the memory storage mod-
ule. Furthermore, the primary data cleansing algorithm must min-
imize the memory and CPU usage used in the computation to
reduce data processing delays as well as data losses due to bottle-
necks in collecting and cleansing large-scale data transmitted from

the production line. Therefore, the data validation by the primary
data cleansing algorithm cleanses the temperature and humidity
data by predefining the temperature and humidity valid for various
production lines.

3.3. Task processing system

The TPS collects the data transmitted from the MCS and performs
secondary processing. The TPS consists of a work process collec-

tion module, memory storage module, coordinator module, and
secondary data cleansing module. The work process collection
module is responsible for collecting the primarily processed data
transmitted from the MCS. The memory storage module stores the
data collected from the work process collection module into a
memory. The coordinator module manages the status of the TPS.
The secondary data cleansing module determines the validity
(normal temperature, humidity) of the data transmitted through the

secondary data cleansing algorithm to cleanse the data. The sec-
ondary data cleansing algorithm checks whether the cleansed data
transmitted from the primary data cleansing module are included
in the predefined validity range of the data for each work process
in order to transmit only the invalid data to the DSS, and to dis-
card the valid data. Fig. 7 illustrates the secondary data cleansing
algorithm.

246 International Journal of Engineering & Technology

1 TaskProcessSystem(){

2 while(true){

3 memoryObj = getNotValidNodeData(pNodeObj);

4 if (getDataValidValue(‘h’, memoryObj) &&

5 getDataValidValue(‘t’, memoryObj)){

6 MemoryStoreModule(memoryObj)

7 }

8 CordinatorModule();

9 }

10 }

11

12 //Store Collecting Data

13 MemoryStoreModule(pData){

14 memoryObj = pData;

15 }

16

17 //Data Valid Range / pType values(h:humidity / t: temperature)

18 getDataValidValue(pType, pNodeObj){

19 //if humidity;

20 if (pType=‘h’){

21 validHumidity=getValidDictionary(pNodeObj.taskType);

22 if (validHumidity.min > pNodeObj.min &&

23 validHumidity.max < pNodeObj.max)

24 return true;

25 else

26 return false;

27

28 //if temperature;

29 else if (pType=‘t’){

30 validTemperature=getValidDictionary(pNodeObj.taskType);

31 if (validTemperature.min > pNodeObj.min &&

32 validTemperature.max < pNodeObj.max)

33 return true;

34 else

35 return false;

36 }

37 }

Fig. 7: the secondary data cleansing algorithm

The secondary data cleansing algorithm receives the abnormal
temperature and humidity data transmitted from the MCS through
getNotValidNodeData, and further validates the data by accessing
the valid value range in the data validity dictionary through get-
DataVaildAlgorithm. The valid value range in the data validity
dictionary is retrieved from the DataDictionary structure de-

scribed above through getDataVaildDictionary. The secondary
data cleansing algorithm transmits only invalid data to the DSS
and discards all valid data. As a result, the DSS stores only the
minimized abnormal data that have undergone two data cleansing
processes.

3.4. Data storage system

The DSS stores abnormal temperature and humidity data transmit-

ted from the TPS into a memory DB, linking it to other systems
and transmitting it to users. The DSS consists of an in-memory
storage module, link system module, and coordinator module. The
in-memory storage module stores abnormal temperature and hu-
midity data into the memory DB. The link system module is re-
sponsible for transmitting information to the system and users
connected to the memory DB. The coordinator module manages
the status of the DSS.

4. Performance evaluation

The performance of the proposed system (Proposed BPS) was
analyzed using JMeter to measure the data processing and data
loss rates of the proposed system, Flume-based big data pro-
cessing system (FBPS), and clustering-based big data processing
system (CBPS), respectively. The assumptions for performance

evaluation are described as follows.

Assumption 1: The number of nodes communicating with one evaluation

target system is defined as 1,000.

Assumption 2: Each node communicates with the evaluation target sys-

tem for 100 s, once per second.

4.1. Data Throughput

The data throughput of the proposed BPS was obtained by meas-
uring the time between the data transmission of the nodes installed

in the production line and the storage of abnormal data by the
secondary data cleansing algorithm of the TPS through MCS. The
data throughput of the FBPS was obtained by measuring the time
between the data transmission of nodes installed in the production
line and the storage of abnormal data in the storage layer through
the agent layer and collector layer. The CBPS was clustered by
dividing the FBPS by production line. The data throughput of the
CBPS was obtained by measuring the time between the data

transmission of nodes and the storage of abnormal data in the
clustered storage layer. Fig. 8 illustrates the r Results from meas-
urement of data throughput for proposed BPS, FBPS, and CBPS.

Fig. 8: Results from measurement of data throughput for proposed BPS,
FBPS, and CBPS

According to the results shown in Figure 8, the data processing
rates of the proposed FBPS and CBPS were not significantly dif-
ferent from those of the proposed big data processing system at
the 0–16 s interval. However, after 17 s, the rate of the proposed

BPS started to show a sharp difference from that of the compared
subjects, and also showed approximately 15.2% difference from
the FBPS at 20 s. The difference in data processing rates of CBPS
and the proposed BPS gradually decreased from approximately 50
s. The results can be attributed to the characteristics of the cluster-
ing technique that the data processing in each cluster starts at the
initial stage, before the data are transferred and stored in the clus-
ter responsible for storing the data.

4.2. Data loss rate

The data loss rate of the Proposed BPS was measured by summing
up the data loss rate at which the MCS failed to receive the data
transmitted from the node installed in the production line, and the
data loss rate at which the TPS failed to receive the data transmit-
ted from the MCS. The data loss rate of the FBPS was measured
by summing up the data loss rate at which the collector layer
failed to receive the data transmitted from the agent layer, and the

data loss rate at which the storage layer failed to receive the data
transmitted from the collector layer. The data loss rate for the
clustering-based big data processing system was measured by the
data loss rate at which the storage layer failed to receive the data
transmitted from each cluster. Fig. 9 illustrates the results from
measurement of data loss rate for proposed BPS, FBPS, and
CBPS.

International Journal of Engineering & Technology 247

Fig. 9: Results from measurement of data loss rate for proposed BPS,
FBPS, and CBPS

According to the results shown in Fig. 9, the data loss rate of the
proposed BPS had little change, and its data loss rate decreased by
approximately 11.35% compared to that of FBPS. In comparison,
the data loss rate of CBPS increased over time and its data loss
was 21.18% greater than that of the proposed BPS. Furthermore,
at the 0–5 s interval, the data loss rate of the proposed BPS did not

show much difference compared to FBPS and CBPS. However,
after 23 s, the data loss ratio of the proposed BPS and CBPS be-
gan to diverge rapidly, especially at approximately 85.8 s. The
results were attributed to the characteristics of the clustering tech-
nique, where data communication in each cluster occurs frequent-
ly at the initial stage, and then the transmission of the collected
data concentrates on the cluster responsible for storing data.

5. Conclusion

In this paper, we propose a real-time big data processing system to
improve semiconductor production efficiency. The proposed sys-
tem consists of a production line collection system, task pro-
cessing system, and data storage system.
In order to evaluating the performance of proposed system, we

have compared the data throughput and data loss rate. Through the
performance evaluation, we showed that our proposed system has
more improved the data throughput and data loss rate than the
FBPS and CBPS.

References

[1] Hyeop-Geon Lee, Young-Woon Kim, Ki-Young Kim and Jong-

Seok Choi, ”Design of GlusterFs Based Big Data Distributed Pro-

cessing System in Smart Factory”, Journal of Korea Institute of in-

formation, Electronics, and Communication Technology, Vol.11,

No.1, (2018), pp:70-75

[2] Hyeopgeon Lee, Young-Woon Kim and Ki-Young Kim, ”Imple-

mentation of an Efficient Big Data Collection Platform for Smart

Manufacturing”, Journal of Korea Institute of information, Elec-

tronics, and Communication Technology, Vol.12, No.22, (2017),

pp:6304-6307

http://dx.doi.org/10.3923/jeasci.2017.6304.6307

[3] In-Hak Joo, ”Spatial Big Data Query Processing System Supporting

SQL-based Query Language in Hadoop”, Journal of Engineering

and Applied Sciences, Vol.10, No.1, (2017), pp:1-8

[4] Young-Woon Kim and Hyeopgeon Lee, ” Implementation of Big

Data Analysis System to Prevent Illegal Sales in the Cable TV In-

dustry”, Journal of Korea Institute of information, Electronics, and

Communication Technology, Vol.12, No.23, (2017), pp:6542-6545

http://dx.doi.org/10.3923/jeasci.2017.6542.6545

[5] Jianguo Chen, Kenli Li, Zhuo Tang, Kashif Bilal, Shui Yu,

Chuliang Weng and Keqin Li, ”A Parallel Random Forest Algo-

rithm for Big Data in a Spark Cloud Computing Environment”,

IEEE Transactions on Parallel and Distributed Systems EEE

Transactions on Smart Grid, Vol.28, No.4, (2016), pp:919-933

http://dx.doi.org/10.1109/TPDS.2016.2603511

[6] Neha Bharill, Aruna Tiwari and Aayushi Malviya, ” Fuzzy Based

Scalable Clustering Algorithms for Handling Big Data Using

Apache Spark”, IEEE Transactions on Big Data, Vol.2, No.4,

(2016), pp:339-352

http://dx.doi.org/10.1109/TBDATA.2016.2622288

[7] Xing He, Lei Chu, Robert Caiming Qiu, Qian Ai and Zenan

Ling, ”A Novel Data-Driven Situation Awareness Approach for Fu-

ture Grids—Using Large Random Matrices for Big Data Modeling”,

IEEE Access, Vol.6, No.1, (2018), pp:13855-13865

http://dx.doi.org/10.1109/ACCESS.2018.2805815

[8] Ling Hu, Qiang Ni and Feng Yuan, ”Big data oriented novel back-

ground subtraction algorithm for urban surveillance systems”, Big

Data Mining and Analytics, Vol.1, No.2, (2018), pp:137-145

http://dx.doi.org/10.26599/BDMA.2018.9020013

