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Abstract 
 
The conjugate gradient (CG) method is a well-known solver for large-scale unconstrained optimization problems. In this paper, a modi-
fied CG method based on AMR* and CD method is presented. The resulting algorithm for the new CG method is proved to be globally 

convergent under exact line search both under some mild conditions. Comparisons of numerical performance are made involving the new 
method and four other CG methods. The results show that the proposed method is more efficient. 
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1. Introduction 

In this study, the unconstrained optimization function is formulat-
ed by 
 

min ( ),
nx R

f x


             (1) 

 

where : nf R R  is a continuously differentiable function and 

its gradient at point kx  is denoted as kg . The iterative method 

used to solve (1) is defined by  
 

1 , 0,1,2,...k k k kx x d k    ,           (2) 

 

where 0k  is the stepsize, kx  is the kth iterative point and kd  

is the search direction. In this paper, the exact line search is used 
to calculate the stepsize which is given by  
 

0
( ) min ( )k k k k kf x d f x d


 


   .           (3) 

 

The exact line search is also known as the optimal line search. As 
the name suggests, it calculates the optimal stepsize which gives 
the best possible reduction of the objective function. However, it 
is slow and can be ineffective when the initial point chosen is far 
from the solution point [7, 26]. As a result, most researchers prefer 
to use inexact line search [11, 6, 29] which is easier to implement 
and faster to converge to a solution. In recent years, new comput-
ers are equipped with faster processors thus successfully eliminat-

ing the speed inefficiency of exact line search as demonstrated by 
[12, 22-25]. This encourages more applications of this type of line 
search in unconstrained optimization [3, 17-19]. 
For CG method, the search direction is generally defined by 
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                   if 0,

     if 1.

k
k

k k k

g k
d

g d k 
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          (4) 

 

The scalar parameter k  is the CG coefficient. To date, there are 

several choices of k , each showing varying results when applied 

on unconstrained optimization functions. Some examples of the 

well-known formulas of k  are the Fletcher-Reeves (FR) [9], 

Polak-Ribière (PR) [20], Hestenes-Stiefel (HS) [13] and Conju-
gate Descent (CD) [10] methods. Their equations are as follow: 
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It is generally accepted that the CG method is very effective for 
solving optimization problems, especially when involving prob-
lems of large scale. Its usefulness makes it an interesting subject of 
study for many researchers. However, the efficiency of each CG 
method is highly dependent on the accuracy of the line search 

method used to determine the stepsize. In [30] established the 
global convergence of FR under exact line search. The same was 
proven by [1, 16], but with strong Wolfe line search. Computation 
wise, PR and HS are both superior to FR, though some counter 
example by [21] showed that these two methods can cycle infinite-
ly without converging to a solution. Under exact line search, the 
CD method follow the same properties as the FR method [5].  
In recent years, more variations of CG method have been devel-
oped. Some interesting examples are the RMIL [23] and WYL [27] 

methods, which are defined by 
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The CG algorithm of WYL method has been proven to be globally 
convergent with exact line search and Grippo-Lucidi line search. 
The numerical results also show that it is competitive with PRP 
method. Under some conditions, in [14] proved that WYL method 
satisfies the sufficient descent condition under strong Wolfe line 
search. Later, several new CG methods based on WYL method are 

introduced. One of them is proposed by [2], referred as AMR* 
where the equation of the CG coefficient is written as 
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Our main focus in this paper is to propose a new modification of 
CG method and establishes it global convergence under exact line 
search. The contents of this paper are divided into five sections 
with the introduction as the first one. The second section contains 

the new formula of k  and its CG algorithm. In the third section, 

we analyze the convergence of the new CG method under exact 
line search. Next, we present some numerical results and discus-
sion in Section 4 plus a short conclusion in Section 5. 

2. New Conjugate gradient method 

In this section, we present a new CG coefficient which we will 

refer as ARM
k  or ARM method. It is an extension of AMR*, a 

CG coefficient introduced in [2] which had been shown to possess 
sufficient descent and global convergence properties. Based on the 

idea, we propose a new equation of k  where we apply a new 

parameter for km  and the denominator is similar to that of CD 

method. The equation of the new CG coefficient is as follows: 
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Note that 
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From above, it is shown that ARM
k is improved from CD

k  in 

terms of its denominator. The following algorithm will implement 

the ARM method. 

Step 1: Initialization. Given 0x , set 0k  . 

Step 2: Compute k  based on (5). 

Step 3: Compute  kd  based on (4). If 0kg  , then stop. 

Step 4: Compute k  based on (3). 

Step 5: Update the new point based on (2). 
Step 6: Convergence test and stopping criteria. If 

1( ) ( )k kf x f x   and 610kg  , then stop. Otherwise, 

go to Step 1 with : 1k k  . 

3. Convergence analysis  

In this section, we present the convergence analysis of ARM 
method under exact line search. A convergent algorithm has to 
satisfy the sufficient descent and global convergence properties. In 
order to establish the convergence of the new CG method, we 

need the following assumptions of the objective function. 
 

Assumption 1 

(i) ( )f x  is bounded below on the level set  0( ) ( )x f x f x   

where 0x  is the initial point. 

(ii) In some neighbourhood N  of , ( )f x  is continuously dif-

ferentiable and its gradient is Lipschitz continuous; then there 

exists a constant 0L   such that 

 
( ) ( ) ,g x g y L x y  

  
for all  ,x y N . 

3.1. Sufficient descent condition 

If the search direction of an algorithm satisfies sufficient descent 
condition, then we may say the algorithm generates descent direc-
tion at every iteration. The sufficient descent condition is written 
as 

 
2T

k k kg d c g   for 0k   and 0c  .          (7) 

 
Theorem 3.1: Suppose that Assumption 1 holds true. Consider a 
CG method where the search direction is given as (4) and the step 

size k  is determined by using exact line search, then the suffi-

cient descent condition (7) holds for all 0.k    

 

Proof: If 0k  , then 
2

0 0 0
Tg d g  . Hence, condition (7) holds 

true. We also need to show that for 1k  , condition (7) will also 

hold true.  

Multiplying (4) by kg , we then have 

 

1( )T T
k k k k k kg d g g d     

          
2

1
T

k k k kg g d    .          (8) 

 

For exact line search, we know that 1 0T
k kg d   . Thus, 

 
2T

k k kg d g  , 

 

which implies that kd  is a sufficient descent direction. Hence, 

2T
k k kg d c g   holds true. The proof is completed. 

3.2. Global convergence 

We need to show that the CG algorithm with the new k  is glob-

ally convergent under exact line search. From (6) and Theorem 3.1, 

the k  can be simplified to 
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ARM CD FR
k k k    .            (9) 

 

Lemma 3.1: Suppose that Assumption 1 holds true, consider any 

kd  of the form (4) and k  obtained under exact minimization 

rule for all 0.k   Then, the following Zoutendijk condition holds 

where 

 
4

2

1

.
k

kk

g

d

             (10) 

 

Proof: The proof can be referred in [30]. 
 
By using Lemma 3.1, we establish the following theorem to prove 
the global convergence of the new CG method with exact line 
search. 

 
Theorem 3.2: Suppose that Assumption 1 and Theorem 3.1 hold 
true. Consider the CG method in the form of (2) and (4) with (5) 

as the k  in addition to the stepsize k  obtained by exact line 

search. Then, 

 

lim inf 0k
k

g


 .         (11) 

 
Proof: The proof is done by contradiction. Now, assuming that 

Theorem 3.2 is not true, then there exists a constant 0   such 

that 

 

kg  .         (12) 

 
From (4), by squaring both sides of the equation, we have 
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Note that for exact line search 1 0T
k kg d   . Hence 
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Substituting (9) into the equation, we have 
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Now, we divide both sides by 
4

kg  which then gives us 
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By using recursive formula and noting that 0 0d g , we have 
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Hence, 
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The last inequality contradicts the Zoutendijk condition in Lemma 
3.1. The proof is thus completed. ■ 

4. Results and discussion 

This section discusses the numerical tests of our new k  and the 

results obtained. The same tests are also applied on some selected 
CG methods (AMR*, WYL, HS and CD) in order to compare 
their performance with our method. We pick out 17 standard test 
problems from [4, 15, 28]. The capabilities of each method under 

exact line search are measured in terms of number of iterations 
and CPU time taken to solve the test problems. We set the algo-

rithm to stop when 610kg   or when the number of iterations 

exceed 10000. The codes are written in MATLAB 2015 subrou-
tine programme and all the tests are performed by using a laptop 

with CPU processor Intel(R) Core(TM) i5 and 8GB RAM 
memory. The lists of functions used are displayed in Table 1.  

 
Table 1: A list of problem functions. 

No. Function Number of 

Variables 

Initial Points 

1 Six Hump 2 (3,3), (13,13), (37,37) 

 

2 Three Hump 2 (-2,-2), (18,-18), (57,57) 

 

3 Zettl 2 (6,6), (14,14), (64,64) 

 

4 Colville 4 (4.4,…,4.4), (24,…,24), 

(71,…,71) 

 

5 Dixon and 

Price 

2,4  (12,12,…,12), 

(23,23,…,23), (69,69,…,69) 

 

6 Hager 2,4 (6,…,6), (12,…,12), 

(19.5,19.9, 19.5,19.9) 

 

7 Raydan 1 2,4  (7,…,7), (12,…,12), 

(22,…,22) 

 

8 Raydan 2 2,4  (6,…,6), (11,…,11), 

(18,…,18) 

 

9 Powell 4,8 (3.5,…,3.5), (15,…,15), 

(40,…,40) 

 

10 Extended 

White and 

Holst 

2, 4, 10, 100, 

500, 1000 

 (-1,-1.5,…,-1,-1.5), 

(5,6,…,5,6), 

(11.2,11,…,11.2,11) 

 

 

11 Extended  

Rosenbrock 

2, 4, 10, 100, 

500, 1000 

 (-10,…,-10), (18,…,18), 

(68,…,68) 

 

12 Shallow 2, 4, 10, 100, 

500, 1000 

 

(11,…,11), (23,…,23), 

(80.5) 

13 Extended Strait 2, 4, 10, 100, 

500, 1000 

 (4,…,4), (11,…,11), 

(38,…,38) 

 

14 Extended 

Himmelblau 

2, 4, 10, 100, 

500, 1000 

 (17.8,…,17.8), (40,…,40), 

(115,106,…,115,106) 

 

15 DENSCHNB 2, 4, 10, 100,  (5,…,5), (25,…,25), 
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500, 1000 (225,…,225) 

 

16 Generalized 

Quartic 

2, 4, 10, 100, 

500, 1000 

 (11,…,11), (28,…,28), (87,-

80,…,87,-80) 

 

17 Extended 

Tridiagonal 1 

2, 4, 10, 100, 

500, 1000 

 (13,…,13), (24.7,…,24.7), 

(60,…,60) 

The results are compiled in two graphs of performance profile 
based on [8] to show the improvements of the ARM method in 

comparison to some other CG methods. In the performance profile, 
we plot the fraction   of problems for which the method is with-

in a factor   of the least iterations or the best time. From the left 

side of the figure, we can determine the percentage of the test 
problems for which a method is the fastest. While, the right side 
indicates the percentage of the test problems that are successfully 
solved by each solver. Generally, the method that has the highest 

value of     and is located at the top right of figure is preferable.  
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Fig. 1: Performance profile for CG-based methods in terms of the number 

of iterations 
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Fig. 2: Performance profile for CG-based methods in terms of the CPU 

time 

 
Fig. 1 and 2 show the performance of the considered CG methods 
based on number of iterations and CPU time respectively. From 
both figures, ARM solves 99.46% of the test problems. On the 
other hand, AMR* and WYL methods equally solves 98.92% of 

the problems, CD method solves 98.39%, while HS method only 
manage to reach 91.93% despite being the fastest solver for most 
of the tests. Overall, ARM have the highest number of successful 
tests. It can also be regarded as the fastest solver after HS. This is 
based on the location of its curve at the left side of Fig. 1 and 2 
which are both higher than the other solvers except HS. Thus, we 
can say that ARM is the most efficient method among all the test-
ed solvers. 

5. Conclusion  

In this paper, we have proposed a new CG coefficient based on the 

AMR* and CD method. The search direction of the proposed 
method satisfies the sufficient descent condition when used with 
exact line search. Convergence analysis on the new algorithm also 
shows that it is globally convergent. In addition, the effectiveness 
of the ARM method has been investigated via numerical tests on a 
set of 17 unconstrained optimization test problems. Analyses on the 
numerical outcomes show that the new algorithm perform better 
than some CG methods both in number of iterations and time taken 

for solving each test functions. Based on these results, we conclude 
that ARM is a good alternative for solving unconstrained optimiza-
tion functions. 
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