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Abstract 
 

This paper studies the reserve risk estimation requirement under the Solvency-II regime that came into effect in the European insurance 

sector in January 2016. In particular, it shows how the outstanding loss of a non-life insurer can be estimated under this regime. This 

regime totally replaces the traditional approaches of providing standard deviations of the liabilities over their full run-off. The require-

ment under this regime is that each risk shall be calibrated using a value-at-risk measure with 99.5 percentile confidence level over a 

single period. In connection with this, a bootstrap framework is used to estimate the uncertainty of loss reserve over the single period 

time horizon. Two process distributions are used namely Over-dispersed Poisson and Gamma in two separate bootstraps to estimate the 

uncertainty of loss reserve. Further, a comparison is established in the estimated results and it is found that Over-dispersed Poisson pro-

cess distribution produces lower prediction errors than the gamma process distribution. 
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1. Introduction 

The Solvency-II regime aims to set up improved risk sensitive 

solvency requirements for insurers functioning in Europe. It pro-

posed its roots in the insurance business with European Parliament 

and the council directive [1]. It practically came into effect from 

January 2016. This regime pursuit to provide the fair value of 

capital required to meet the technical provision of the insurer. The 

technical provision is the major and most important portion of 

liabilities on balance sheet of the insurer. The reserve risk arises 

when the technical provision is insufficient to cover the claims 

whether unsettled, un-expired or not reported to the insurer. 

Therefore an insurer has to estimate reserve as accurately as pos-

sible to mitigate the reserve risk. Under solvency-II, each risk 

shall be calibrated using a value-at-risk measure with 99.5 percen-

tile confidence level over 12 month period [2]. It replaces the ul-

timate reserve risk view with single period reserve risk view. In 

simpler words, it corresponds to the situation when the current 

reserve is insufficient to cover their run-off over the period of one-

year time horizon. Solvency-II totally replaces the traditional ap-

proaches of providing standard deviations of the liabilities over 

their runoff. Moreover, the reserve risk ignores all complications 

like credit risk on reinsurance, operational risk loading under this 

regime. This characteristic shifts the risk profile only to the profit-

ability of reserve held over a single year period known as the 

Claims Development Result (CDR). The single year CDR is the 

expected ultimate cost of claims at opening less the expected cost 

of claims after one year. The CDR for the year I}{1,..., ∈ i   in 

accounting year }1I,I{ +  according to definition 2.15 given in [3] 

can be defined as: 

 

 

(1)                                                      )D|C(E-)D |E(C  )1I(CDR 1IjiIij +=+

 

The reserve risk can be computed either by the standard formula 

of solvency-II or alternatively by the approved internal models. 

The Chain Ladder (CL) model is one of the permitted internal 

models to estimate outstanding loss reserve under solvency-II [2]. 

It is the benchmark for most of the reserving models in the litera-

ture. The CDR concept can be used in the CL method to fulfil the 

single-year horizon uncertainty requirement. However, it does not 

generate 99.5% percentile as required under solvency-II. The 

estimation of the prediction uncertainty in CL model provides 

great insight into the future claims development. However, the 

full predictive distribution of reserve estimates will provide in-

formation about cash flows as well as risk measures. With this 

attention, this study use bootstrap technique to produce the full 

predictive distribution of estimates and the associated uncertainty 

according to the requirements of the solvency-II.  
This paper is organized as follows. The section 2 reviews the re-

lated literature and highlights the aim of the study. Section 3 dis-

cusses the incorporation CDR concept in CL model and issue 

underlying this method under the solvency-II regime. Section 4 

illustrates a Bootstrap algorithm to produce an empirical distribu-

tion of CDR. In addition, reflect final results and the associated 

findings. The final section concludes. 

2. Literature Review 

The most popular run-off method in practice usually used by the 

actuaries for claim reserving is the CL model. Earlier this was 

referred as a purely deterministic algorithm for the estimation of 

claim reserve. However, Mack [4] introduced the distribution-free 

CL model and derived a formula for estimation errors. This be-
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came the foundation stone for the quantification of prediction 

uncertainties, which cause reserve risk. Presently wide variety of 

stochastic reserving methods supports CL model (for an overview 

see [5].Although many researchers have given different approach-

es to derive an estimate for estimation error [see e.g. 6, 7].  

However, all these approaches are very similar to one another. The 

single year CDR made CL model best fit for the solvency II one 

year horizon requirement.  

There are mainly three concepts behind the adaptation of CDR [8]. 

The first one is the elusive nature of the ultimate unpaid loss. The 

second one is the effect of information about claim data obtained 

over one year. The last one is the actuarial methodology used to 

predict the best estimate one year later. Merz & Wüthrich [3] in-

corporated this concept in chain ladder model to estimate reserve 

uncertainty over the one-year time horizon. However, under sol-

vency-II, each risk shall be calibrated using a value-at-risk meas-

ure with 99.5 percentile confidence level over 12 month period 

(Article 104 of solvency II directive). There are other studies that 

deal with one- year reserve risk estimation however, this question 

is not addressed by any of these studies [see e.g. 9, 10]. This study 

argues that bootstrap is the most appropriate method to resolve 

this issue. The bootstrap method is first proposed by Efron [11]. 

This approach is widely used in the actuarial literature [see e.g. 9, 

12, 13].These researchers combined the bootstrap concept with the 

CL model.  

Our study aims to estimate the outstanding loss and the related 

prediction errors under the solvency-II requirement. We use Boot-

strapping to produce a predictive distribution of the CDR from 

which 99.5 percentile of CDR can be estimated. To produce the 

distribution the Gamma and over-dispersed-Poisson distribution 

are used as process distributions instead of commonly used log-

normal distribution. In addition, we case study the bootstrapping 

method by using the real claims data from [13]. Moreover, a com-

parison is drawn between prediction uncertainties of gamma boot-

straps and over-dispersed Poisson bootstrap.  

3. Case Study: Chain Ladder Model 

  The CL model is the base for calculating the best estimate in most 

of reserving methods. The estimation of best estimate is mainly 

used to estimate the outstanding claims namely Incurred But Not 

Reported (IBNR) claims. These are claims that take years to 

emerge due to the intricate damage, long legal procedures or 

strenuous estimation of the claim amount. Therefore an insurer has 

to structure reserve for future claims arising from written contracts 

as well as for outstanding claims. For the estimation of the out-

standing claims by CL model, we can use the paid claim data or 

incurred claim data. 

 Consider a family of positive random variable ijX  denote the 

individual claim amounts, where ( )I1,..., ∈i  denote accident year 

and J)(1,..., ∈j  denote development year.  Then the cumulative 

claim amount can be defined as ∑
J

1k
ikij XC

=

= .The outstanding 

claim reserve for accident year i can be defined as 

 

(2)                                                                              J≤i≤1 C-CR 1i-J,iii +=

 

In standard CL model reserve risk is measured by mean square 

error without assuming any distribution. We refer the time series 

version assumption of chain ladder model as these assumptions 

are stronger than the assumption laid down in basic Mack’s model. 

So, in order to predict outstanding claims, the following assump-

tions have to be carried out.  

1. The cumulative claim amounts jiC are independent.  

2. There exist development factors 0 ≥   ii )0f( >  for J≤j≤1   

1-j, i1-j1-j i,j i Cf]C |C[E =  

3. There exist variance parameters 0≥ ii )0≥σ(   for J≤j≤1   

1-j,i
2

1-j1-j,ij i Cσ)C|Cvar( =  

The estimation of development factors that are the unbiased and 

uncorrelated estimator of kf is defined as 
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C

C

f

∑

∑
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Therefore the estimated ultimate claim amount can be defined by 

 
(4)                                                                                       fCC ∏

1-J

i-Ik

∧

ki-I,i

∧

iJ
=

=   

 

This estimator is used as a predictor for future claims. The predic-

tive uncertainty that is the mean square error prediction of the 

ultimate claim estimator is defined in [4] as 

 

(5)                                                              ]D|)C-C[(E)C( MSEP 2
∧

jiij

∧

ij =  
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ij

∧
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∧
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The MSEP formula of basic CL is projecting the total uncertainty 

of loss reserve over the entire runoff. However, under solvency-II, 

the actuaries need to quantify prediction uncertainties over next 

accounting year. It means require a dynamic view of prediction 

uncertainties. 

For this reason, the derivation of 12 months CDR for distribution 

free CL model by Merz & Wüthrich [3] got a lot of attention in 

reserving under Solvency II regime. The primary objective of this 

study is to measure the uncertainty associated with the reevalua-

tion of the best estimate between the time I to time I+1.The CDR 

analyze the reserve uncertainties over a 12-month horizon. For the 

proof of the CDR and other results, which are used thereafter in 

this section refer to [3].The observed CDR for accident year in 

next accounting year when the chain ladder factors are unknown is 

defined by  

 

(7)                                                                                           )1I(
∧

CDR∑
I

1i
i

=

+

 

The Mean Square Error Prediction of claims development is de-

rived in section 3 of [3]. For a single accounting year, the condi-

tional mean square error of prediction of the observed CDR by 0 

given information ID  is defined by 

 

(8)                                           ]D|)Ĉ-Ĉ[(E)0( I
21I

ij
I

ijD |1)(ICDRMSEP
I

∧ +
+ =

 

The CL model is employed to CL obtain from [13] to estimate the 

claims reserve and the related uncertainty. The subjective estima-

tion results are enclosed in Table 1. The mean square prediction 

error of the observed CDR for single accounting year is estimated 

by using Equation 8.  

 
Table 1: Reserve estimate by CL model 

Year 
Mean 

Ultimate 

loss 

Mean 

IBNR 

Mack.

2/1msep  

CV 

IBNR 

CDR 

2/1msep

 

1 7518 0 0 0 
 

0 

2 9470 15.1 2.09 0.1 2.1 

3 13223 62.4 10.95 0.2 10.7 

4 9247 143.7 37.59 0.3 36.8 
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5 7804 218.2 43.49 0.2 28.4 

6 7734 399.2 92.31 0.2 82.0 

7 8614 822.7 164.92 0.2 133.4 

8 11093 1842 378.65 0.2 328.4 

9 10118 4056 980.31 0.2 913.7 

10 9847 8764 1928.5 0.22 1673.6 

To-

tal 
94668 

1632

3 
2285 0.1 2016 

 

Table 1 reports the mean ultimate loss reserve (column 2), out-

standing loss reserve (column 3), ultimate prediction uncertainty 

(column 4), the coefficient of variation for outstanding loss (col-

umn 5) and single year claims development uncertainty (column 

6) obtained by standard CL model. 

In Table 1 it can be analyzed that  CL model estimates the claims 

uncertainty for the ultimate run-off (See Column 4), as well as the 

single year, measure by single year CDR(see Column 6). However, 

it does not generate the 99.5 percentile confidence interval for the 

single year. This issue is also highlighted in [8]. It can be resolved 

by incorporating bootstrapping methodology to obtain the empiri-

cal distribution of CDR then the 99.5 percentile requirement could 

be fulfilled. 

 

4. Parametric Bootstrapping  

 
The more comprehensive algorithmic version of bootstrap is given 

by Efron and Tibshirani [15].  It is not a model but a method to 

generate a sampling distribution of data by generating pseudo 

samples. Those are obtained by random selection from observed 

data. This is only possible if the data is independent and identical-

ly distributed and is exactly fitted to the underlying model. The 

bootstrapping approach is used to estimate uncertainty using pre-

diction errors and is an applicable method under Solvency II re-

gime. This method provides full empirical distribution of one-year 

outstanding loss that is the distribution of CDR.  

The bootstrap algorithm executes two-level simulation approach. 

In level one a regular CL model is applied to the paid or incurred 

claims run-off trapezoid. This produces the scaled Pearson residu-

als and then has to bootstrap it N number of times to estimate 

incremental payments with the CL model. In the next level, the 

simulation of the process error takes place with the bootstrap value 

as the mean and incorporating the assumed process distribution. 

This study uses two different process distributions namely gamma 

distribution and over-dispersed Poisson distribution. 

Following [5] to linearise the multiplicative model a logarithmic 

link function is assumed 

 
(9)                                                  ηβαμ)μlog()C(Elog jijiijij =++==

 
(10)                                                                                          )η̂exp(Ĉ ijij =

 
The general form of the over-dispersed-Poisson distribution is: 

 

(11)                                                                                 βαμ)C(E jijiij ==
 

(12)                                                       φμβφα)C(Eφ)C(Var jijijiji ===
 

 

The φ is unknown dispersion parameter that is estimated from the 

data.  

The general form of the gamma distribution is:  

 

(13)                                                                                   βαμ)C(E jijiij ==

 

(14)                                                                 φμ))C(E(φ)C(Var 2
ji

2
jiji ==

 
The mean square error of prediction for individual cell is obtained 

by  

(15)                        [5]in  7.5equation  see   )(Varφ ~)(MSEP ημμĈ ij

2

ij

δ

ijij
+=

 

The overall mean square error of prediction is obtained by 

 

(16)          μμ)ηη(Cov2)η(Varμμφ≈)Ĉ(MSEP  ikijikijij
2

ij
δ

ijjij ∑∑∑∑ ++

 

See equation 7.9 in [5] 

The following bootstrapping algorithm relies on   [3, 4, 5, 9, 16, 

17]. 

 

4.1. The Bootstrap Algorithm 

 
Level one 

Estimate the parameters I  ≤  i  ≤ 1i )α̂(,μ̂  and J   ≤j  ≤  1

∧

j )β( from ob-

served cumulative data I≤ji≤1ij )μ( +  

Fit chain ladder model to the observed data and predict the claims 

I   ≤  ji  ≤1ij )μ̂( +  per origin year to fill the lower trapezoid shown in 

figure 1 by 

Evaluate the best estimate at I, ∑
1I≥ji

ijI )η̂exp(BE
++

=  

Calculate dispersion parameter 
p-n

)r(
φ̂

2p
ij∑

=  

Here 
p-n

)r(
2p

ij∑
 is Pearson residual of ijX  and these residuals are 

adjusted by factor 
p-n

n
 

I. Calculate the scaled  Pearson residual by 

1-I≤ji≤1:j,i∀
)μ̂(V

μ̂-C
r

j i

ijj ip
ij +=  

1-I≤ji≤1:j,i∀
μ̂φ̂

μ̂-C
r

δ
j i

ijj ip
ij +=  

Where 1δφ̂ == for over dispersed Poisson and 2δ =   for gamma 

Level two: Bootstrap loop 

Resample residuals 
A

ijr  with replacement and construct  pseudo 

upper trapezoid at time I by 
ji

**

ji rμ = ijji μ̂μ̂ +  

Restimate the model  and obtain new parameters with this pseudo-

data 1*
j

1*
i

1*
i β̂ and α̂,μ̂  

Obtain the expected values 1Iji
1*

ij )μ̂( +=+ in the sub-diagonal. 

In order to take into account, the process errors simulate the em-

pirical distribution with mean 1*
ijμ̂  and variance δ

ijμ̂φ̂ to produce 

the incremental payments *
ijμ . The single accounting year pay-

ments  are *
ij

*
1i ∑

1Iji

XF
+=+

=+  

Re-estimate model parameters in order to obtain new expected 

value   )μ( 2I  ≥ ji
2*

ij ++  

Calculate the  best estimate at time I+1 by ∑∑μ̂ ij

2**
1IBE =+  

Obtain empirical distribution of CDR by I
*

1I
*

1I
* BE-BEFCDR ++ +=  

End of iteration *1 

Return to level two until the thousand iterations 
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5. Results 

 
The bootstrap algorithm is applied to the data obtained from [13]. 

Table 2 and Table 3 reflect the results obtained through the boot-

strap algorithm assuming the gamma distribution and over-

dispersed Poisson distribution respectively.  

 

Table 2: Reserve estimation using gamma distribution 

Year 
Mean 

Ultimate 

Mean 

IBNR 

IBNR 

2/1msep
 

99.5% 

CDR(1) 

2/1msep
 

99.5% 

1 7,518 0.0 0.0 0.0 

2 9,468 13.1 285.3 285.3 

3 13,220 58.9 398.3 401.0 

4 9,244 141.0 499.5 464.0 

5 7,804 217.7 717.0 547.7 

6 7,732 397.0 954.9 817.1 

7 8,606 815.1 1,597.3 1,407.1 

8 11,071 1,819.9 3,014.7 2,703.3 

9 10,069 4,007.2 5,891.3 5,704.1 

10 9,913 8,830.2 16,476.1 15,891.0 

Total 94,645 16,300 24740.9 24256.7 

 

Table-2 reports the estimated mean ultimate claims amount, mean 

outstanding loss, the prediction uncertainty of outstanding loss, 

the quantiles of outstanding loss and claims development result 

obtained by using gamma bootstrap.   

 
Table 3: Reserve estimation using over-dispersed Poisson distribution 

Year 
Mean 

Ultimate 

Mean 

IBNR 

IBNR  

2/1msep
 

99.5% 

CDR(1) 

2/1msep  

99.5% 

1 7,518 0 0.0 0.0 

2 9,469 13.9 269.29 269.3 

3 13,221 60.3 377.2 384.4 

4 9,242 138.5 551.2 505.7 

5 7,804 218.1 760.2 603.0 

6 7,735 400.4 942.8 764.4 

7 8,597 806.3 1,584.5 1,366.0 

8 11,091 1,840.1 3,114.5 2,672.8 

9 10,111 4,048.9 6,061.0 5,886.8 

10 9,772 8.689.2 15,463.9 15,537.9 

Total 94,560 16,216 23378.0 23405.3 

 

Table 3 reports the estimated mean ultimate claims amount, mean 

outstanding loss, the prediction uncertainty of outstanding loss, 

the quantiles of the prediction uncertainty in outstanding loss and 

claims development result obtained by using over-dispersed Pois-

son distribution in bootstrap. 

The comparison between result reported in Table-2 and Table-3 is 

carried out to compare the behavior of estimation predicted by 

assuming two different process distributions in the bootstrap algo-

rithm. Both fitted distributions provide similar results but not 

identical, the ultimate loss (Mean Ultimate), outstanding 

loss(Mean IBNR), mean square errors of outstanding loss(IBNR 

S.E.) are not very different. However are greater in gamma boot-

strap than in Poisson bootstrap. The quantiles of the CDR and 

IBNR at 99.5% in gamma bootstrap are greater than Poisson boot-

strap. It indicates that prediction uncertainty is higher in gamma 

bootstrap as compared to Poisson bootstrap. 

Finally, by analyzing this comparison, two conclusions are ex-

tracted. 

1. The gamma bootstrap prediction errors are little higher than 

the prediction errors in over-dispersed Poisson bootstrap. 

2. The values of the quantiles in gamma bootstrap are higher 

than over-dispersed-Poisson bootstrap. 

Mostly the non- negative valued probability distributions are used 

in the loss reserving by the actuaries. The log-normal distribution 

is used widely in the loss reserving literature. Because in other 

distributions the pseudo data negative values have to be replaced 

by the zeros in practice. However log-normal generate higher 

prediction errors than gamma and over-dispersed Poisson because 

of the conservative characteristics.  

 

6. Conclusion 

 
This paper studies the reserve estimation requirements under the 

solvency-II regime, especially the value-at-risk measure with 99.5 

percentile confidence level over the 12 months period requirement. 

In this connection, CDR concept is incorporated into the chain 

ladder model to estimate the loss reserve over a one-year period. 

However, this method does not generate the 99.5 percentile (quan-

tiles). Further, the bootstrap methodology is applied to obtain the 

distribution for the CDR from which the means and quantiles of 

the IBNR and CDR are obtained. In the bootstrap algorithm, two 

different process distributions are used namely gamma and over-

dispersed Poisson distribution to generate the distribution of re-

serve.   

Finally, a comparison is being carried out between gamma and 

over-dispersed Poisson bootstrap results and it is found that both 

distributions generate similar predictions but not identical. In fact, 

the over-dispersed Poisson distribution produces less estimation 

errors than the gamma distribution. 
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